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1 Introduction
In the area of fractional calculus and its applications in many branches of science and engi-
neering, several fractional derivatives were mainly utilized. The most common used were
Caputo and Riemann-Liouville derivatives, which were successfully utilized in modeling
complex dynamics appearing in physics, biology, engineering and many other fields [–].
As is well known, systems possessing a memory effect often appear in real world phenom-
ena. However, for each type of data we always ask what is the optimal corresponding non-
local model to be applied. Moreover, many authors studied new fractional operators with
local, nonlocal, singular and non-singular kernels (see [–] and the references therein).
The standard fractional calculus may not provide us the required kernel in order to ex-
tract important information from these types of systems. At this stage, we ask the follow-
ing question. Can we generalize the standard fractional Riemann-Liouville integrals in a
way such that we obtain unification to Riemann-Liouville, Hadamard and other fractional
derivatives [, ]. The core of this procedure is to decide which differentiation operator
should be used as a starting point for the iteration procedure. For the standard fractional
calculus, we iterate the usual integral of a function and using the Cauchy formula we ob-
tain the integral of higher integer orders and then replace this integer by any complex
number. In [], it was suggested that the conformable integral should be fractionalized
properly. We recall that an integral type like the one from [] has appeared already in [].
The integral mentioned below in () appears in mathematical economics, namely they are
used for describing discounting economical dynamics []. Also,this integral appears in
describing the non-linear dissipative systems [].

At this point we should say that the left and right conformable derivatives defined in
[], respectively, as

aTαf (x) = (x – a)–αf ′(x) and Tα
b f (x) = (b – x)–αf ′(x), ()
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where f is a differentiable function, are local derivatives whose corresponding left and
right integrals have the forms []

(
aIαf

)
(x) =

∫ x

a
f (t)

dt
(t – a)–α

,  < α <  ()

and

(
Iα

b f
)
(x) =

∫ b

x
f (t)

dt
(b – t)–α

,  < α < , ()

respectively. We suggest that iterating the above integral will end up with new fractional
operators with two parameters and kernels different from the usual kernels of usual frac-
tional derivatives and integrals. From the data analysis point of view we suppose that this
new type of calculus will provide better understanding of the complexity of the dynamics
of the phenomena from porous media.

Depending on [, , ], in what follows, we recall some basic definitions and tools about
classical fractional calculus.

For α ∈ C, Re(α) >  the left Riemann-Liouville fractional integral of order α starting
from a has the following form:

(
aIαf

)
(t) =


�(α)

∫ t

a
(t – y)α–f (y) dy, ()

while the right Riemann-Liouville fractional integral of order α >  ending at b > a is de-
fined by

(
Iα

b f
)
(t) =


�(α)

∫ b

t
(y – t)α–f (y) dy. ()

For α ∈C, Re(α) ≥ , the left Riemann-Liouville fractional derivative of order α starting
at a is given below

(
aDαf

)
(t) =

(
d
dt

)n(
aIn–αf

)
(t), n = [α] + . ()

Meanwhile, the right Riemann-Liouville fractional derivative of order α ending at b be-
comes

(
Dα

b f
)
(t) =

(
–

d
dt

)n(
In–α

b f
)
(t). ()

The left Caputo fractional derivative of order α, Re(α) ≥  starting from a has the follow-
ing form:

(C
a Dαf

)
(t) =

(
aIn–αf (n))(t), n = [α] + , ()

while the right Caputo fractional derivative ending at b becomes

(CDα
b f

)
(t) =

(
In–α

b (–)nf (n))(t). ()
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Hadamard-type fractional integrals and derivatives were introduced in [] as:
The left Hadamard fractional integral of order α ∈ C, Re(α) >  starting from a has the

following form:

(
aJ

αf
)
(t) =


�(α)

∫ t

a
(ln t – ln y)α–f (y)

dy
y

()

and the right Hadamard fractional integral of order α ending at b > a is defined by

(
J

α
b f

)
(t) =


�(α)

∫ b

t
(ln y – ln t)α–f (y)

dy
y

. ()

The left Hadamard fractional derivative of order α ∈ C, Re(α) ≥  starting at a is given
as:

(
aD

αf
)
(t) =

(
t

d
dt

)n(
aIn–αf

)
(t), n = [α] + , ()

whereas the right Hadamard fractional derivative of order α ending at b becomes

(
D

α
b f

)
(t) =

(
–t

d
dt

)n(
In–α

b f
)
(t). ()

In [–], the authors defined the left and right Caputo-Hadamard fractional deriva-
tives of order α ∈C, Re(α) ≥ , respectively, as

(C
a D

αf
)
(t) = aD

α

[

f (y) –
n–∑

k=

δkf (a)
k!

(ln y – ln a)k

]

(t), δ = t
d
dt

, ()

and in the space ACn
δ [a, b] = {g : [a, b] →C : δn–[g(x)] ∈ AC[a, b]} equivalently by

(C
a D

αf
)
(t) =

(

aJ
n–α

(
t

d
dt

)n

f
)

(t), n = [α] + , ()

and

(C
D

α
b f

)
(t) = D

α
b

[

f (y) –
n–∑

k=

(–)kδkf (b)
k!

(ln b – ln y)k

]

(t); ()

and in the space ACn
δ [a, b] equivalently by

(C
D

α
b f

)
(t) =

(
J

n–α
b

(
–t

d
dt

)n

f
)

(t). ()

For a < b, c ∈ R and  ≤ p < ∞, define the function space

Xp
c (a, b) =

{
f : [a, b] →R : ‖f ‖Xp

c
=

(∫ b

a

∣
∣tcf (t)

∣
∣p dt

t

)/p

< ∞
}

.
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For p = ∞, ‖f ‖Xp
c

= ess supa≤t≤b[tc|f (t)|]. In the frame of the above function space, the
generalized left- and right-fractional integrals in the sense of Katugampola in [] have
the forms

(
aIα,ρ f

)
(t) =


�(α)

∫ t

a

(
tρ – yρ

ρ

)α–

f (y)
dy

y–ρ
()

and

(
Iα,ρ

b f
)
(t) =


�(α)

∫ b

t

(
yρ – tρ

ρ

)α–

f (y)
dy

y–ρ
, ()

respectively.
The left and right generalized fractional derivatives of order α >  are defined by []

(
aDα,ρ f

)
(t) = γ n(

aIn–α,ρ f
)
(t) =

γ n

�(n – α)

∫ t

a

(
tρ – yρ

ρ

)n–α–

f (y)
dy

y–ρ
()

and

(
Dα,ρ

b f
)
(t) = (–γ )n(

aIn–α,ρ f
)
(t) =

(–γ )n

�(n – α)

∫ b

t

(
yρ – tρ

ρ

)n–α–

f (y)
dy

y–ρ
, ()

respectively, where ρ >  and where γ = t–ρ d
dt .

Depending on [], the authors in [] presented the Caputo modification of the left and
right generalized fractional derivatives, respectively, by

(C
a Dα,ρ f

)
(t) =

(
aIn–α,ργ nf

)
(t) =


�(n – α)

∫ t

a

(
tρ – uρ

ρ

)n–α–

γ nf (y)
dy

y–ρ
()

and

(CDα,ρ
b f

)
(t) =

(
aIn–α,ρ(–γ )nf

)
(t) =


�(n – α)

∫ b

t

(
yρ – tρ

ρ

)n–α–

(–γ )nf (y)
dy

y–ρ
. ()

This article is organized as follows. In Section , we define the left- and right-fractional
conformable integrals and derivatives. In Section , we define the fractional conformable
derivatives of functions belonging to certain spaces and state their properties. In Section 
we present the fractional conformable derivatives in the Caputo setting and state their
properties. Finally, the last section is devoted to our conclusion.

2 The fractional conformable integrals and derivatives
The left and right conformable integrals were defined in [] as can be seen in () and ().
Moreover, left and right conformable integrals were extended to higher order in [] so
that for α = n +  we have (aIαf )(x) = (aIαf )(x) and (Iα

b f )(x) = (Iα
b f )(x).
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Now, iterating the integral in () n times and by interchanging the order of integrals will
result in the following:

aIn,αf (x) =
∫ x

a

dt

(t – a)–α

∫ t

a

dt

(t – a)–α
· · ·

∫ tn–

a

f (tn) dtn

(tn – a)–α

=


�(n)

∫ x

a

(
(x – a)α – (t – a)α

α

)n–

f (t)
dt

(t – a)–α
. ()

Definition . Replacing the integer n by any number β ∈ C, Re(β) > , we define the
left-fractional conformable integral operator by

β
aI

αf (x) =


�(β)

∫ x

a

(
(x – a)α – (t – a)α

α

)β–

f (t)
dt

(t – a)–α
. ()

The fractional integral in () coincides with the Riemann-Liouville fractional integral
() when a =  and α = . It also coincides with the Hadamard fractional integral () once
a =  and α →  and with the generalized fractional integral () when a = . Similarly,
we can state the following.

Definition . The right-fractional conformable integral of order β ∈C, Re(β) >  is de-
fined by

β
I

α
b f (x) =


�(β)

∫ b

x

(
(b – x)α – (b – t)α

α

)β–

f (t)
dt

(b – t)–α
. ()

Notice that, if (Qf )(t) = f (a + b – t), then we have (βaIαQf )(x) = Q(βIα
b f )(x). Moreover,

() coincides with the Riemann-Liouville fractional integral () when b =  and α = . It
also coincides with the Hadamard fractional integral () once b =  and α →  and with
the generalized fractional integral () when b = .

We now state the definition of fractional conformable derivatives.

Definition . We define the left- and right-fractional conformable derivatives of order
β ∈C, Re(β) ≥  in Riemann-Liouville setting, respectively, by

β
aD

αf (x) = n
aTα

(n–β
a I

α
)
f (x)

=
n
aTα

�(n – β)

∫ x

a

(
(x – a)α – (t – a)α

α

)n–β–

f (t)
dt

(t – a)–α
, ()

β
D

α
b f (x) = nTα

b
(n–β

I
α
b
)
f (x)

=
(–)n nTα

b
�(n – β)

∫ b

x

(
(b – x)α – (b – t)α

α

)n–β–

f (t)
dt

(b – t)–α
, ()

where

n =
[
Re(β)

]
+ , n

aTα = aTα
aTα · · · aTα

︸ ︷︷ ︸
n times

, nTα
b = Tα

b Tα
b · · ·Tα

b︸ ︷︷ ︸
n times

, ()

and aTα and Tα
b are the left and right conformable differential operators presented in ().
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The fractional derivative in () coincides with the Riemann-Liouville fractional deriva-
tive () when a =  and α = , the Hadamard fractional derivative () once a =  and
α →  and with the generalized fractional integral () when a = . Whereas the fractional
derivative in () coincides with the Riemann-Liouville fractional derivative () when b = 
and α = , it coincides with the Hadamard fractional integral () once b =  and α → 
and with the generalized fractional integral () when b = .

Now we consider some properties of the fractional conformable integrals and deriva-
tives.

Theorem . Let Re(β) > , Re(γ ) > . Then

β
aI

α
(
γ
aI

α
)
f (x) = β+γ

a I
αf (x), β

I
α
b
(
γ
I

α
b
)
f (x) = β+γ

I
α
b f (x). ()

Proof

β
aI

α
(
γ
aI

α
)
f (x) =


�(β)�(γ )

∫ x

a

∫ t

a

(
(x – a)α – (t – a)α

α

)β–

×
(

(t – a)α – (u – a)α

α

)γ –

f (u)
du

(u – a)–α

dt
(t – a)–α

=


�(β)�(γ )αβ+γ –

∫ x

a

∫ x

u

(
(x – a)α – (t – a)α

)β–

× (
(t – a)α – (u – a)α

)γ –f (u)
dt

(t – a)–α

du
(u – a)–α

=


�(β)�(γ )αβ+γ –

∫ x

a

(
(x – a)α – (u – a)

)β+γ –f (u)
du

(u – a)–α

×
∫ 


( – z)β–zγ – dy

=


�(β + γ )

∫ x

a

(
(x – a)α – (u – a)

α

)β+γ –

f (u)
du

( – u)–α

= β+γ
a I

αf (x).

Here we have used the change of variable

z =
(t – a)α – (u – a)α

(x – a)α – (u – a)α
.

The second formula can be proved in a similar way or by using the action of the Q-
operator. �

Lemma . For Re(ν) > , we have

(
β
aI

α(t – a)αν–α
)
(x) =


αβ

�(ν)
�(β + ν)

(x – a)α(β+ν–), ()

(
β
I

α
b (b – t)αν–α

)
(x) =


αβ

�(ν)
�(β + ν)

(b – x)α(β+ν–). ()
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Proof We have

(
β
aI

α(t – a)ν–)(x) =


�(β)

∫ x

a

(
(x – a)α – (t – a)α

α

)β–

(t – a)αν–α dt
(t – a)–α

.

Letting u = ( t–a
x–a )α , we obtain

(
β
aI

α(t – a)ν–)(x) =
(x – a)α(β+ν–)

�(β)αβ

∫ 


( – u)β–uν– du =

�(ν)
αβ�(β + ν)

(x – a)α(β+ν–).

Equation () can be proved in a similar way or by using the action of the Q-operator.
�

Lemma . For Re(n – α) > , we have

[
β
aD

α(t – a)αν–α
]
(x) = αβ �(ν)

�(ν – β)
(x – a)α(ν–β–), ()

[
β
D

α
b (b – t)αν–α

]
(x) = αβ �(ν)

�(ν – β)
(b – x)α(ν–β–). ()

Proof The proof can be obtained by a straightforward calculation. �

Remark . It can be shown that

β
aD

αf = β
aI

–αf , β
D

α
b = β

I
–α
b f . ()

3 Fractional derivatives on the spaces Cn
α,a and Cn

α,b
In this section, we consider the fractional conformable derivatives of functions belonging
to spaces stated in the following definitions.

Definition . For α ∈ (, ] and n = , , , . . . , define

Cn
α,a

(
[a, b]

)
=

{
f : [a, b] →R such that n–

a Tαf ∈ Iα
(
[a, b]

)}
, ()

Cn
α,b

(
[a, b]

)
=

{
f : [a, b] →R such that n–Tα

b f ∈α I
(
[a, b]

)}
, ()

where Iα([a, b]) and αI([a, b]) are the spaces defined in Definition . in [].

Lemma . Let α > . A function f ∈ Cn
α,a([a, b]) if and only if f is presented in the form

f (x) =


(n – )!

∫ x

a

(
(x – a)α – (t – a)α

α

)n–
ψ(t)

(t – a)–α
dt +

n–∑

k=

n
aTαf (a)

k!
(x – a)αk

αk , ()

where ψ(t) = n
aTαf (t).

Proof Let f ∈ Cn
α,a([a, b]). Then n–

a Tαf ∈ Iα([a, b]) and thus

n–
a Tαf (x) =

∫ x

a
ψ(t)

dt
(t – a)–α

+ n–
a Tαf (a), ()
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where ψ is a continuous function. Then

(x – a)–α d
dx

(n–
a Tαf (x)

)
=

∫ x

a
ψ(t)

dt
(t – a)–α

+ n–
a Tαf (a) ()

and

d
dx

(n–
a Tαf (x)

)
=


(x – a)–α

∫ x

a
ψ(t)

dt
(t – a)–α

+
n–
a Tαf (a)
(x – a)–α

. ()

Integrating we get

n–
a Tαf (x) =

∫ x

a

(x – a)α – (t – a)α

α
ψ(t)

dt
(t – a)–α

+ n–
a Tαf (a)

(x – a)α

α
+ n–

a Tαf (a). ()

Dividing by (x – a)–α and integrating once more we get

n–
a Tαf (x) =


!

∫ x

a

(
(x – a)α – (t – a)α

α

)

ψ(t)
dt

(t – a)–α
+ n–

a Tαf (a)
(x – a)α

α

+ n–
a Tαf (a)

(x – a)α

α
+ n–

a Tαf (a). ()

Repeating the same procedure n –  times, we get

f (x) =


(n – )!

∫ x

a

(
(x – a)α – (t – a)α

α

)n–

ψ(t)
dt

(t – a)–α

+
n–∑

k=

k
aTαf (a)

αkk!
(x – a)αk . ()

It is clear from () that ψ(t) = n
aTαf (t).

Sufficiency is proved by applying the operator n
aTα to both sides of (). �

For the right-fractional conformable derivatives, we can state a similar lemma.

Lemma . f ∈ Cn
α,b([a, b]) if and only if f is presented in the form

f (x) =


(n – )!

∫ b

x

(
(b – x)α – (b – t)α

α

)n– (nTα
b f )(t)

(b – t)–α
dt

+
n–∑

k=

(–)k kTα
b f (b)

k!
(b – x)αk

αk . ()

Proof The proof is similar to the proof of Lemma .. �

In the following theorem we state the fractional derivatives of functions in Cn
α,a and Cn

α,b

Theorem . Let β ∈C, Re(β) > , n = [β] + . Then
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() if f ∈ Cn
α,a([a, b]), the left-fractional derivative of f of order β exists everywhere and

can be represented in the form

β
aD

αf (x) =


�(n – β)

∫
x
a

(
(x – a)α – (t – a)α

α

)n–β– n
aTαf (t)

(t – a)–α
dt

+
n–∑

k=

(k
aTαf (a))(x – a)α(k–β)

αk–β�(k – β + )
, ()

() if f ∈ Cn
α,b([a, b]), the right-fractional derivative of f of order β exists everywhere and

β
D

α
b f (x) =


�(n – β)

∫ b

x

(
(b – x)α – (b – t)α

α

)n–β– nTα
b f (t)

(b – t)–α
dt

+
n–∑

k=

((–)k kTα
b f (b))(b – x)α(k–β)

αk–β�(k – β + )
. ()

Proof We prove (). The proof of () can be done analogously.
Since f ∈ Cn

α,a[a, b], from Lemma ., f should be written as

f (x) =


(n – )!

∫ x

a

(
(x – a)α – (t – a)α

α

)n– (n
aTαf )(t)

(t – a)–α
dt +

n–∑

k=

n
aTαf (a)

k!
(x – a)αk

αk . ()

Therefore we have

β
aD

αf (x) =
n
aTα

(n – )!�(n – β)

∫ x

a

∫ t

a

(
(x – a)α – (t – a)α

α

)n–β–( (t – a)α – (u – a)α

α

)n

× (n
aTαf (u)

) du
(u – a)–α

dt
(t – a)–α

+
n–∑

k=

n
aTαf (a)

k!αk αβ �(k + )
�(k +  – β)

(x – a)α(k–β). ()

Using Lemma ., changing the order of integration, letting y = (t–a)α–(u–a)α
(x–a)α–(u–a)α and using the

properties of the gamma and beta functions, we get

β
aD

αf (x) =
(

�(n – β)�(n)n
aTα

(n – )!�(n – β)�(n – β)

∫ x

a

(
(x – a)α – (u – a)α

α

)n–β– (n
aTαf )(u) du
(u – a)–α

)

+
n–∑

k=

n
aTαf (a)

αk–β�(k +  – β)
(x – a)α(k–β). ()

The result is then obtained if the operator n
aTα is applied to the integral in equation (). �

Theorem . Let Re(β) > m > , where m ∈N. Then

m
a Tα

(
β
aI

αf (x)
)

= β–m
a I

αf (x); mTα
b
(
β
I

α
b f (x)

)
= β–m

I
α
b f (x). ()



Jarad et al. Advances in Difference Equations  (2017) 2017:247 Page 10 of 16

Proof We have

m
a Tα

(
β
I

α
b f (x)

)
= m

a Tα

[


�(β)

∫ x

a

(
(x – a)α – (t – a)α

α

)β–

f (t)
dt

(t – a)–α

]

= m–
a Tα

[


�(β – )

∫ x

a

(
(x – a)α – (t – a)α

α

)β–

f (t)
dt

(t – a)–α

]

= m–
a Tα

[


�(β – )

∫ x

a

(
(x – a)α – (t – a)α

α

)β–

f (t)
dt

(t – a)–α

]

...

=


�(β – m)

∫ x

a

(
(x – a)α – (t – a)α

α

)β–m–

f (t)
dt

(t – a)–α

= β–m
a Iαf (x).

The second assertion in () can be proved similarly. �

Corollary . If Re(γ ) < Re(β), then

γ
aD

α
(
β
aI

αf (x)
)

= β–γ
a I

αf (x); γ
D

α
b
(
β
I

α
b f (x)

)
=β–γ

I
α
b f (x). ()

Proof The proof is done by using Theorem . and Theorem ..

γ
aD

α
(
β
aI

αf (x)
)

= m
a Tα

(m–γ
a I

α
(
β
aI

αf (x)
))

= m
a Tα

(
β+m–γ
a I

αf (x)
)

= β–γ
a I

αf (x). ()

This proves the first claim in (). The second claim can be proved analogously. �

Below we state the inverse properties.

Theorem . Let β >  and f ∈ Cn
α,a[a, b] (f ∈ Cn

α,b[a, b]). Then

β
aD

α
(
β
aI

αf (x)
)

= f (x); β
D

α
b
(
β
I

α
b f (x)

)
= f (x). ()

Proof

β
aD

α
(
β
aI

αf (x)
)

=
n
aTα

�(n – β)�(β)

∫ x

a

∫ t

a

(
(x – a)α – (t – a)α

α

)n–β(
(t – a)α – (u – a)α

α

)β–

f (u)

× du
(u – a)–α

dt
(t – a)–α

=
n
aTα

�(n – β)�(β)

∫ x

a

∫ x

u

((x – a)α – (t – a)α)n–β–((t – a)α – (u – a)α)β–

αn
dt

(t – a)–α

× f (u)
du

(u – a)–α
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=
nTα

αn–�(n – β)�(β)

∫ x

a

(
(x – a)α – (u – a)α

)n–f (u)
du

(u – a)α–

×
∫ 


( – z)n–β–zβ– dz

=
n
aTα

�(n)

∫ x

a

(
(x – a)α – (u – a)α

α

)n–

f (u)
du

(u – a)–α

= n
aTα

(n
aIαf (x)

)
.

Here we have used the change of variable z defined in the proof of Theorem . and uti-
lized the properties of the gamma and beta functions. The last step in the proof is to use
Lemma . in []. The second formula in () can be proved in a similar manner. �

Theorem . Let Re(β) > , n = –[– Re(β)], f ∈ L(a, b) and β
aI

αf ∈ Cn
α,a[a, b] (βIα

b f ∈
Cn

α,b[a, b]). Then

β
aI

α
(
β
aD

αf (x)
)

= f (x) –
n∑

j=

β–j
a Dαf (a)

αβ–j�(β – j + )
(x – a)αβ–αj ()

and

β
I

α
b
(
β
D

α
b f (x)

)
= f (x) –

n∑

j=

(–)n–j β–jDα
b f (b)

αβ–j�(β – j + )
(b – x)αβ–αj. ()

Proof

β
aI

α
(
β
aD

αf (x)
)

=


�(β)

∫ x

a

(
(x – a)α – (t – a)α

α

)β–(n
aTα

(n–β
a I

αf (t)
)) dt

(t – a)–α

=

aTα

�(β + )

[∫ x

a

(
(x – a)α – (t – a)α

α

)β(n
aTα

(n–β
a I

αf (t)
)) dt

(t – a)–α

]
.

Using the integration by parts formula in Theorem . in [] n times, we get

β
aI

α
(
β
aD

αf (x)
)

= 
aTα

[


�(β – n + )

∫ x

a

(
(x – a)α – (t – a)α

α

)β–n(n–β
a I

αf (t)
) dt

(t – a)–α

–
n∑

j=

(n–j
a Tα(n–β

a Iαf (a)))
�(β +  – j)αβ–j+ (x – a)αβ–αj+α

]

= 
aTα

[
β–n+
a I

α
(n–β

a I
αf (x)

)
–

n∑

j=

(n–j
a Tα(n–β

a Iαf (a)))
�(β +  – j)αβ–j+ (x – a)αβ–αj+α

]

.

Now by using Theorem ., we get

β
aI

α
(
β
aD

αf (x)
)

= 
aT

[

aI

αf (x) –
n∑

j=

(n–j
a Tα(n–β

a Iαf (a)))
�(β +  – j)αβ–j+ (x – a)αβ–αj+α

]

= f (x) –
n∑

j=

β–j
a Dαf (a)

αβ–j�(β – j + )
(x – a)αβ–αj.

Assertion () can be proved likewise. �
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4 Fractional conformable derivatives in the Caputo setting
In this section we define the left- and right-fractional conformable derivatives in the sense
of Caputo and present their properties.

Definition . Let, α > , Re(β) ≥  and n = [Re(β)] + . If f ∈ Cn
α,a (f ∈ Cn

α,b), we define
the left and right Caputo fractional conformable derivatives of f of order β , respectively,
as

Cβ
a D

αf (x) = β
aD

α

[

f (t) –
n–∑

k=

k
aTαf (a)

k!αk (t – a)αk

]

(x) ()

and

Cβ
D

α
b f (x) = β

D
α
b

[

f (t) –
n–∑

k=

(–)k kTα
b f (b)

k!αk (b – t)αk

]

(x). ()

Theorem . Let Re(β) ≥ , n = [Re(β)] + , f ∈ Cn
α,a([a, b]) (f ∈ Cn

α,b([a, b])). Then the
left- and right-fractional conformable derivatives in the Caputo settings can be written,
respectively, as

Cβ
a D

αf (x) =


�(n – β)

∫ x

a

(
(x – a)α – (t – a)α

α

)n–β– n
aTαf (t)

(t – a)–α
dt

= n–β
a I

α
(n

aTαf (x)
)
, ()

and

Cβ
D

α
b f (x) =

(–)n

�(n – β)

∫ b

x

(
(b – x)α – (b – t)α

α

)n–β– nTα
b f (t)

(b – t)–α
dt

= n–β
I

α
b
(nTα

b f (x)
)
. ()

Proof Using (), Lemma . and Theorem ., we have

Cβ
D

α
b f (x) = β

aD
αf (x) –

n–∑

k=

kTα
a f (a)

αk–βk!
�(k + )

�(k – β + )
(x – a)kα–βα

= β
aD

αf (x) –
n–∑

k=

kTα
a f (a)

αk–β�(k – β + )
(x – a)kα–βα

=


�(n – β)

∫ x

a

(
(x – a)α – (t – a)α

ρ

)n–β– n
aTαf (t)

(t – a)–α
dt

= n–β
a I

α
(n

aTαf (x)
)
.

The identity () is proved by using (), Lemma . and Theorem . as well. �

The fractional derivative in () coincides with the Caputo derivative () when a = 
and α = , the Caputo Hadamard fractional derivative () if a =  and α →  and with
the generalized fractional integral () when a = . Meanwhile the fractional derivative
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in () coincides with the Caputo derivative () when b =  and α = , it coincides with
the Hadamard fractional integral () once b =  and α →  and with the generalized
fractional integral () when b = .

Before we state the inverse properties and the composition of two Caputo fractional
conformable derivatives, we shall consider the following lemmas.

Lemma . Let Re(β) > , n = [Re(β)] + , Re(β) /∈ N and f ∈ C[a, b]. Then β–k
a Iαf (a) = 

and β–kIα
b f (b) =  for k = , , . . . , n – .

Proof It can be easily obtained that

∣
∣β–k
a I

αf (x)
∣
∣ ≤ ‖f ‖C

|�(β – k)|(Re(β) – k)
(x – a)α(Re(β)–k)

αRe(β)–k .

The result is obtained by replacing x by a. The second identity in can be proved similarly.
�

Lemma . Let R(β) ≥ , n = [Re(β)] +  and n
aTα ∈ C[a, b] (nTα

b ∈ C[a, b]). Then
Cβ
a Dαf (a) =  and CβDα

b f (b) = .

Proof The identities in hold since

∣
∣Cβ
a D

αf (x)
∣
∣ ≤ ‖n

aTαf ‖C

|�(n – β)|(n – Re(β))
(x – a)α(n–Re(β))

αn–Re(β)

and

∣∣Cβ
D

α
b f (x)

∣∣ ≤ ‖nTα
b f ‖C

|�(n – β)|(n – Re(β))
(b – x)α(n–Re(β))

αn–Re(β) . �

Theorem . Let Re(β) > , n = [Re(β)] + , f ∈ C[a, b].
() If Re(β) /∈N or β ∈N, then

Cβ
a D

α
(
β
aI

αf (x)
)

= f (x); Cβ
D

α
b
(
β
I

α
b f (x)

)
= f (x). ()

() If Re(β) 	=  and Re(α) ∈N, then

Cβ
a D

α
(
β
aI

αf (x)
)

= f (x) –
β+–n
a Iαf (a)

αn–β�(n – β)
(x – a)αn–αβ , ()

Cβ
D

α
b
(
β
I

α
b f (x)

)
= f (x) –

β+–nIα
b f (b)

αn–β�(n – β)
(b – x)αn–αβ . ()

Proof From the definition () we have

Cβ
a D

α
(
β
aI

αf (x)
)

= β
aD

α
(
β
aI

αf (x)
)

–
n–∑

k=

k
aTα(βaIαf (a))(x – a)

αk–β�(k – β + )
.

Using Theorem . and Theorem ., we get

Cβ
a D

α
(
β
aI

αf (x)
)

= f (x) –
n–∑

k=

β–k
a Iαf (a)(x – a)α–k–βα

αk–β�(k – β + )
.



Jarad et al. Advances in Difference Equations  (2017) 2017:247 Page 14 of 16

If Re(β) /∈ N, by Lemma ., we have β–k
a Iαf (a) = . Thus the first identity in () is

proved. The second identity can be proved by using the same arguments.
The case β ∈ N is trivial. Now if Re(β) ∈ N, it can be proved that β–k

a Iαf (a) =  for k =
, , . . . , n –  using the steps used in proving Lemma .. Thus () is proved. Equation
() can be proved similarly. �

Theorem . Let f ∈ Cn
α,a[a, b] (f ∈ Cn

α,b[a, b]), β ∈C. Then

β
aI

α
(Cβ

a D
αf (x)

)
= f (x) –

n–∑

k=

k
aTαf (a)(x – a)αk

αkk!
, ()

β
I

α
b
(Cβ

D
α
b f (x)

)
= f (x) –

n–∑

k=

(–)k kTα
b f (b)(b – x)αk

αkk!
. ()

Proof

β
aI

α
(Cβ

a D
αf (x)

)
= β

aI
α
(n–β

a I
α
(n

aTαf (x)
))

= n
aI

α
(n

aTαf (x)
)

= f (x) –
n∑

j=

n–j
a Dαf (a)

αn–j�(n – j + )
(x – a)(n–j)α

= f (x) –
n–∑

k=

n
aTαf (a)

αkk!
(x – a)kα .

This proves () and () can be proved by a similar way. �

Theorem . Let f ∈ Cm+n
α,a [a, b] (f ∈ Cm+n

α,b [a, b]), Re(β) ≥ , Re(γ ) ≥ , n –  < Re(β) ≤ n
and m –  < Re(γ ) ≤ m. Then

Cβ
a D

α
(Cγ

a D
αf (x)

)
= C(β+γ )

a D
αf (x); Cβ

D
α
b
(Cγ

D
α
b f (x)

)
=C(β+γ )

D
α
b f (x). ()

Proof The proof can be done by using Theorem ., Theorem ., Theorem . and
Lemma .. �

5 Conclusion
This paper was devoted to an investigation of the fractional derivatives and integrals ob-
tained by iterating conformable integrals. We obtained left- and right-fractional con-
formable integrals. With a standard fractional procedure we found left- and right-
fractional conformable derivatives in the sense of Riemann-Liouville and Caputo. We
proved that these fractional integrals and derivatives have properties similar to the stan-
dard fractional integrals and derivatives. We also define the fractional derivatives of func-
tions belonging to specific spaces in order to find the relation between these new fractional
differential operators. The presented left- and right-fractional integrals are different from
those defined by Katugampola since their kernels depend on the end points a and b and
hence need a different convolution theory when the conformable Laplace is applied.
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The classical fractional calculus was applied successfully to extract the hidden infor-
mation from the dynamics of complex systems. However, each nonlocal system has its
own behavior which may not be described properly by the existing fractional integrals
and derivatives. This gives rise to the need of new fractional operators that may better de-
scribe such a system. Our proposed fractional operators are reduced to well-established
fractional operators (Riemann-Liouville, Caputo, Hadamard) and the newly introduced
generalized fractional operators under some conditions but they are different and outside
of these operators. Therefore, suppose that these newly suggested operators may provide
new insights for fractional variational problems, optimal control problems and modeling
of complex systems. Another advantage of these operators is that they depend on two
parameters naturally. The one which comes from the conformable operator will play an
important role in better detection of the memory.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Çankaya University, Ankara, 06790, Turkey. 2Department of Mathematics and Physical
Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia. 3Institute of Space Sciences,
Magurele-Bucharest, Romania.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 May 2017 Accepted: 3 August 2017

References
1. Hilfer, R: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)
2. Kilbas, A, Srivastava, HM, Trujillo, JJ: Theory and Application of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204 (2006)
3. Magin, RL: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)
4. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
5. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach,

Yverdon (1993)
6. Atangana, A, Baleanu, D: New fractional derivative with non-local and non-singular kernel. Therm. Sci. 20, 757-763

(2016)
7. Caputo, M, Fabrizio, M: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1,

73-85 (2015)
8. Gao, F, Yang, XJ: Fractional Maxwell fluid with fractional derivative without singular kernel. Therm. Sci. 20(suppl. 3),

S873-S879 (2016)
9. Losada, J, Nieto, JJ: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 87-92

(2015)
10. Yang, XJ, Gao, F, Machado, JAT, Baleanu, D: A new fractional derivative involving the normalized sinc function without

singular kernel. arXiv:1701.05590 (2017)
11. Abdeljawad, T, Baleanu, D: Integration by parts and its applications of a new nonlocal fractional derivative with

Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10(3), 1098-1107 (2017)
12. Abdeljawad, T, Baleanu, D: Monotonicity results for fractional difference operators with discrete exponential kernels.

Adv. Differ. Equ. 2017, 78 (2017)
13. Abdeljawad, T, Baleanu, D: On fractional derivatives with exponential kernel and their discrete versions. J. Rep. Math.

Phys. (to appear)
14. Katugampola, UN: New approach to generalized fractional integral. Appl. Math. Comput. 218, 860-865 (2011)
15. Katugampola, UN: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6, 1-15 (2014)
16. Abdeljawad, T: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57-66 (2015)
17. El-Nabulsi, RA, Torres, DFM: Fractional action-like variational problems. J. Math. Phys. 49, 053521 (2008)
18. Kilbas, AA: Hadamard type fractional calculus. J. Korean Math. Soc. 38, 1191-1204 (2001)
19. Gambo, YY, Jarad, F, Abdeljawad, T, Baleanu, D: On Caputo modification of the Hadamard fractional derivative. Adv.

Differ. Equ. 2014, 10 (2014)
20. Jarad, F, Abdeljawad, T, Baleanu, D: Caputo-type modification of the Hadamard fractional derivative. Adv. Differ. Equ.

2012, 142 (2012)

http://arxiv.org/abs/arXiv:1701.05590


Jarad et al. Advances in Difference Equations  (2017) 2017:247 Page 16 of 16

21. Adjabi, Y, Jarad, F, Baleanu, D, Abdeljawad, T: On Cauchy problems with Caputo Hadamard fractional derivatives.
J. Comput. Anal. Appl. 21(1), 661-681 (2016)

22. Jarad, F, Abdeljawad, T, Baleanu, D: On the generalized fractional derivatives and their Caputo modification.
J. Nonlinear Sci. Appl. 10(5), 2607-2619 (2017)


	On a new class of fractional operators
	Abstract
	Keywords

	Introduction
	The fractional conformable integrals and derivatives
	Fractional derivatives on the spaces Calpha,an and Calpha,bn
	Fractional conformable derivatives in the Caputo setting
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


