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Abstract
This article is concerned to the investigation of extremal solutions for a system of
fractional order differential equations with coupled integral boundary value problem.
In initial stage, we establish a comparison result and then using the iterative
technique of monotone type together with the procedure of extremal solutions, we
develop sufficient conditions to obtain the solutions for the considered fractional
differential system. Moreover, the investigated results are also justified by providing
suitable examples.
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1 Introduction
The aims and objectives of this manuscript is to establish conditions to obtain the solu-
tions for the system of arbitrary order differential equations (FDEs) with coupled integral
boundary conditions given by

⎧
⎪⎨

⎪⎩

–cDαw(t) = �(t, w(t), z(t)); t ∈ (, );  < α ≤ ,
–cDβz(t) = �(t, w(t), z(t)); t ∈ (, );  < β ≤ ,
w() = z() = , w() =

∫ 
 z(t)φ(t) dt, z() =

∫ 
 w(t)ϕ(t) dt.

()

The functions φ,ϕ ∈ L[, ] are non-negative and nondecreasing on [, ], while �,� :
[, ] × [,∞) × [,∞) → [,∞) are nonlinear continuous functions. cD stands for the
Caputo fractional order derivative.

Differential equations of arbitrary order and their systems are the valuable tools for
describing many physical, biological, psychological phenomena more accurately as com-
pared to classical differential equations. Moreover, many problems related to engineering
and applied science can also be described accurately by using fractional differential equa-
tions. Besides, applications of fractional differential equations (FDEs) are also found in
the field of computer networking, electro chemistry, viscoelasticity, control theory, aero-
dynamics, electrodynamics of complex medium, polymer rheology and image and signal
processing phenomenon etc. (see [–]). Therefore, considerable attention was paid to
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study the field devoted to differential equations of fractional order. In last few decades,
boundary value problems of differential equations of fractional order were greatly studied
by many researchers for the existence of solutions (see [–] and the references therein).
This is due to the fact that boundary value problems have significant applications in ap-
plied sciences. The aforesaid area is well explored and plenty of research work is available
on it. Another important class of differential equations is in the field of system of differen-
tial equations with coupled boundary conditions. It has been found that differential system
with coupled boundary conditions mostly occur in investigation concerned with mathe-
matical physics, mathematical biology, biochemical system, biomedical engineering and
so on (see [, ]). Therefore, this field very recently attracted the attention of researchers
towards itself.

The monotone iterative technique coupled with the method of upper and lower solu-
tions is a powerful scheme applied to approximate solutions to differential equations of
arbitrary order as well as classical order and their systems. The aforesaid techniques were
used in some articles to develop conditions for existence of iterative solutions for ordi-
nary and fractional order differential equations (FDES) (see [–]). There is no need of
special restrictions for the utility and importance of the technique. In the mentioned tech-
nique, upper and lower solutions are used as initial iterations and monotonic sequences
are developed from the corresponding linear differential equations/system which con-
verge monotonically to their corresponding extremal solutions. By using the aforesaid
technique to establish the necessary and sufficient conditions for the existence of itera-
tive solutions to a system of coupled boundary conditions, one needs proper differential
inequalities as comparison results. Monotone iterative techniques to develop conditions
for extremal solutions to coupled boundary value problems are very rarely studied and
very few articles are devoted to this. For instance, Asif and Khan [] studied the coupled
system with four point coupled boundary conditions for the positive solutions given by

{
–w′′(t) = �(t, w(t), z(t)), –z′′(t) = �(t, w(t), z(t)); t ∈ (, ),
w() = , w() = αz(ξ ), z() = , z() = βw(η),

()

where ξ ,η ∈ (, ),  < αβξη < , �,� : [, ] × [,∞) × [,∞) → [,∞) are continuous
and the system become singular at t =  and t = . The above system (), was extended
to fractional order under the same coupled boundary conditions by Cui and Zou [], as
given by

{
–cDαw(t) = �(t, w(t), z(t)), –cDβz(t) = �(t, w(t), z(t)); t ∈ (, ),
w() = , w() = αz(ξ ), z() = , z() = βw(η),

()

where ξ ,η ∈ (, ),  < αβξη < , �,� : [, ] × [,∞) × [,∞) → [,∞) are continuous
and the system become singular at t =  and t = . Recently, Shah et al. [], studied the
following coupled system with coupled m-point boundary condition for upper and lower
solutions:

{
cDαw(t) + �(t, w(t), z(t)) = , cDβz(t) + �(t, w(t), z(t)) = ; t ∈ (, ),
w() = z() = , w() =

∑m–
i= δiz(ηi), z() =

∑m–
i= λiw(ξi),

()
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where  < α,β ≤ , ηi, ξi (i = , , . . . , m – ) ∈ (, ),
∑m–

i= δiηi < ,
∑m–

i= γiξi <  and
�,� : (, ) × R

 → R
 are given continuous functions and cD is stand for the Caputo’s

fractional order derivative of order α, β , respectively. Similarly Cui and Zou [], studied
the following coupled system with coupled integral boundary conditions:

{
w′′(t) + �(t, w(t), z(t)) = , z′′(t) + �(t, w(t), z(t)) = ; t ∈ (, ),
w() = , w() =

∫ 
 z(t) dA(t), z() = , z() =

∫ 
 w(t) dB(t),

()

where A, B are right continuous on [, ) and left continuous at t =  and nondecreasing
on [, ], A() = B() = ,

∫ 
 μ(s) dA(s),

∫ 
 μ(s) dB(s) denote Riemann-Stieljes integral of

μ with respect to A, B, respectively. Cui and Sun [], studied a boundary value problem
with coupled integral boundary conditions and developed some useful results.

Motivated by the above work, we establish fractional differential inequalities as a com-
parison result to study the coupled system (). By using the monotone iterative technique
coupled with the method of upper and lower solutions, we develop conditions for ex-
tremal solutions for the system (). We also derive the corresponding convergent mono-
tone sequences for the lower and upper solutions. Finally, we also developed conditions
for uniqueness of the positive solution for the considered coupled system with coupled
integral boundary conditions. Further, we provide examples to justify the main results.

2 Preliminaries
Here, we recall some fundamental notions and results of the fractional calculus and func-
tional analysis which are found in [–].

Definition . Let α >  and w : [a, +∞) → R. Then the Riemann-Liouville arbitrary or-
der integral of h(t) is given by

Iα
a+w(t) =


(α)

∫ t

a
(t – s)α–w(s) ds,

where α ∈ R+ and ‘’ is a Gamma function provided that the integral at the right side is
pointwise defined on (,∞).

Definition . The fractional order derivative in the Caputo sense of a function w on the
interval [a, b] is given by

cDα
a+w(t) =


(n – α)

∫ t

a
(t – s)n–α–w(n)(s) ds,

where n = [α] +  and [α] represents the integer part of α, provided that the integral on the
right side is point wise defined on (,∞).

Lemma . The unique solution of fractional differential equation cDαw(t) = , for w ∈
C(, ) ∩ L(, ) is provided by

Iα
[cDαw(t)

]
= w(t) +

n–∑

k=

Cktk ,

for arbitrary Ck ∈R, k = , , , . . . , n – .
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Let

λ =
∫ 


tφ(t) dt, λ =

∫ 


tϕ(t) dt, λ =  – λλ, E = C[, ].

We need the following assumption throughout in this paper:

(A) λ >  and  < λ,λ < .

Definition . (w, z) ∈ E × E is called the lower system of solutions of the fractional dif-
ferential system (), if

⎧
⎪⎨

⎪⎩

cDαw(t) + �(t, w(t), z(t)) ≥ ; t ∈ (, ),  < α ≤ ,
cDβz(t) + �(t, w(t), z(t)) ≥ ; t ∈ (, ),  < β ≤ ,
w() ≤ , z() ≤ , w() ≤ ∫ 

 z(t)φ(t) dt, z() ≤ ∫ 
 w(t)ϕ(t) dt.

Similarly (w, z) ∈ E ×E is called an upper system of solutions for the fractional differential
system (), if

{
cDαw(t) + �(t, w(t), z(t)) ≤ , cDβz(t) + �(t, w(t), z(t)) ≤ ; t ∈ (, ),
w() ≥ , z() ≥ , w() ≥ ∫ 

 z(t)φ(t) dt, z() ≥ ∫ 
 w(t)ϕ(t) dt.

Assume that

w(t) ≤ w(t), z(t) ≤ z(t), t ∈ [, ]. ()

We define the ordered sector as

S = [w, w] × [z, z] =
{

(w, z) ∈ E × E : (w, z) ≤ (w, z) ≤ (w, z)
}

. ()

We recall the following lemma.

Lemma . ([]) Let w ∈ E ,  < α ≤ , attain its minimum at t ∈ (, ), then

cDαw(t) ≥ 
( – α)

[
(α – )t–α


(
w() – w(t)

)
– t–α

 w′()
]
, for all  < α ≤ . ()

Then cDαw(t) ≥ , for all  < α ≤ .

Lemma . ([]) Assume that w ∈ E ,  < α ≤ , attains its minimum at t ∈ (, ) and if
w′() ≤ . Then cDαw(t) ≥ , for all  < α ≤ .

We extend this inequity for our coupled system () in the following theorem.

Theorem . Let  –λ > ,  –λ >  hold and assume that w, z ∈ E , �(t, w, z),�(t, w, z) ∈
C([, ] × R

) such that �(t, w, z) < , �(t, w, z) <  for all t ∈ (, ). If w(t), z(t) satisfy the
following inequalities:

{
cDαw(t) + �(t, w, z) ≤ , cDβz(t) + �(t, w, z) ≤ ; t ∈ (, ),  < α,β ≤ ,
w() ≥ , z() ≥ , w() ≥ ∫ 

 z(t)φ(t) dt, z() ≥ ∫ 
 w(t)ϕ(t) dt,

()

then w(t) ≥ , z(t) ≥ , for all t ∈ [, ].
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Proof Assume that the conclusion is not true, then w(t) and z(t) have absolute minima at
some t with w(t) <  and z(t) < . If t ∈ (, ), then w′(t) = , z′(t) = . Therefore, we
prove that

cDαw(t) ≥ , cDβw(t) ≥ .

In view of Lemma ., we have

cDαw(t) ≥ 
( – α)

[
(α – )t–α


(
w() – w(t)

)
– t–α

 w′()
]
, for all  < α ≤ ,

cDβz(t) ≥ 
( – β)

[
(β – )t–β


(
z() – z(t)

)
– t–β

 z′()
]
, for all  < β ≤ .

()

Since w(t) ≤ w(), z(t) ≤ z(), t > , and w′() ≤ , z′() ≤ , by Lemma ., from the
first inequality of () and boundary condition w() ≥ , we have


( – α)

[
(α – )t–α


(
w() – w(t)

)
– t–α

 w′()
]

≥ t–α


( – α)
[
(α – )

(
w() – w()

)
– tw′()

]

≥ t–α


( – α)
[
–tw′()

] ≥ , as w′() ≤ .

Thus cDαw(t) ≥  and in a similar way we can prove that cDβz(t) ≥ .
If w′() >  and z′() > , then by similar way as in [], we can obtain the same results

by using Lemma .. Hence in both cases, we concluded that w(t) ≥  and z(t) ≥  for all
t ∈ [, ]. �

We need the following assumptions:

(A) The nonlinear function �(t, w, z) is strictly decreasing in w;
(A) the nonlinear function �(t, w, z) is strictly decreasing in z.

Lemma . Under the assumptions (A)-(A), let (w, z) and (w, z) be ordered lower and
upper solutions such that �(t, w, z) is strictly decreasing with respect to w and �(t, w, z) is
strictly deceasing with respect to z. Then

(w, z) ≤ (w, z), for t ∈ [, ].

Proof In view of the definition of the lower and upper solutions, we have

{
cDαw(t) + �(t, w(t), z(t)) ≥ , cDβz(t) + �(t, w, z) ≥ ; t ∈ (, ),
w() ≤ , z() ≤ , w() ≤ ∫ 

 z(t)φ(t) dt, z() ≤ ∫ 
 w(t)ϕ(t) dt,

()

and
{

cDαw(t) + �(t, w(t), z(t)) ≤ , cDβz(t) + �(t, w, z) ≤ ; t ∈ (, ),
w() ≥ , z() ≥ , w() ≥ ∫ 

 z(t)φ(t) dt, z() ≥ ∫ 
 w(t)ϕ(t) dt.

()
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From () and (), we have

cDα(w – w) + �
(
t, w(t), z(t)

)
– �

(
t, w(t), z(t)

) ≤ ,
cDβ (z – z) + �

(
t, w(t), z(t)

)
– �

(
t, w(t), z(t)

) ≤ .

Using the mean value theorem and taking u = w – w, v = z – z, we have

cDαu +
∂�

∂w
(ξ ) ≤ , where ξ = δw + ( – δ)w, ξ ∈ [, ],

cDβv +
∂�

∂z
(η) ≤ , where η = δw + ( – δ)w,η ∈ [, ],

u() ≥ , v() ≥ , u() ≥
∫ 


v(t)φ(t) dt, v() ≥

∫ 


u(t)ϕ(t) dt.

Since �, � are strictly decreasing with respect to w, z, respectively,

∂�

∂w
(ξ ) < ,

∂�

∂z
(η) < .

Hence in view of Theorem ., we have u ≥ , v ≥ . Therefore w ≥ w and z ≥ z imply
that (w, z) ≤ (w, z). �

Let y(t), x(t) ∈ C[, ], then we shall consider the linear fractional differential system with
coupled integral boundary conditions given by

{
–cDαw(t) = y(t), –cDβz(t) = x(t); t ∈ [, ],
w() = z() = , w() =

∫ 
 z(t)φ(t) dt, z() =

∫ 
 w(t)ϕ(t) dt.

()

3 Main results
This part of the manuscript is devoted to the main results. We obtained an equivalent
system of Hammerstein integral equations to our system of coupled integral boundary
conditions.

Theorem . Under the assumption (A), if (w, z) ∈ E × E is a system of solutions of the
coupled system () if and only if (w, z) ∈ E × E is a system of solutions of the following
coupled system of Hammerstein integral equations namely:

{
w(t) =

∫ 
 G(t, s)y(s) ds +

∫ 
 G(t, s)x(s) ds,

z(t) =
∫ 

 G(t, s)x(s) ds +
∫ 

 G(t, s)y(s) ds,
()

where

G(t, s) =
tλ

λ

∫ 


φ(x)K(s, v) dv + K(t, s), G =

t
λ

∫ 


φ(v)K(s, v) dv,

G(t, s) =
tλ

λ

∫ 


ϕ(v)K(s, v) dv + K(t, s), G =

t
λ

∫ 


ϕ(v)K(s, v) dv,
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and Ki(t, s), i = , , are Green’s functions given in () and (), respectively,

K(t, s) =

{ t(–s)α––(t–s)α–

(α) ,  ≤ s ≤ t ≤ ,
t(–s)α–

(α) ,  ≤ t ≤ s ≤ ,
()

K(t, s) =

{ t(–s)β––(t–s)β–

(β) ,  ≤ s ≤ t ≤ ,
t(–s)β–

(β) ,  ≤ t ≤ s ≤ .
()

Proof Applying Iα , Iβ on both sides of the coupled system of the FDE () correspond-
ing to the boundary conditions w() = z() = w() = z() = , the coupled system () is
equivalent to the following system of integral equations:

w(t) = tw() +
∫ 


K(t, s)y(s) ds, t ∈ [, ], ()

z(t) = tz() +
∫ 


K(t, s)x(s) ds, t ∈ [, ]. ()

Upon multiplication of () by ϕ(t) and () by φ(t) and integrating with respect to t on
[, ] we have

∫ 


w(t)ϕ(t) dt = w()

∫ 


tϕ(t) dt +

∫ 


ϕ(t)

∫ 


K(t, s)y(s) ds dt,

∫ 


z(t)φ(t) dt = z()

∫ 


tφ(t) dt +

∫ 


φ(t)

∫ 


K(t, s)x(s) ds dt.

This implies that

z() – w()λ =
∫ 


φ(t)

∫ 


K(t, s)y(s) ds dt,

w() – z()λ =
∫ 


ϕ(t)

∫ 


K(t, s)x(s) ds dt.

()

By simple calculation from (), we have

(
w()
z()

)

=

λ

(
λ 
 λ

)(∫ 
 φ(t)

∫ 
 K(t, s)y(s) ds dt

∫ 
 ϕ(t)

∫ 
 K(t, s)x(s) ds dt

)

. ()

This produces

w() =
λ

λ

∫ 


φ(t)

∫ 


K(t, s)y(s) ds dt +


λ

∫ 


ϕ(t)

∫ 


K(t, s)x(s) ds dt ()

and

z() =
λ

λ

∫ 


ϕ(t)

∫ 


K(t, s)x(s) ds dt +


λ

∫ 


φ(t)

∫ 


K(t, s)y(s) ds dt. ()
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Using () in () and () in (), we get

w(t) = t
[

λ

λ

∫ 


φ(t)

∫ 


K(t, s)y(s) ds dt +


λ

∫ 


ϕ(t)

∫ 


K(t, s)x(s) ds dt

]

+
∫ 


K(t, s)y(s) ds, t ∈ [, ],

z(t) = t
[

λ

λ

∫ 


ϕ(t)

∫ 


K(t, s)x(s) ds dt +


λ

∫ 


φ(t)

∫ 


K(t, s)y(s) ds dt

]

+
∫ 


K(t, s)x(s) ds, t ∈ [, ],

which is equivalent to the system ().
For the converse, let (w, z) ∈ E × E is a system of solutions of integral equations (),

then upon fractional differentiation of corresponding order of () yield

–cDαw(t) = y(t), –cDβz(t) = x(t).

Further, using the fact Ki(, s) = Ki(, s) =  (i = , ), for s ∈ [, ]. Hence we get w() =
z() = . Moreover, on simple computations, one can easily verify that

w() =
∫ 


z(t)φ(t) dt, z() =

∫ 


w(t)ϕ(t) dt.

This proves that (w, z) ∈ E × E is a system of solutions of our considered coupled sys-
tem (). �

In view of Theorem . and by means of monotone iterative technique, we derive our main
result concerning the existence of a system of solutions of the considered system (). For
ordered lower and upper solutions (w, z) and (w, z), respectively, we have defined the set S
in (). Further under the assumptions (A) and (A), let ∂�

∂w (t, ξ , z), ∂�
∂z (t, w,η) be bounded

below, that is, there exist constants c, d such that

–c ≤ ∂�

∂w
(t, ξ , z) < , –d ≤ ∂�

∂z
(t, w,η) < , for all ξ ,η ∈ [, ]. ()

In the following theorem, we construct monotone sequences which describe lower and
upper solutions of BVP ().

Theorem . Assume the hypotheses (A)-(A) together with the initial approximation
(w(), z()) and (w, z) of the ordered lower and upper system of solutions for the coupled
system (), respectively, in S. Let {(w(n), z(n))} and {(wn, zn)}, n ≥ , be the solutions of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–cDαw(n)(t) + cw(n) = cw(n–) + �(t, w(n–)(t), z(n–)(t)); t ∈ (, ),  < α ≤ ,
–cDβz(n)(t) + dz(n) = dz(n–) + �(t, w(n–)(t), z(n–)(t)); t ∈ (, ),  < β ≤ ,
w(n)() = w(n)

 ≥ w(n–)(), w(n)() = w(n)
 () ≥ w(n–)(),

z(n)() = z(n)
 ≥ z(n–)(), z(n)() = z(n)

 () ≥ z(n–)(),

()
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and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–cDαwn(t) + cwn = cwn– + �(t, wn–(t), zn–(t)); t ∈ (, ),
–cDβzn(t) + dzn = dzn– + �(t, wn–(t), zn–(t)); t ∈ (, ),
wn() = w()

n () ≥ wn–(), wn() = w()
n () ≥ wn–(),

zn() = z()
n () ≥ zn–(), zn() = z()

n () ≥ zn–().

()

Then we have
(i) The sequence (w(n), z(n)), n ≥ , is an increasing sequence of lower solutions of BVP ();

(ii) the sequence (wn, zn), n ≥  is a decreasing sequence of upper solutions of BVP ().
Further

(iii) (w(n), w(n)) ≤ (wn, zn), for all n ≥ .

Proof To prove (i), we need to show that
(a) w(n) – w(n–) ≥ , and z(n) – z(n–) ≥ , for each n ≥ ;
(b) (w(n), z(n)) is a lower solution for each n ≥ .

Thanks to induction, taking n = , from (), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–cDαw() + cw() = cw() + �(t, w(), z()); t ∈ (, ),
–cDβz() + dz() = dz() + �(t, w(), z()); t ∈ (, ),
w()() = w()

 ≥ w()(), w()() = w()
 () ≥ w()(),

z()() = z()
 ≥ z()(), z()() = z()

 () ≥ z()().

()

Since (w(), z()) is a lower solution,

{
cDαw() + �(t, w(), z()) ≥ ,
cDβz() + �(t, w(), z()) ≥ .

()

Adding the corresponding equations of the system () and (), we get

{
cDα(w() – w()) – c(w() – w()) ≤ ,
cDβ (z() – z()) – d(z() – z()) ≤ .

()

Using u = w() – w(), v = z() – z(). Then (u, v) satisfies

{
cDαu – cu ≤ , cDβv – dv ≤ ,
u() ≥ , v() ≥ , u() ≥ , v() ≥ .

()

Since c < , d <  by using Theorem ., we have u ≥ , v ≥ . Therefore we have
(w(), z()) ≤ (w(), z()). Hence the result is true for n = .

Let the result be true for m ≤ n and we will derive the result for m = n + . From the
system (), we have

–cDα
(
w(n+) – w(n)) + c

(
w(n+) – w(n))

= c
(
w(n) – w(n–)) + �

(
t, w(n), z(n)) – �

(
t, w(n–), z(n–)),

–cDβ
(
z(n+) – z(n)) + d

(
z(n+) – z(n))

= d
(
z(n) – z(n–)) + �

(
t, w(n), z(n)) – �

(
t, w(n–), z(n–)).

()
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Use u = (w(n+) – w(n)), v = (z(n+) – z(n)) and apply the mean value theorem together with
(w(n–), w(n–)) ≤ (w(n), w(n)). We have

cDαu – cu ≤ , cDβv – cv ≤ . ()

Hence in view of Theorem ., u ≥ , v ≥ , which yield (w(n), z(n)) ≤ (w(n+), z(n+)). Thus
the result is proved for m = n +  and, therefore, we have

(
w(n–), z(n–)) ≤ (

w(n), z(n)), for each n ≥ .

This proves (a).
To derive (b), upon subtracting �(t, w(n), z(n)) from the first equation and �(t, w(n), z(n))

from the second equation of the system () and rearranging the terms and applying the
mean value theorem, we arrive at

cDαw(n)(t) + �
(
t, w(n)(t), z(n)(t)

) ≥ ; t ∈ (, ),
cDβz(n)(t) + �

(
t, w(n)(t), z(n)(t)

) ≥ ; t ∈ (, ).
()

Therefore (w(n), z(n)) for each n ≥  is a lower solution of BVP () which proves (b).
The proof of (ii) is similar to the proof of (i).
By (i) and (ii) (w(n), z(n)) and (wn, zn) are lower and upper solutions of BVP (). Therefore

in view of Theorem ., (iii) immediately follows. �

Theorem . Under the assumptions (A), (A) and condition (), let (w(n), z(n)) and
(w(n), z(n)) be lower and upper solutions of BVP () as defined in Theorem .. Then the
sequences (w(n), z(n)) and (w(n), z(n)), n ≥ , converge uniformly to (w∗, z∗) and (w∗, z∗), re-
spectively, with (w∗, z∗) ≤ (w∗, z∗).

Proof The sequence un = (w(n), z(n)) is monotonically increasing and bounded above by
(w, z). The bounded monotonic increasing sequence shows convergence to its least up-
per bound, say (w∗, z∗). Along the same lines the sequence vn = (wn, zn) is monotonically
decreasing and bounded below by (w(), z()), thus it is convergent to its greatest lower
bound say (w∗, z∗). The sequences un and vn are continuous functions defined on the
compact square [, ] × [, ]. Thus the convergence is uniform. Further, in view of Theo-
rem ., un ≤ vn for each n ≥ , so

u∗ = lim
n→∞ un ≤ lim

n→∞ vn = v∗. �

Theorem . Under the assumptions (A), (A), BVP () has at most one solution.

Proof Let (w, z) and (w, z) be two solutions of the coupled system (), then we have

cDαw(t) + �
(
t, w(t), z(t)

)
= ; t ∈ (, ),  < α ≤ ,

cDβz(t) + �
(
t, w(t), z(t)

)
= ; t ∈ (, ),  < β ≤ ,

w() = z() = , w() =
∫ 


z(t)φ(t) dt, z() =

∫ 


w(t)ϕ(t) dt,

()
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and

cDαw(t) + �
(
t, w(t), z(t)

)
= ; t ∈ (, ),  < α ≤ ,

cDβz(t) + �
(
t, w(t), z(t)

)
= ; t ∈ (, ),  < β ≤ ,

w() = z() = , w() =
∫ 


z(t)φ(t) dt, z() =

∫ 


w(t)ϕ(t) dt.

()

Upon subtracting the first equation of () from the first equation of () and similarly
the second equation of () from the second equation of (), we have

cDα(w – w) + �(t, w, z) – �(t, w, z) = ; t ∈ (, ),
cDβ (z – z) + �(t, w, z) – �(t, w, z) = ; t ∈ (, ).

()

Using u = w – w, v = z – z and applying the mean value theorem, we get

cDαu + u
∂�

∂w
(ξ ) = , where ξ ∈ [, ],

cDβv + v
∂�

∂z
(η) = , where η ∈ [, ],

()

with u() = v() =  and u() =
∫ 

 v(t)φ(t) dt, v() =
∫ 

 u(t)ϕ(t) dt. By Theorem ., we
have u ≥ , v ≥ . Also the system () is satisfied by using –u, –v, therefore again by
Theorem ., we have –u ≥ , –v ≥ . Thus u = , v = , which implies that w = w,
z = z. Hence (w, z) = (w, z). Thus the coupled system () has at most one solution. �

4 Examples
Example  Consider the following coupled system of coupled integral boundary values
problem:

⎧
⎪⎨

⎪⎩

cD 
 w(t) – w(t) + z(t) +  = ; t ∈ (, ),

cD 
 z(t) + w(t) – z(t) +  = ; t ∈ (, ),

w() = z() = , w() =
∫ 

 tz(t) dt, z() =
∫ 

 tw(t) dt.
()

From the above system (), we see

�
(
t, w(t), z(t)

)
= –w(t) + z(t) + , �

(
t, w(t), z(t)

)
= w(t) – z(t) + . ()

Here φ(t) = t, ϕ(t) = t. Also λ = λ = 
 , λ = 

 . Take (, ) = (w(), z()) and (, ) = (w, z) as
the initial approximation of the system of lower and upper solutions, respectively. Further,
the function �(t, w, z) is strictly decreasing with

– ≤ ∂�(t, w, z)
∂w

= –w < 

and �(t, w, z) is strictly decreasing with

– ≤ ∂�(t, w, z)
∂z

= –z < 



Li et al. Advances in Difference Equations  (2017) 2017:251 Page 12 of 14

Figure 1 Plot of upper and lower solutions of
coupled system of Example 1.

for all (w, z) ∈ [w(), z()] × [w, z]. Here the constants c, d of the procedure are c = ,
d = . Thus (, ) and (, ) are the initial approximations of the lower and upper solutions,
respectively, for the coupled system (). In Figure , we have ploted upper and lower
solutions for the given system ().

Example  For more explanation, we give another example of FDEs subject to the coupled
integral boundary conditions:

⎧
⎪⎨

⎪⎩

cD 
 w(t) – w(t) exp(w(t)) + z(t) = ; t ∈ (, ),

cD 
 z(t) + w(t) – z(t) exp(z(t)) = ; t ∈ (, ),

w() = z() = , w() =
∫ 

 tz(t) dt, z() =
∫ 

 tw(t) dt.
()

From the above system (), we see

�
(
t, w(t), z(t)

)
= –w(t) exp

(
w(t)

)
+ z(t), �

(
t, w(t), z(t)

)
= w(t) – z(t) exp

(
z(t)

)
.

()

Here

φ(t) = t, ϕ(t) = t, also λ = λ =



, λ =



.

Take (, ) = (w(), z()) and (, ) = (w, z) as the initial approximation of the lower and
upper solutions, respectively. Then from (), we see that the function �(t, w, z) is strictly
decreasing with

– exp() ≤ ∂�(t, w, z)
∂w

= – exp(w)(w + ) < 

and �(t, w, z) is strictly decreasing with

– exp() ≤ ∂�(t, w, z)
∂z

= – exp(z)(z + ) < 
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Figure 2 Plot of upper and lower solutions of
coupled system of Example 2.

for all (w, z) ∈ [w(), z()] × [w, z]. Here the constants c, d of the method are c = d =
 exp(). Thus (, ) and (, ) are the initial approximations of the lower and upper solu-
tions, respectively, for the coupled system (). Further, in Figure , we have ploted upper
and lower solutions for the system ().

5 Conclusion
By the use of a monotone iterative technique, we successfully developed a scheme for or-
der upper and lower solutions to the coupled system of highly nonlinear fractional order
differential equations with coupled integral boundary conditions. We have introduced an
algorithm to construct a convergent increasing sequence of lower solutions as well as a
convergent decreasing sequence of upper solutions. Further we have proved that the con-
structed sequences converge uniformly to the unique solution of the considered problem.
Moreover, the results are justified by some suitable numerical examples.
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