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Abstract
It has been recently noticed that there is a finite number of two-dimensional classes
of product-type systems of difference equations solvable in closed form. We present a
new class of this type. A detailed analysis of the form of its solutions is given. Our
results complement the previous ones on such systems and present one of the final
steps in describing the forms of their solutions.
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1 Introduction
Many types of difference equations and systems have been studied so far. A part of the
studies can be found in [–]. Some types of the systems essentially obtained by sym-
metrization of scalar ones were studied in [–], which was a motivation for further in-
vestigations in the field [, , , , –]. Historically, perhaps the first main problem
of interest in the whole area was finding formulas for their solutions. For known methods
for finding the formulas the reader can consult, for example, [–]. A note of ours from
 has influenced some investigation in this direction since that time (see, for example,
[, –] and the references therein).

In the study of some classes of equations and systems, product-type ones appear as
boundary cases. Finding formulas for positive solutions to the equations and systems in
the boundary cases is a routine problem, so not of theoretical interest nowadays. It can be
of practical interest only if another system or equation is reduced to such one. However,
if all solutions are not positive, the problem is very complicated. The boundary cases of
equations and systems have motivated us to study them for the case of non-positive ini-
tial values. In fact, the equations and systems on the complex domain have attracted our
special attention. Our study started in [], where a system with two dependent variables
was investigated. The form of the system in [] strikingly suggested the study of the solv-
ability of the other systems of related forms (see, e.g., [, ]). Since the system, as well as
a couple of other ones later studied (see, e.g., []), was of the form

zn = za
n–m wa

n–m , wn = wa
n–m za

n–m , n ∈N, ()
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it naturally suggested the study of the solvability of this, as well as of some related sys-
tems. This motivated us to include some coefficients in () and study the solvability of
such systems, which was for the first time done in [], where we showed the solvability
theoretically and gave some hints on how to deal with more concrete cases, that is, for
some special values of parameters a, b, c and d. Later we realized that complete pictures
of the form of the solutions of this type of systems could be given by studying all the quan-
tities appearing there in detail. References [] and [] were the first ones which gave the
complete pictures of the forms of the solutions to the systems studied therein. Later in []
we devised another method which deals with the solvability problem, although technically
somewhat complex. For some quite recent results on product-type systems see [], []
and [].

To finish the project of studying the solvability of product-type systems with two depen-
dent variables (see [, –] and the related references therein), we have to study a few
more. Here we study the system

zn+ = αza
nwb

n, wn+ = βwc
n–zd

n–, n ∈N, ()

where a, b, c, d ∈ Z, α,β , z–, z, w–, w–, w ∈ C. In fact, we assume that α,β , z–, z, w–,
w–, w ∈C\{}, to avoid dealing with non-defined or trivial solutions. We will give a com-
plete picture of the forms of the solutions to system () for all the values of the parameters
and initial values.

2 Auxiliary results
Some classical auxiliary results that are employed in the section that follows are quoted in
this one.

Lemma  (see, e.g., [, ]) Let

Rk(s) = bk

k∏

j=

(s – sj),

sj �= st , j �= t, and bk �= . Then

k∑

j=

sm
j

R′
k(sj)

= ,

for each m ∈ {, , . . . , k – }, and

k∑

j=

sk–
j

R′
k(sj)

=


bk
.

Four more or less widely known formulas are listed in the following lemma (see, e.g.,
[, ]). A recurrent relation connecting this type of sums is given in [].

Lemma  Let

s(m)
n (z) =

n∑

j=

jmzj–, n ∈N,

m ∈ N and z ∈C.
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Then

s()
n (z) =

 – zn

 – z
,

s()
n (z) =

 – (n + )zn + nzn+

( – z) ,

s()
n (z) =

 + z – (n + )zn + (n + n – )zn+ – nzn+

( – z) ,

s()
n (z) =

nzn(z – ) – nzn(z – ) + nzn(z – ) – (zn – )(z + z + )
( – z) ,

for every z ∈C \ {} and n ∈ N.

The following lemma describes the nature of the zeros of a polynomial of the fourth
order in detail (see []).

Lemma  Let

P(t) = t + bt + ct + dt + e,

� = c – bd + e, � = c – bcd + be + d – ce,

� =



(
�

 – �

)
, P = c – b,

Q = b + d – bc, D = e – c + bc – bd – b.

(a) If � < , then two zeros of P are real and different, and two are complex conjugate.
(b) If � > , then all the zeros of P are real or none is. More precisely,

◦ if P <  and D < , then all four zeros of P are real and different;
◦ if P >  or D > , then there are two pairs of complex conjugate zeros of P.

(c) If � = , then and only then P has a multiple zero. The following cases can occur:

◦ if P < , D <  and � �= , then two zeros of P are real and equal and two are real
and simple;

◦ if D >  or (P >  and (D �=  or Q �= )), then two zeros of P are real and equal
and two are complex conjugate;

◦ if � =  and D �= , there is a triple zero of P and one simple, all real;
◦ if D = , then

.◦ if P <  there are two double real zeros of P;
.◦ if P >  and Q =  there are two double complex conjugate zeros of P;
.◦ if � = , then all four zeros of P are real and equal to –b/.

3 Main results
The main results in this paper are proved in this section.

Theorem  Assume that b, c, d ∈ Z, a = , α,β , z–, z, w–, w–, w ∈ C \ {}. Then
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(a) if c + bd �= , the general solution to () is given by

zm = α
–c–bd(c+bd)m–

–c–bd βb –(c+bd)m
–c–bd zbd(c+bd)m–

 wbc(c+bd)m–

– , ()

zm+ = α
–c–bd(c+bd)m

–c–bd βb –(c+bd)m
–c–bd wb(c+bd)m

 , ()

zm+ = α
–c–bd(c+bd)m

–c–bd βb –(c+bd)m+
–c–bd zbd(c+bd)m

– wbc(c+bd)m

– , ()

wm = αd –(c+bd)m
–c–bd β

–(c+bd)m
–c–bd w(c+bd)m

 , ()

wm+ = αd –(c+bd)m
–c–bd β

–(c+bd)m+
–c–bd zd(c+bd)m

– wc(c+bd)m

– , ()

wm+ = αd –(c+bd)m
–c–bd β

–(c+bd)m+
–c–bd zd(c+bd)m

 wc(c+bd)m

– , ()

(b) if c + bd = , the general solution to () is given by

zm = α+bd(m–)βbmzbd
 wbc

–, ()

zm+ = α+bdmβbmwb
, ()

zm+ = α+bdmβb(m+)zbd
–wbc

–, ()

wm = αdmβmw, ()

wm+ = αdmβm+zd
–wc

–, ()

wm+ = αdmβm+zd
wc

–. ()

Proof Since a = , we have

zn+ = αwb
n, wn+ = βwc

n–zd
n–, n ∈ N. ()

From (), we have

wn = βαdwc+bd
n– , n ≥ , ()

which implies that

wm+i =
(
αdβ

)∑m–
j= (c+bd)j

w(c+bd)m

i , m ∈N, i = , , . ()

Hence,

wm = α
d

∑m–
j= (c+bd)j

β
∑m–

j= (c+bd)j
w(c+bd)m

 , ()

wm+ =
(
αdβ

)∑m–
j= (c+bd)j(

βwc
–zd

–
)(c+bd)m

= α
d

∑m–
j= (c+bd)j

β
∑m

j=(c+bd)j
zd(c+bd)m

– wc(c+bd)m

– , ()

wm+ =
(
αdβ

)∑m–
j= (c+bd)j(

βwc
–zd


)(c+bd)m

= α
d

∑m–
j= (c+bd)j

β
∑m

j=(c+bd)j
zd(c+bd)m

 wc(c+bd)m

– . ()



Stević Advances in Difference Equations  (2017) 2017:245 Page 5 of 22

Using ()-() in the first equality in (), we get

zm = α
+bd

∑m–
j= (c+bd)j

β
b
∑m–

j= (c+bd)j
zbd(c+bd)m–

 wbc(c+bd)m–

– , ()

zm+ = α
+bd

∑m–
j= (c+bd)j

β
b
∑m–

j= (c+bd)j
wb(c+bd)m

 , ()

zm+ = α
+bd

∑m–
j= (c+bd)j

β
b
∑m

j=(c+bd)j
zbd(c+bd)m

– wbc(c+bd)m

– . ()

From ()-() and some calculations, we easily get ()-(), as desired. �

Theorem  Assume that a, c, d ∈ Z, b = , α,β , z–, z, w–, w–, w ∈C \ {}. Then system
() is solvable in closed form.

Proof Since b =  system () becomes

zn+ = αza
n, wn+ = βwc

n–zd
n–, n ∈ N, ()

which is system (.) in []. Hence, if c �=  the theorem follows from Theorem . in
[], while the case c =  follows from equations (.) and (.) in [], as well as the
second equation in (). �

The case d =  has been recently studied in [], where, among others, the following
theorem was proved.

Theorem  Assume that a, b, c ∈ Z, d = , α,β , z, w–, w–, w ∈ C \ {}. Then system ()
is solvable in closed form.

Theorem  Assume that a, b, c, d ∈ Z, abcd �= , α,β , z–, z, w–, w–, w ∈ C \ {}. Then
system () is solvable in closed form.

Proof From α,β , z–, z, w–, w–, w ∈C \ {} and () we get znwn �=  for n ∈N. Hence,

wb
n =

zn+

αza
n

, n ∈N, ()

wb
n+ = βbwbc

n–zbd
n–, n ∈N, ()

and consequently

zn+ = α–cβbza
n+zbd+c

n– z–ac
n–, ()

for n ≥ .
Note also that

z = αza
wb

, z = α
(
αza

wb

)a(

βwc
–zd

–
)b = α+aβbzbd

–za
 wbc

–wab
 ,

z = αza
wb

 = α+a+a
βb(+a)zabd

– za+bd
 wabc

– wbc
–wab

 .
()

Let δ = α–cβb,

a = a, b = , c = bd + c, d = –ac, y = , ()
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then

zn+ = δy za
n+zb

n zc
n–zd

n–, n ≥ , ()

and consequently

zn+ = δy
(
δza

n zb
n–zc

n–zd
n–

)a zb
n zc

n–zd
n–

= δy+a zaa+b
n zba+c

n– zca+d
n– zda

n–

= δy za
n zb

n–zc
n–zd

n–,

for n ≥ , where

a := aa + b, b := ba + c, c := ca + d,

d := da, y := y + a.

Assume

zn+ = δyk zak
n+–kzbk

n+–kzck
n–kzdk

n–k–, ()

for a k ≥  and every n ≥ k + , and

ak = aak– + bk–, bk = bak– + ck–,

ck = cak– + dk–, dk = dak–,
()

yk = yk– + ak–. ()

Using () in (), we get

zn+ = δyk
(
δza

n+–kzb
n–kzc

n–k–zd
n–k–

)ak zbk
n+–kzck

n–kzdk
n–k–

= δyk +ak zaak +bk
n+–k zbak +ck

n–k zcak +dk
n–k– zdak

n–k–

= δyk+ zak+
n+–kzbk+

n–k zck+
n–k–zdk+

n–k–,

for n ≥ k + , where

ak+ = aak + bk , bk+ = bak + ck , ck+ = cak + dk , dk+ := dak ,

yk+ := yk + ak .

Hence, by induction we have proved that ()-() hold.
From ()-() and (), we get

zn+ = δyn– zan–
 zbn–

 zcn–
 zdn–



=
(
α–cβb)yn–(

α+a+a
βb(+a)zabd

– za+bd
 wabc

– wbc
–wab


)an–

× (
α+aβbzbd

–za
 wbc

–wab


)bn–(
αza

wb

)cn– zdn–
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= α(–c)yn–+(+a+a)an–+(+a)bn–+cn–βbyn–+b(+a)an–+bbn–

× zabdan–+bdbn–
– z(a+bd)an–+abn–+acn–+dn–

 wabcan–+bcbn–
– wbcan–

–

× waban–+abbn–+bcn–


= αyn+–cyn–βbyn+ zbdan
– zan+–can–

 wbcan
– wbcan–

– wban+
 , ()

for n ≥ .
From () one sees that ak , bk , ck and dk are solutions to

x̂k+ = ax̂k+ + bx̂k+ + cx̂k+ + dx̂k , k ∈N, ()

and, along with () (for k = , , –, –), we also obtain

a– = , a– = , a– = , a = , ()

y– = y– = y– = y = , y = , ()

and

yk =
k–∑

j=

aj. ()

The solvability of () is well known, from which, along with (), a formula for ak is
obtained. Using it in (), a formula for yk is obtained by Lemma . Hence, () is solvable.

We have

zd
n– =

wn+

βwc
n–

, n ∈ N, ()

zd
n+ = αdzad

n wbd
n , n ∈N, ()

so that

wn+ = αdβ–awa
n+wbd+c

n w–ac
n–, n ∈N. ()

We also have

w = βwc
–zd

– and w = βwc
–zd

. ()

As above we get

wn+ = ηyk wak
n+–kwbk

n+–kwck
n+–kwdk

n–k , n ≥ k – , ()

where η = αdβ–a, ak satisfies () and (), and yk is given by ().
From () with k = n +  and by using () we get

wn+ = ηyn+ wan+
 wbn+

 wcn+
 wdn+

–

=
(
αdβ–a)yn+(

βwc
–zd


)an+(

βwc
–zd

–
)bn+ wcn+

 wdn+
–



Stević Advances in Difference Equations  (2017) 2017:245 Page 8 of 22

= αdyn+β (–a)yn++an++bn+ zdbn+
– zdan+

 wcbn+
– wcan++dn+

– wcn+


= αdyn+βyn+–ayn+ zd(an+–aan+)
– zdan+

 wc(an+–aan+)
–

× wc(an+–aan)
– wan+–aan+

 , ()

for n ∈N.
As we have already seen, formulas for ak and yk can be found. Using them in () we

show the solvability of (). Some calculations show that () and () present a solution
to (), from which the result follows. �

Corollary  Assume that a, b, c, d ∈ Z, abcd �= , α,β , z–, z, w–, w–, w ∈ C \ {}. Then
the general solution to () is given by () and (), where ak satisfies () and (), and yk

is given by () and ().

Theorem  gives a general form of solutions to system () when abcd �= , but does not
present explicit formulas for sequences an and yn involved in the solutions. Now we give
some explicit formulas for them in more concrete cases, following some arguments related
to the system in []. Since ac �= , we can find the zeros of the characteristic polynomial
associated to ()

p(λ) = λ – aλ – (bd + c)λ + ac. ()

To do this, we consider the following equivalent equation with a parameter []:

(
λ –

a

λ +

s


)

–
((

a


+ s

)
λ –

(
as


– (bd + c)
)

λ +
s


– ac

)
= . ()

The parameter is chosen so that (as – (bd + c)) = (a + s)(s – ac), that is,

s + a(bd – c)s – ac – (bd + c) = . ()

We have

(
λ –

a

λ +

s


)

–
(√

a + s


λ –
as – (bd + c)


√

a + s

)

= , ()

or equivalently

λ –
(

a


+
√

a + s


)
λ +

s


+
as – (bd + c)


√

a + s
= , ()

λ –
(

a


–
√

a + s


)
λ +

s


–
as – (bd + c)


√

a + s
= . ()

Let p = a(bd – c), q = –ac – (bd + c), and s = u + v. Assuming that uv = –p/, from ()
we get u + v = –q. Hence, u and v are solutions to z + qz – p/. Thus

s =


√

–
q


–
√

q


+

p


+



√

–
q


+
√

q


+

p


, ()
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or

s =


 √

(


√
� –

√
�

 – �
 + 

√
� +

√
�

 – �


)
, ()

by using the change of variables p = –�/ and q = –�/ in ().
For s given in () we solve equations () and (). So, the zeros of polynomial () are

λ =
a


+
√

a + s


+



√
a


– s –

Q

√

a + s
, ()

λ =
a


+
√

a + s


–



√
a


– s –

Q

√

a + s
, ()

λ =
a


–
√

a + s


+



√
a


– s +

Q

√

a + s
, ()

λ =
a


–
√

a + s


–



√
a


– s +

Q

√

a + s
, ()

where

� := a(c – bd), ()

� := 
(
ac + (bd + c)), ()

Q := –a – bd – c. ()

By Lemma , the nature of λj, j = , , depends also on

� =



(
�

 – �

)
, ()

P = –a, ()

D = a
(
c – bd – a). ()

Zeros of p are mutually different and different from . If a = , c =  and bd = , polyno-
mial () becomes

p(λ) = λ – λ – λ +  = (λ – )
(
λ + λ + λ – 

)
.

Since in this case � < , all the zeros of the polynomial are different. Since p() �= ,  is
not a zero of the polynomial. In fact, there are many polynomials of the form in () such
that � < . For example, they are those for which holds ac < abd, that is, � < .

Since λj �= λi, i �= j,

an = γλ
n
 + γλ

n
 + γλ

n
 + γλ

n
, n ∈N, ()

where γi, i = ,  are constants, is the general solution to ().
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Equalities (), along with Lemma  applied to polynomial (), yield

an =
∑

j=

λn+
j

p′
(λj)

=
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

, ()

for n ≥ –, from which, along with () and the fact that λi �= , i = , , is obtained:

yn =
n–∑

j=

∑

i=

λ
j+
i

p′
(λi)

=
∑

i=

λ
i (λn

i – )
p′

(λi)(λi – )
, n ∈N. ()

Moreover, () holds for n ≥ –.
Zeros of p are different and one of them is . In this case it must be p() =  – a – bd –

c + ac = . Hence,

(a – )(c – ) = bd, ()

which implies

p(λ) = λ – aλ – (ac – a + )λ + ac

= (λ – )
(
λ – (a – )λ – (a – )λ – ac

)
. ()

Let λ = . To find the other zeros of p, we have to solve the equation

λ – (a – )λ – (a – )λ – ac = .

By using the change of variables λ = t + a–
 and some simple calculations, we get

t + p̃t + q̃ = ,

where

p̃ =
( – a)(a + )


and q̃ = –

(
(a – )


+

(a – )


+ ac

)
.

Using the standard arguments, as those in getting (), we obtain

λj =
a – 


+ εj– 

√

–
q̃


–
√

q̃


+

p̃


+ ε̄j– 

√

–
q̃


+
√

q̃


+

p̃


, j = , , ()

where ε is such that ε = , ε �= .
For example, if a =  and c = , then bd =  �= , � �=  and

p(λ) = λ – λ – λ +  = (λ – )
(
λ – λ – λ – 

)
,

so by Lemma , the polynomial has four different zeros, and one of them is .
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Equality () holds with, say, λ = . Further, we have

yn =
n–∑

j=


p′

()
+

n–∑

j=

∑

i=

λ
j+
i

p′
(λi)

=
n

 – a – ac
+

∑

i=

λ
i (λn

i – )
p′

(λi)(λi – )
, ()

for n ∈N. It is easily shown that () also holds for n = –j, j = , .
This analysis, along with Corollary , implies the following result.

Corollary  Assume that a, b, c, d ∈ Z, abcd �= , α,β , z–, z, w–, w–, w ∈ C \ {} and
� �= . Then the following statements are true:

(a) If (a – )(c – ) �= bd, then the general solution to () is given by () and (), where
(an)n≥– is given by (), (yn)n≥– is given by (), while λj, j = , , are given by
()-().

(b) If (a – )(c – ) = bd and  – a �= ac, then the general solution to () is given by ()
and (), where (an)n≥– is given by () with λ = , (yn)n≥– is given by (), λ = ,
while λj, j = , , are given by ().

 is the only double zero of p. Polynomial p has a double zero equal to  if () holds
and

p′
() =  – a – ac = , ()

that is, if and only if

c =

a

– . ()

Then we have

p(λ) = λ – aλ + (a – )λ +  – a = (λ – )(λ + ( – a)λ +  – a
)
,

and consequently

λ, = , λ, =
a –  ± √

a + a – 


. ()

From () we must have a =  and c = –, or a =  and c = , or a = – and c = –, or
a = – and c = –.

If a = c = , then

p(λ) = λ – λ – λ +  = (λ – )(λ + λ + 
)
,

and consequently

λ, = , λ, =
– ± i

√



.

Since () holds we see that this case is not possible when abcd �= .
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If a = , c = –, then

p(λ) = λ – λ + λ –  = (λ – )(λ – λ – 
)
,

and consequently

λ, = , λ, =
 ± √




. ()

If a = c = –, then

p(λ) = λ + λ – λ +  = (λ – )(λ + λ + 
)
,

and consequently

λ, = , λ, =
– ± i

√



. ()

If a = – and c = –, then

p(λ) = λ + λ – λ +  = (λ – )(λ + λ + 
)
,

and consequently

λ, = , λ, =
– ± i

√



. ()

In these four cases, we have []

an =
n( – λ)( – λ) + λλ – λ – λ + 

( – λ)( – λ)

+
λn+


(λ – )(λ – λ)

+
λn+


(λ – )(λ – λ)

()

and

yn =
n–∑

j=

(
j( – λ)( – λ) + λλ – λ – λ + 

( – λ)( – λ)

+
λ

j+


(λ – )(λ – λ)
+

λ
j+


(λ – )(λ – λ)

)

=
(n – )n

( – λ)( – λ)
+

n(λλ – λ – λ + )
( – λ)( – λ)

+
λ

(λn
 – )

(λ – )(λ – λ)
+

λ
(λn

 – )
(λ – )(λ – λ)

. ()

p has only one double zero different from . Assume that λ = m /∈ {, } is a double zero
of p. Then we have

m – am – (bd + c)m + ac =  and m – am – bd – c = . ()

If m is not a triple zero, then it must be m – am �= , that is, a �= m.
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From (), we get

p(λ) = λ – aλ +
(
am – m)λ + m – am

= (λ – m)(λ + (m – a)λ + m(m – a)
)
, ()

and consequently

λ, = m, λ, =
a – m ± √

–m + am + a


. ()

Hence, if we additionally assume that a �= m, am – m ∈ Z, m – am ∈ Z, we
get a family of polynomials of the form in () which have double zeros different from .
For example, if a = m ∈ Z \ {, }, then from () it follows that

p(λ) = (λ – a)(λ + aλ + a).

Since, in the case λ = λ, λi �= λj,  ≤ i, j ≤ , we have

an = (γ + γn)λn
 + γλ

n
 + γλ

n
, n ∈N, ()

where γi and i = ,  are constants, and the solution satisfying () is

an =
λn+

 ((n + )(λ – λ)(λ – λ) – λ(λ – λ – λ))
(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

. ()

From () and () and by Lemma , we get

yn =
n–∑

j=

(
λ

j+
 ((j + )(λ – λ)(λ – λ) – λ(λ – λ – λ))

(λ – λ)(λ – λ)

+
λ

j+


(λ – λ)(λ – λ)
+

λ
j+


(λ – λ)(λ – λ)

)

=
λ

 – nλn+
 + (n – )λn+


(λ – λ)(λ – λ)( – λ) +

(λ
 – λ

λ – λ
λ + λ

λλ)(λn
 – )

(λ – λ)(λ – λ)(λ – )

+
λ

(λn
 – )

(λ – λ)(λ – λ)(λ – )
+

λ
(λn

 – )
(λ – λ)(λ – λ)(λ – )

. ()

Corollary  Assume that a, b, c, d ∈ Z, abcd �=  and α,β , z–, z, w–, w–, w ∈ C \ {}.
Then the following statements are true:

(a) If only one of the zeros of p is double and different from , say λ and λ, then the
general solution to () is given by () and (), where (an)n≥– is given by (),
(yn)n≥– is given by (), while λj, j = , , are given by (), where m /∈ {, },
m �= a �= m and am – m, m – am ∈ Z.

(b) If  is a unique double zero of polynomial p, say λ = λ = , then the general solution
to () is given by () and (), where (an)n≥– is given by (), (yn)n≥– is given by
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(), while λj, j = , , are given by () when a = , c = –, by () when a = c = –,
and by () when a = –, c = –.

p has two pairs of different double zeros. In this case it must be D = , which implies
that a =  or bd = c – a. The case a =  is impossible due to the condition abcd �= .
In the other case we have � =  if and only if


(

a
(

c +
a – c



))

=
(


(

ac +
(

c –
a



)))

,

that is,

a = ±(
a – ac + c). ()

From () we have

a – ac + c = ,

from which it follows that a/c = 

 ( ± i), which is impossible due to the rationality of
a/c, or is

a – ac + c =
(
a – c

) = ,

which implies c = a/.
Assume c = a/. Then

p(λ) = λ – aλ +
a


λ +

a

 =
(

λ –
aλ


–

a



)

(for more details see [], p.).
Hence

λ, =
a


( +
√

), λ, =
a


( –
√

), ()

are two double zeros of p, for each a �= .
Since

a( ± √
)/ �= ,

for every a ∈ Z, p cannot have two pairs of double zeros such that one of them is equal
to .

The general solution to () in this case is of the following form:

an = (γ + γn)λn
 + (γ + γn)λn

, n ∈N, ()

for some constants γi, i = , . The solution with initial conditions () is

an =
λn+

 (n(λ – λ) + λ
 – λλ + λ

)
(λ – λ)

+
λn+

 (n(λ – λ) + λ
 – λλ + λ

)
(λ – λ) . ()
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From (), () and Lemma , we get

yn =
n–∑

j=

(
λ

j+
 (j(λ – λ) + λ

 – λλ + λ
)

(λ – λ)

+
λ

j+
 (j(λ – λ) + λ

 – λλ + λ
)

(λ – λ)

)

=
λ

 – nλn+
 + (n – )λn+


(λ – λ)( – λ) +

(λ
 – λ

λ + λ
λ


)(λn

 – )
(λ – λ)(λ – )

+
λ

 – nλn+
 + (n – )λn+


(λ – λ)( – λ) +

(λ
 – λλ


 + λ

λ

)(λn

 – )
(λ – λ)(λ – )

. ()

Corollary  Assume that a, b, c, d ∈ Z, abcd �=  and α,β , z–, z, w–, w–, w ∈ C \ {}.
Then the following statements are true:

(a) If polynomial p has two pairs of double zeros both different from , then the general
solution to () is given by () and (), where (an)n≥– is given by (), (yn)n≥– is
given by (), while λj, j = , , are given by ().

(b) The characteristic polynomial () cannot have two pairs of double zeros such that
one of them is equal to .

Triple zero case. In this case we must have � = � =  or equivalently � = � = , that
is,

a =  or bd = c.

Since abcd �= , the case a =  is not possible. If c = bd/, then

� = c
(
a + c

)
.

Since the case c =  is excluded, we must have c = –a/.
We have

p(λ) = λ – aλ +
a


λ –

a


=

(
λ –

a


)(
λ +

a


)

(see, for example, [], p.), and consequently

λj =
a


, j = , , λ = –
a


. ()

Thus, for every a �= , a/ is a triple zero of p, and p cannot have a zero of the fourth
order.

Hence

an =
(
γ + γn + γn)λn

 + γλ
n
, n ∈N, ()

where γi and i = ,  are constants, is the general solution to () in this case.
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Further, by using the initial conditions in (), we obtain

γ =  –
λ


(λ – λ) , γ =

λ(λ – λ)
(λ – λ) ,

γ =
λ

(λ – λ)
, γ =

λ


(λ – λ) .

Thus

an =  –
λ


(λ – ) +

 – λ

(λ – ) n +


( – λ)
n +

λn+


(λ – ) , n ≥ –, ()

when λ = , while if λ �= , then

an =
(

 –
λ


(λ – λ) +

λ(λ – λ)
(λ – λ) n +

λ

(λ – λ)
n

)
λn

 +
λn+


(λ – λ) , ()

for n ≥ –.
From (), () and Lemma , it follows that

yn =
(

 –
λ


(λ – )

)
n +

( – λ)(n – )n
(λ – ) +

(n – )n(n – )
( – λ)

+
λ

(λn
 – )

(λ – ) . ()

From (), () and Lemma , it follows that

yn =
(

 –
λ


(λ – λ)

)
λn

 – 
λ – 

+
λ

 (λ – λ)( – nλn–
 + (n – )λn

 )
(λ – λ)( – λ)

+
λ

 ( + λ – nλn–
 + (n – n – )λn

 – (n – )λn+
 )

(λ – λ)( – λ)

+
λ

(λn
 – )

(λ – λ)(λ – )
, ()

for n ∈N.

Corollary  Assume that a, b, c, d ∈ Z, abcd �=  and α,β , z–, z, w–, w–, w ∈ C \ {}.
Then the following statements are true:

(a) If polynomial () has a triple zero different from , then the general solution to
system () is given by () and (), where (an)n≥– is given by (), (yn)n≥– is given
by (), while λj, j = , , are given by ().

(b) If polynomial () has a triple zero equal to , say λ, λ and λ, then the general
solution to system () is given by () and (), where (an)n≥– is given by (),
(yn)n≥– is given by (), while λj, j = , , are given by () with a = .

Theorem  Assume that a, b, d ∈ Z, abd �= , c = , α,β , z–, z, w ∈ C \ {}. Then system
() is solvable in closed form.

Proof We modify our method in [, ]. We have

zn+ = αza
nwb

n, wn+ = βzd
n–, n ∈N, ()
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and consequently

zn+ = αβbza
nzbd

n–, n ∈ N. ()

Let δ = αβb,

a = a, b = , c = bd, y = . ()

Then clearly

zn+ = δy za
n zb

n–zc
n–, n ∈N. ()

Hence,

zn+ = δy
(
δza

n–zb
n–zc

n–
)a zb

n–zc
n–

= δy+a zaa+b
n– zba+c

n– zca
n–

= δy za
n–zb

n–zc
n–,

for n ≥ , where

a := aa + b, b := ba + c, c := ca, y := y + a.

Assume

zn+ = δyk zak
n+–kzbk

n–kzck
n–k–, ()

for a k ≥  and every n ≥ k, and

ak = aak– + bk–, bk = bak– + ck–, ck = cak–, ()

yk = yk– + ak–. ()

Further, by (), it follows that

zn+ = δyk
(
δza

n–kzb
n–k–zc

n–k–
)ak zbk

n–kzck
n–k–

= δyk +ak zaak +bk
n–k zbak +ck

n–k– zcak
n–k–

= δyk+ zak+
n–k zbk+

n–k–zck+
n–k–,

for n ≥ k + , where

ak+ := aak + bk , bk+ := bak + ck ,

ck+ := cak , yk+ := yk + ak .

Hence, by induction we see that ()-() hold.
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Setting k = n in (), and employing (), we get

zn+ = δyn zan
 zbn

 zcn
–

=
(
αβb)yn(

αza
wb


)an zbn

 zcn
–

= αyn+anβbyn zcn
–zaan+bn

 wban


= αyn+βbyn zbdan–
– zan+

 wban
 , ()

for n ≥ .
From () we see that ak , bk and ck are solutions to

x̃k+ = ax̃k+ + bx̃k+ + cx̃k , k ∈ N, ()

and that along with () and () (for k = , –, –), we obtain

a– = , a– = , a = , ()

y– = y– = y = , y = , ()

and

yk =
k–∑

j=

aj. ()

The solvability of () is well known, from which along with () is obtained a formula
for ak , which along with () and Lemma  yields a formula for yk . Hence, () is solvable.

Using (), in the second equation in (), is obtained:

wn = αdyn–βbdyn–+zbdan–
– zdan–

 wbdan–
 , n ≥ . ()

It is shown that equations () and () are solutions to system (), so it is solvable, as
claimed. �

Theorem  gives a general form of solutions to system () in the case c = , abd �= , but
it does not present explicit formulas for an and yn involved in the solutions. We give some
explicit formulas for them, following also some arguments in []. Since bd �= , we find
the zeros of the characteristic polynomial associated to ()

p(λ) = λ – aλ – bd. ()

For λ = s + a
 , the equation p(λ) =  becomes

s –
a


s –

a + bd


= . ()

We know that

sj =


 √

(
εj 

√
� –

√
�

 – �
 + εj 

√
� +

√
�

 – �


)
, ()
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j = , , where

� = a =: –p, � = a + bd =: –q, ()

ε =  and ε �= , are the zeros of ().
Hence, the zeros of p are

λj =
a


+


 √

(
εj 

√
� –

√
�

 – �
 + εj 

√
� +

√
�

 – �


)
, j = , . ()

Zeros of p are mutually different and different from . In the case �
 – �

 �= , we get
bd(a + bd) �= . If  �= bd �= –a/, then the zeros of () are mutually different. If
also a + bd �= , then they are different from . The case a = bd = k ∈N is such one.

Zeros of p are different and one of them is . In this case we have a + bd = . Hence

p(λ) = λ – aλ + a –  = (λ – )
(
λ – (a – )λ – (a – )

)
,

and consequently

λ = , λ, =
a –  ± √

a + a – 


. ()

Since p′
() =  – a �= , when a ∈ Z, the polynomial in () cannot have the unity as a

double zero.
It is well known that the general solution to () in this case is

an = αλ
n
 + αλ

n
 + αλ

n
, n ∈N, ()

where αj, j = , , are constants, which due to c = bd �=  can be prolonged for every non-
positive index.

From () and by Lemma  with R(s) =
∏

j=(s – λj), we get

an =
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)

, ()

for n ≥ – (see, for example, []).
From () and (), it follows that

yn =
n–∑

i=

∑

j=

λi+
j

p′
(λj)

, ()

for n ∈N.
Equation () shows that

yn =
λ

 (λn
 – )

(λ – λ)(λ – λ)(λ – )
+

λ
(λn

 – )
(λ – λ)(λ – λ)(λ – )

+
λ

(λn
 – )

(λ – λ)(λ – λ)(λ – )
, n ∈N, ()

when λj �= , j = , .
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If one of the zeros of p is , say, λ, then

yn =
λ

 (λn
 – )

(λ – λ)(λ – ) +
λ

(λn
 – )

(λ – λ)(λ – ) +
n

(λ – )(λ – )
, ()

for n ∈N. Moreover, equations () and () hold for n ≥ –.

Corollary  Assume that a, b, c, d ∈ Z, abd �= , c = , α,β , z–, z, w ∈ C \ {} and �
 �=

�
. Then the following statements are true:

(a) If a + bd �= , then the general solution to () is given by () and (), where
(an)n≥– is given by (), (yn)n≥– is given by (), while λj, j = , , are given by ().

(b) If a + bd = , then p has a unique zero equal to , say λ, and the general solution to
() is given by formulas () and (), where (an)n≥– is given by () with λ = ,
(yn)n≥– is given by (), while λj, j = , , are given by ().

p has a double zero. Since it must be �
 = �

, we have bd = –a/, so that

p(λ) = λ – aλ +



a.

The following condition must also be satisfied: p′
(λ) = . Hence, λ = –a/, λ, = a/,

and consequently

p(λ) =
(

λ –
a


)(
λ +

a


)
.

Due to bd ∈ Z, we get a = â, for some â ∈ Z. Now note that a/ �= , for every a ∈ Z, so
that  cannot be a double zero of p.

Hence

an = α̂λ
n
 + (α̂ + α̂n)λn

, n ∈N, ()

where α̂i, i = , , are constants. Using initial conditions () we obtain

an =
λn+

 + (λ – λ + n(λ – λ))λn+


(λ – λ) , ()

for n ≥ –.
From () and (), it follows that

yn =
n–∑

j=

λ
j+
 + (λ – λ + j(λ – λ))λj+


(λ – λ) , ()

for n ∈N.
Equation () along with Lemma  yields

yn =
λ

 (λn
 – )

(λ – λ)(λ – )
+

(λ – λ)λ(λn
 – )

(λ – λ)(λ – )
+

λ
( – nλn–

 + (n – )λn
)

(λ – λ)(λ – ) , ()

for n ∈N.
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On the other hand, if λ =  �= λ = λ (a = –), then we get

yn =
n

(λ – ) +
(λ – )λ(λn

 – )
(λ – ) +

λ
( – nλn–

 + (n – )λn
)

(λ – ) , ()

for n ∈N. Moreover, () and () hold for n ≥ –.

Corollary  Assume that a, b, c, d ∈ Z, abd �= , c = , α,β , z–, z, w ∈ C \ {} and �
 =

�
. Then the following statements are true:

(a) If a + bd �= , then the general solution to () is given by () and (), where
(an)n≥– is given by (), (yn)n≥– is given by (), where λ = –a/ and λ, = a/.

(b) If only one of the zeros of the polynomial () is equal to , say, λ, then the general
solution to system () is given by () and (), where (an)n≥– is given by ()
with λ = , while (yn)n≥– is given by ().

(c) It is not possible that two zeros of polynomial () are equal to one.

Case when all the zeros of p are equal. We have p(λ) = p′
(λ) = p′′

(λ) = . So, p′′
(λ) = 

would imply λ = a/. From p′
(λ) = λ – aλ, we see that a/ is a unique zero of p if a = ,

which contradicts the assumption abd �= . Hence, the case is not possible.
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