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Abstract
In this paper, we consider three types of functions given by sums of finite products of
Bernoulli functions and derive their Fourier series expansions. In addition, we express
each of them in terms of Bernoulli functions.
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1 Introduction
As is well known, the Bernoulli polynomials Bm(x) are given by the generating function

t
et – 

ext =
∞∑

m=

Bm(x)
tm

m!
(see [–]). (.)

When x = , Bm = Bm() are called Bernoulli numbers. For any real number x, we let

〈x〉 = x – [x] ∈ [, ) (.)

denote the fractional part of x.
Fourier series expansion of higher-order Bernoulli functions was treated in the recent

paper []. Here we will consider the following three types of functions given by sums
of finite products of Bernoulli functions and derive their Fourier series expansions. In
addition, we will express each of them in terms of Bernoulli functions.

() αm(〈x〉) =
∑

c+c+···+cr=m,c,...,cr≥ Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) (m ≥ );
() βm(〈x〉) =

∑
c+c+···+cr=m,c,...,cr≥


c!c!···cr ! Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) (m ≥ );

() γr,m(〈x〉) =
∑

c+c+···+cr=m,c,...,cr≥


cc···cr
Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) (m ≥ r).

For elementary facts about Fourier analysis, the reader may refer to any book (for example,
see [, ]).

As to βm(〈x〉), we note that the next polynomial identity follows immediately from The-
orems . and ., which is in turn derived from the Fourier series expansion of βm(〈x〉):

∑

c+c+···+cr=m


c!c! · · · cr !

Bc (x)Bc (x) · · ·Bcr (x) =

r
�m+ +

m∑

j=

rj–

j!
�m–j+Bj(x),
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where

�l =
∑

max{,r–l}≤a≤r–

(
r
a

) ∑

c+c+···+ca=l+a–r

Bc Bc · · ·Bca

c!c! · · · ca!
. (.)

The obvious polynomial identities can be derived also for αm(〈x〉) and γm(〈x〉) from The-
orems . and ., and Theorems . and ., respectively. It is remarkable that from the
Fourier series expansion of the function

∑m–
k=


k(m–k) Bk(〈x〉)Bm–k(〈x〉) we can derive the

Faber-Pandharipande-Zagier identity (see [–]) and the Miki identity (see [–]).

2 The function αm(〈x〉)
Let αm(x) =

∑
c+c+···+cr=m Bc (x)Bc (x) · · ·Bcr (x) (m ≥ ). Here the sum runs over all non-

negative integers c, c, . . . , cr with c + c + · · · + cr = m (r ≥ ). Then we will consider the
function

αm
(〈x〉) =

∑

c+c+···+cr=m
Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉), (.)

defined on (–∞,∞), which is periodic with period .
The Fourier series of αm(〈x〉) is

∞∑

n=–∞
A(m)

n eπ inx, (.)

where

A(m)
n =

∫ 


αm

(〈x〉)e–π inx dx

=
∫ 


αm(x)e–π inx dx. (.)

Before proceeding further, we need to observe the following.

α′
m(x) =

∑

c+c+···+cr=m

(
cBc–(x)Bc (x) · · ·Bcr (x)

+ · · · + crBc (x)Bc (x) · · ·Bcr– (x)Bcr–(x)
)

=
∑

c+c+···+cr=m,c≥

cBc–(x)Bc (x) · · ·Bcr (x)

+ · · · +
∑

c+c+···+cr=m,cr≥

crBc–(x)Bc (x) · · ·Bcr (x)

= (m + r – )
∑

c+c+···+cr=m–

Bc (x)Bc (x) · · ·Bcr (x)

= (m + r – )αm–(x). (.)

From this, we have

(
αm+(x)
m + r

)′
= αm(x) (.)
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and
∫ 


αm(x) dx =


m + r

(
αm+() – αm+()

)
. (.)

For m ≥ , we put

�m = αm() – αm()

=
∑

c+c+···+cr=m

(
Bc ()Bc () · · ·Bcr () – Bc Bc · · ·Bcr

)

=
∑

c+c+···+cr=m

(
(Bc + δ,c ) · · · (Bcr + δ,cr ) – Bc Bc · · ·Bcr

)

=
∑

≤a≤r
a≥r–m

(
r
a

) ∑

c+c+···+ca=m+a–r
Bc Bc · · ·Bca –

∑

c+c+···+cr=m
Bc Bc · · ·Bcr

=
∑

max{,r–m}≤a≤r–

(
r
a

) ∑

c+c+···+ca=m+a–r
Bc Bc · · ·Bca , (.)

where we understand that, for r – m ≤  and a = , the inner sum is δm,r .
Observe here that the sum over all c + c + · · · + cr = m of any term with a of Bce and b

of δ,cf ( ≤ e, f ≤ r, a + b = r), all give the same sum

∑

c+c+···+cr=m
Bc · · ·Bcaδ,ca+ · · · δ,ca+b

=
∑

c+c+···+ca=m+a–r
Bc Bc · · ·Bca , (.)

which is not an empty sum as long as m + a – r ≥ , i.e., a ≥ r – m.
Thus

αm() = αm() ⇐⇒ �m =  (.)

and
∫ 


αm(x) dx =


m + r

�m+. (.)

Now, we are ready to determine the Fourier coefficients A(m)
n .

Case  : n �= .

A(m)
n =

∫ 


αm(x)e–π inx dx

= –


π in
[
αm(x)e–π inx]

 +


π in

∫ 


α′

m(x)e–π inx dx

=
m + r – 

π in
A(m–)

n –


π in
�m

=
m + r – 

π in

(
m + r – 

π in
A(m–)

n –


π in
�m–

)
–


π in

�m
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=
(m + r – )

(π in) A(m–)
n –

∑

j=

(m + r – )j–

(π in)j �m–j+

= · · ·

=
(m + r – )m

(π in)m A()
n –

m∑

j=

(m + r – )j–

(π in)j �m–j+

= –


m + r

m∑

j=

(m + r)j

(π in)j �m–j+, (.)

where A()
n =

∫ 
 e–π inx dx = .

Case : n = .

A(m)
 =

∫ 


αm(x) dx =


m + r

�m+. (.)

Let us recall the following facts about Bernoulli functions Bm(〈x〉):
(a) for m ≥ ,

Bm
(〈x〉) = –m!

∞∑

n=–∞
n�=

eπ inx

(π in)m ; (.)

(b) for m = ,

–
∞∑

n=–∞
n�=

eπ inx

π in
=

⎧
⎨

⎩
B(〈x〉) for x /∈ Z,

 for x ∈ Z.
(.)

αm(〈x〉) (m ≥ ) is piecewise C∞. Moreover, αm(〈x〉) is continuous for those positive
integers m with �m =  and discontinuous with jump discontinuities at integers for those
positive integers m with �m �= .

Assume first that m is a positive integer with �m = . Then αm() = αm(). Hence αm(〈x〉)
is piecewise C∞ and continuous. Thus the Fourier series of αm(〈x〉) converges uniformly
to αm(〈x〉), and

αm
(〈x〉) =


m + r

�m+

+
∞∑

n=–∞,n�=

(
–


m + r

m∑

j=

(m + r)j

(π in)j �m–j+

)
eπ inx

=


m + r
�m+ +


m + r

m∑

j=

(
m + r

j

)
�m–j+

(
–j!

∞∑

n=–∞
n�=

eπ inx

(π in)j

)

=


m + r
�m+ +


m + r

m∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉) for x /∈ Z,

 for x ∈ Z.
(.)



Agarwal et al. Advances in Difference Equations  (2017) 2017:237 Page 5 of 15

We can now state our first result.

Theorem . For each positive integer l, we let

�l =
∑

max{,r–l}≤a≤r–

(
r
a

) ∑

c+c+···+ca=l+a–r

Bc Bc · · ·Bca .

Assume that �m =  for a positive integer m. Then we have the following.
(a)

∑
c+c+···+cr=m Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) has the Fourier series expansion

∑

c+c+···+cr=m
Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉)

=


m + r
�m+ –

∞∑

n=–∞
n�=

(


m + r

m∑

j=

(m + r)j

(π in)j �m–j+

)
eπ inx,

for all x ∈R, where the convergence is uniform.
(b)

∑

c+c+···+cr=m
Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉)

=


m + r
�m+ +


m + r

m∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉),

for all x ∈R, where Bj(〈x〉) is the Bernoulli function.

Assume next that �m �=  for a positive integer m. Then αm() �= αm(). Hence αm(〈x〉) is
piecewise C∞ and discontinuous with jump discontinuities at integers. The Fourier series
of αm(〈x〉) converges pointwise to αm(〈x〉) for x /∈ Z and converges to



(
αm() + αm()

)
= αm() +



�m (.)

for x ∈ Z.
Now, we can state our second result.

Theorem . For each positive integer l, we let

�l =
∑

max{,r–l}≤a≤r–

(
r
a

) ∑

c+c+···+ca=l+a–r

Bc Bc · · ·Bca .

Assume that �m �=  for a positive integer m. Then we have the following.

(a)


m + r
�m+ +

∞∑

n=–∞
n�=

(
–


m + r

m∑

j=

(m + r)j

(π in)j �m–j+

)
eπ inx

=

⎧
⎨

⎩

∑
c+c+···+cr=m Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) for x /∈ Z,

∑
c+c+···+cr=m Bc Bc · · ·Bcr + 

�m for x ∈ Z.
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(b)


m + r
�m+ +


m + r

m∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉)

=
∑

c+c+···+cr=m
Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉) for x /∈ Z;


m + r

�m+ +


m + r

m∑

j=

(
m + r

j

)
�m–j+Bj

(〈x〉)

=
∑

c+c+···+cr=m
Bc Bc · · ·Bcr +



�m for x ∈ Z.

3 The function βm(〈x〉)
Let βm(x) =

∑
c+c+···+cr=m


c!c!···cr ! Bc (x)Bc (x) · · ·Bcr (x) (m ≥ ). Here the sum runs over all

nonnegative integers c, c, . . . , cr with c + c + · · · + cr = m (r ≥ ). Then we will consider
the function

βm
(〈x〉) =

∑

c+c+···+cr=m


c!c! · · · cr !

Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉), (.)

defined on (–∞,∞), which is periodic with period . The Fourier series of βm(〈x〉) is

∞∑

n=–∞
B(m)

n eπ inx, (.)

where

B(m)
n =

∫ 


βm

(〈x〉)e–π inx dx =
∫ 


βm(x)e–π inx dx. (.)

Before proceeding further, we need to observe the following.

β ′
m(x) =

∑

c+c+···+cr=m

(
c

c!c! · · · cr !
Bc–(x)Bc (x) · · ·Bcr (x)

+ · · · +
cr

c!c! · · · cr !
Bc (x)Bc (x) · · ·Bcr–(x)

)

=
∑

c+c+···+cr=m,c≥


(c – )!c! · · · cr !

Bc–(x)Bc (x) · · ·Bcr (x)

+ · · · +
∑

c+c+···+cr=m,cr≥


c!c! · · · (cr – )!

Bc (x)Bc (x) · · ·Bcr–(x)

= r
∑

c+c+···+cr=m–


c!c! · · · cr !

Bc (x)Bc (x) · · ·Bcr (x)

= rβm–(x). (.)

From this, we have

(
βm+(x)

r

)′
= βm(x) (.)
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and

∫ 


βm(x) dx =


r
(
βm+() – βm+()

)
. (.)

Let

�m = βm() – βm()

=
∑

c+c+···+cr=m

Bc ()Bc () · · ·Bcr ()
c!c! · · · cr !

–
∑

c+c+···+cr=m

Bc Bc · · ·Bcr

c!c! · · · cr !

=
∑

c+c+···+cr=m

(Bc + δ,c )(Bc + δ,c ) · · · (Bcr + δ,cr )
c!c! · · · cr !

–
∑

c+c+···+cr=m

Bc Bc · · ·Bcr

c!c! · · · cr !

=
∑

max{,r–m}≤a≤r–

(
r
a

) ∑

c+c+···+ca=m+a–r

Bc Bc · · ·Bca

c!c! · · · ca!
, (.)

where we understand that, for r – m ≤  and a = , the inner sum is δm,r .
Observe here that the sum over all c + c + · · · + cr = m of any term with a of Bce and b

of δ,cf ( ≤ e, f ≤ r, a + b = r), all give the same sum

∑

c+c+···+cr=m

Bc · · ·Bcaδ,ca+ · · · δ,ca+b

c!c! · · · cr !

=
∑

c+c+···+ca=m+a–r

Bc Bc · · ·Bcr

c!c! · · · cr !
, (.)

which is not an empty sum as long as m + a – r ≥ , i.e., a ≥ r – m.
Also, we have

βm() = βm() ⇔ �m =  (.)

and

∫ 


βm(x) dx =


r
�m+. (.)

Now, we would like to determine the Fourier coefficients B(m)
n .

Case : n �= .

B(m)
n =

∫ 


βm(x)e–π inx dx

= –


π in
[
βm(x)e–π inx]

 +


π in

∫ 


β ′

m(x)e–π inx dx

= –


π in
(
βm() – βm()

)
+

r
π in

∫ 


βm–(x)e–π inx dx
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=
r

π in
B(m–)

n –


π in
�m

=
r

π in

(
r

π in
B(m–)

n –


π in
�m–

)
–


π in

�m

=
(

r
π in

)

B(m–)
n –

∑

j=

rj–

(π in)j �m–j+

= · · ·

=
(

r
π in

)m

B()
n –

m∑

j=

rj–

(π in)j �m–j+

= –
m∑

j=

rj–

(π in)j �m–j+, (.)

where B()
n =

∫ 
 e–π inx dx = .

Case : n = .

B(m)
 =

∫ 


βm(x) =


r
�m+. (.)

βm(〈x〉) (m ≥ ) is piecewise C∞. Moreover, βm(〈x〉) is continuous for those positive
integers m with �m =  and discontinuous with jump discontinuities at integers for those
positive integers m with �m �= .

Assume first that �m =  for a positive integer m. Then βm() = βm(). Hence βm(〈x〉) is
piecewise C∞ and continuous. Thus the Fourier series of βm(〈x〉) converges uniformly to
βm(〈x〉), and

βm
(〈x〉) =


r
�m+ +

∞∑

n=–∞
n�=

(
–

m∑

j=

rj–

(π in)j �m–j+

)
eπ inx

=

r
�m+ +

m∑

j=

rj–

j!
�m–j+ ×

(
–j!

∞∑

n=–∞
n�=

eπ inx

(π in)j

)

=

r
�m+ +

m∑

j=

rj–

j!
�m–j+Bj

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉) for x /∈ Z,

 for x ∈ Z.
(.)

Now, we can state our first result.

Theorem . For each positive integer l, we let

�l =
∑

max{,r–l}≤a≤r–

(
r
a

) ∑

c+c+···+ca=l+a–r

Bc Bc · · ·Bca

c!c! · · · ca!
. (.)

Assume that �m =  for a positive integer m. Then we have the following.
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(a)
∑

c+c+···+cr=m


c!c!···cr ! Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) has the Fourier series expansion

∑

c+c+···+cr=m


c!c! · · · cr !

Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉)

=

r
�m+ –

∞∑

n=–∞
n�=

( m∑

j=

rj–

(π in)j �m–j+

)
eπ inx, (.)

for all x ∈ (–∞,∞), where the convergence is uniform.
(b)

∑

c+c+···+cr=m


c!c! · · · cr !

Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉)

=

r
�m+ +

m∑

j=

rj–

j!
�m–j+Bj

(〈x〉), (.)

for all x ∈ (–∞,∞), where Bj(〈x〉) is the Bernoulli function.

Assume next that m is a positive integer with �m �= . Then βm() �= βm(). Hence βm(〈x〉)
is piecewise C∞ and discontinuous with jump discontinuities at integers. Thus the Fourier
series of βm(〈x〉) converges pointwise to βm(〈x〉) for x /∈ Z and converges to



(
βm() + βm()

)
= βm() +



�m

=
∑

c+c+···+cr=m


c!c! · · · cr !

Bc Bc · · ·Bcr +


�m (.)

for x ∈ Z.
Now, we can state our second result.

Theorem . For each positive integer l, let

�l =
∑

max{,r–l}≤a≤r–

(
r
a

) ∑

c+c+···+ca=l+a–r

Bc Bc · · ·Bca

c!c! · · · ca!
. (.)

Assume that �m �=  for a positive integer m. Then we have the following.

(a)

r
�m+ –

∞∑

n=–∞,n�=

( m∑

j=

rj–

(π in)j �m–j+

)
eπ inx

=

⎧
⎨

⎩

∑
c+c+···+cr=m


c!c!···cr ! Bc (〈x〉)Bc (〈x〉) · · ·Bcr (〈x〉) for x /∈ Z,

∑
c+c+···+cr=m


c!c!···cr ! Bc Bc · · ·Bcr + 

�m for x ∈ Z.

Here the convergence is pointwise.

(b)

r
�m+ +

m∑

j=

rj–

j!
�m–j+Bj

(〈x〉)

=
∑

c+c+···+cr=m


c!c! · · · cr !

Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉) for x /∈ Z,
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r
�m+ +

m∑

j=

rj–

j!
�m–j+Bj

(〈x〉)

=
∑

c+c+···+cr=m


c!c! · · · cr !

Bc Bc · · ·Bcr +


�m for x ∈ Z.

Here Bj(〈x〉) is the Bernoulli function.

4 The function γr,m(〈x〉)
Let γr,m(x) =

∑
c+c+···+cr=m,c,...,cr≥


cc···cr

Bc (x)Bc (x) · · ·Bcr (x) (m ≥ r ≥ ). Here the sum
is over all positive integers c, c, . . . , cr with c + c + · · · + cr = m.

γ ′
r,m(x) =

∑

c+c+···+cr=m,c,...,cr≥


c · · · cr

Bc–(x)Bc (x) · · ·Bcr (x)

+
∑

c+c+···+cr=m,c,...,cr≥


cc · · · cr

Bc (x)Bc–(x) · · ·Bcr (x)

+ · · · +
∑

c+c+···+cr=m,c,...,cr≥


cc · · · cr–

Bc (x)Bc (x) · · ·Bcr–(x)

=
∑

c+···+cr=m–,c,...,cr≥


c · · · cr

Bc (x) · · ·Bcr (x)

+
∑

c+···+cr=m–,c,...,cr≥


c · · · cr

Bc (x) · · ·Bcr (x)

+ · · · +
∑

c+c+···+cr–=m–,c,...,cr–≥


cc · · · cr–

Bc (x) · · ·Bcr– (x)

+
∑

c+c+···+cr=m–,c,...,cr≥


cc · · · cr–

Bc (x) · · ·Bcr (x)

= rγr–,m–(x) + (m – )γr,m–(x). (.)

Thus,

γ ′
r,m(x) = rγr–,m–(x) + (m – )γr,m–(x) (m ≥ r), (.)

with γr,r–(x) = .
Replacing m by m + , we get

mγr,m(x) = γ ′
r,m+(x) – rγr–,m(x). (.)

Denoting
∫ 

 γr,m(x) dx by ar,m, we have

ar,m = –
r
m

ar–,m +

m

	r,m+, (.)

where 	r,m = γr,m() – γr,m(). From the recurrence relation (.), we can easily show that

∫ 


γr,m(x) dx =

r–∑

j=

(–)j– (r)j–

mj 	r–j+,m+, (.)
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	r,m = γr,m() – γr,m()

=
∑

c+c+···+cr=m,c,...,cr≥

Bc () · · ·Bcr ()
c · · · cr

–
∑

c+c+···+cr=m,c,...,cr≥

Bc · · ·Bcr

c · · · cr

=
∑

c+c+···+cr=m,c,...,cr≥

(Bc + δ,c ) · · · (Bcr + δ,cr )

–
∑

c+c+···+cr=m,c,...,cr≥

Bc · · ·Bcr

c · · · cr

=
∑

≤a≤r–

(
r
a

) ∑

c+c+···+ca=m+a–r,c,...,ca≥

Bc Bc · · ·Bca

cc · · · ca
. (.)

Observe here that the sum over all positive integers c, . . . , cr satisfying c + c + · · · + cr =
m of any term with a of Bce and b of δ,cf ( ≤ e, f ≤ r, a + b = r), all give the same sum

∑

c+c+···+cr=m,c,...,ca≥

Bc · · ·Bcaδ,ca+ · · · δ,ca+b

cc · · · cr

=
∑

c+c+···+ca=m+a–r,c,...,ca≥

Bc Bc · · ·Bca

cc · · · ca
, (.)

and that, as m + a – r ≥ a, there are no empty sums.
Here we note that, for a = , the inner sum is δm,r since it corresponds to the sums

∑

c+c+···+cr=m,c,...,cr≥

δ,cδ,c · · · δ,cr

cc · · · cr
. (.)

Also, γr,m() = γr,m() ⇔ 	r,m = .
Now, we would like to consider the function

γr,m
(〈x〉) =

∑

c+c+···+cr=m,c,...,cr≥


cc · · · cr

Bc

(〈x〉)Bc

(〈x〉) · · ·Bcr

(〈x〉), (.)

defined on (–∞,∞), which is periodic with period .
The Fourier series of γr,m(〈x〉) is

∞∑

n=–∞
C(r,m)

n eπ inx, (.)

where

C(r,m)
n =

∫ 


γr,m

(〈x〉)e–π inx dx =
∫ 


γr,m(x)e–π inx dx. (.)

Now, we are going to determine the Fourier coefficients C(r,m)
n .
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Case : n �= .

C(r,m)
n =

∫ 


γr,m(x)e–π inx dx

= –


π in
[
γr,m(x)e–π inx]

 +


π in

∫ 


γ ′

r,m(x)e–π inx dx

= –


π in
(
γr,m() – γr,m()

)
+


π in

∫ 



(
rγr–,m–(x) + (m – )γr,m–(x)

)

× e–π inx dx

= –


π in
	r,m +


π in

C(r,m–)
n +

r
π in

C(r–,m–)
n . (.)

From this, we obtain

C(r,m)
n =

m – 
π in

C(r,m–)
n +

r
π in

C(r–,m–)
n –


π in

	r,m

=
m – 
π in

(
m – 
π in

C(r,m–)
n +

r
π in

C(r–,m–)
n –


π in

	r,m–

)

+
r

π in
C(r–,m–)

n –


π in
	r,m

=
(m – )

(π in) C(r,m–)
n +

∑

j=

r(m – )j–

(π in)j C(r–,m–j)
n –

∑

j=

(m – )j–

(π in)j 	r,m–j+

= · · ·

=
(m – )m–r

(π in)m–r C(r,r)
n +

m–r∑

j=

r(m – )j–

(π in)j C(r–,m–j)
n –

m–r∑

j=

(m – )j–

(π in)j 	r,m–j+. (.)

Here,

C(r,r)
n =

∫ 



(
x –




)r

e–π inx dx

= –


π in

[(
x –




)r

e–π inx
]


+

r
π in

∫ 



(
x –




)r–

e–π inx dx

= –


π in

((



)r

–
(

–



)r)
+

r
π in

C(r–,r–)
n , (.)

and

	r,r = γr,r() – γr,r() =
(




)r

–
(

–



)r

. (.)

Thus

C(r,r)
n = –


π in

	r,r +
r

π in
C(r–,r–)

n . (.)

Finally, we obtain, for n �= ,

C(r,m)
n =

m–r+∑

j=

r(m – )j–

(π in)j C(r–,m–j)
n –

m–r+∑

j=

(m – )j–

(π in)j 	r,m–j+. (.)
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Also, we note that, for n �= ,

C(,m)
n =


m

∫ 


Bm(x)e–π inx dx = –

(m – )!
(π in)m . (.)

Thus, for n �= , (.) together with (.) determine all C(r,m)
n recursively.

Case : n = .

C(r,m)
 =

∫ 


γr,m(x) dx =

r∑

j=

(–)j– (r)j–

mj 	r–j+,m+. (.)

γr,m(〈x〉) (m ≥ r ≥ ) is piecewise C∞. In addition, γr,m(〈x〉) is continuous for those pos-
itive integers r, m with 	r,m =  and discontinuous with jump discontinuities at integers
for those positive integers r, m with 	r,m �= .

Assume first that 	r,m =  for some integers r, m with m ≥ r ≥ . Then γr,m() = γr,m().
Hence γr,m(〈x〉) is piecewise C∞ and continuous. Thus the Fourier series of γm(〈x〉) con-
verges uniformly to γm(〈x〉), and

γm
(〈x〉) = C(r,m)

 +
∞∑

n=–∞
n�=

C(r,m)
n eπ inx,

where C(r,m)
 is given by (.), and C(r,m)

n , for each n �= , are determined by relations (.)
and (.).

Now, we are ready to state our first theorem.

Theorem . For all integers s, l, with l ≥ s ≥ , we let

	s,l =
∑

≤a≤s–

(
s
a

) ∑

c+···+ca=l+a–s,c,...,ca≥

Bc · · ·Bca

c · · · ca

= δs,l +
∑

≤a≤s–

(
s
a

) ∑

c+c+···+ca=l+a–s,c,...,ca≥

Bc · · ·Bca

c · · · ca
. (.)

Assume that 	r,m =  for some integers r, m with m ≥ r ≥ . Then we have the following.
∑

c+c+···+cr=m,c,...,cr≥


c···cr
Bc (〈x〉) · · ·Bcr (〈x〉) has the Fourier series expansion

∑

c+c+···+cr=m,c,...,cr≥


c · · · cr

Bc

(〈x〉) · · ·Bcr

(〈x〉)

= C(r,m)
 +

∞∑

n=–∞,n�=

C(r,m)
n eπ inx,

where C(r,m)
 =

∑r–
j= (–)j– (r)j–

mj 	r–j+,m+, with C(,m)
 = , and C(r,m)

n , for each n �= , are de-
termined recursively from

C(r,m)
n =

m–r+∑

j=

r(m – )j–

(π in)j C(r–,m–j)
n –

m–r+∑

j=

(m – )j–

(π in)j 	r,m–j+, (.)
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and

C(,m)
n = –

(m – )!
(π in)m . (.)

Here the convergence is uniform.

Next, assume that 	r,m �=  for some integers r, m with m ≥ r ≥ . Then γr,m() �= γr,m().
Hence γr,m(〈x〉) is piecewise C∞ and discontinuous with jump discontinuities at integers.
Then the Fourier series of γr,m(〈x〉) converges pointwise to γr,m(〈x〉) for x /∈ Z and con-
verges to



(
γr,m() + γr,m()

)
= γr,m() +



	r,m

=
∑

c+c+···+cr=m,c,...,cr≥


c · · · cr

Bc · · ·Bcr +


	r,m (.)

for x ∈ Z.
Now, we can state our second result.

Theorem . For all integers s, l with l ≥ s ≥ , we let

	s,l =
∑

≤a≤s–

(
s
a

) ∑

c+c+···+ca=l+a–s,c,...,ca≥

Bc · · ·Bca

c · · · ca

= δs,l +
∑

≤a≤s–

(
s
a

) ∑

c+c+···+ca=l+a–s,c,...,ca≥

Bc · · ·Bca

c · · · ca
. (.)

Assume that 	r,m �=  for some integers r, m with m ≥ r ≥ . Let C(r,m)
 , C(r,m)

n (n �= ) be
as in Theorem .. Then we have the following.

C(r,m)
 +

∞∑

n=–∞,n�=

C(r,m)
n eπ inx

=

⎧
⎨

⎩

∑
c+c+···+cr=m,c,...,cr≥


c···cr

Bc (x) · · ·Bcr (x) for x /∈ Z,
∑

c+c+···+cr=m,c,...,cr≥


c···cr
Bc · · ·Bcr + 

	r,m for x ∈ Z.
(.)
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