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1 Introduction

As is well known, the Bernoulli polynomials B,,(x) are given by the generating function

o0 m

&= 3 Bald) (see [1-10]). (L1)

m=0

When x = 0, By, = B,,,(0) are called Bernoulli numbers. For any real number x, we let
(x) =x—[x] €[0,1) (1.2)

denote the fractional part of x.

Fourier series expansion of higher-order Bernoulli functions was treated in the recent
paper [11]. Here we will consider the following three types of functions given by sums
of finite products of Bernoulli functions and derive their Fourier series expansions. In
addition, we will express each of them in terms of Bernoulli functions.

(D) @m((5) = Yot ey ey merner 0 Ber () Bey () -+ Bey (1)) (m = 1);

(2) Bil(2) = Xy serivermmerner =0 aigreBe ((¥)Bey (%)) - Be, (%)) (m = 1);

3) Yo (®) = Coaprepreoreromersorot s B (00)Bey () -+~ Be, () (m = ).

For elementary facts about Fourier analysis, the reader may refer to any book (for example,
see [12, 13]).
As to B,,({x)), we note that the next polynomial identity follows immediately from The-

orems 3.1 and 3.2, which is in turn derived from the Fourier series expansion of 8,,({x)):

1 1 ZL il
E Bq (x)Bcz (x) o 'ch (x) = _Qm+l + E . Qm—jHBj(x):
ale!-- ¢l r 7!
Cl+Co++Cr=m j=1
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r B. B, ---B
Q = > > e 1.3)

a cley!---c,!

max{0,r—l}<a<r-1 c1+ey++cg=l+a-r
The obvious polynomial identities can be derived also for ¢, ({x)) and y,,,({x)) from The-
orems 2.1 and 2.2, and Theorems 4.1 and 4.2, respectively. It is remarkable that from the
Fourier series expansion of the function Z,’::l mBk((x))Bm_k((x)) we can derive the
Faber-Pandharipande-Zagier identity (see [14—16]) and the Miki identity (see [15-19]).

2 The function o, ({x))

Let o, (x) = ch+cz+---+cr=m B, (#)Bg, (%) - - - Bg,(x) (m > 1). Here the sum runs over all non-
negative integers ci, ¢y, ..., ¢, with ¢; + ¢3 + -+ - + ¢, = m (r > 1). Then we will consider the
function

an((®) = Y By ((%)Bey () Be, (%)), (2.1)

clHCo+etCr=m

defined on (—o00, 00), which is periodic with period 1.
The Fourier series of «,,({x)) is

00
Z A(m)errinx (2.2)
n ’ .
n=-00
where
1 .
A;m) :/ am(<x>)e—2mnx dx
0

1
= / ()€™ 2T (k. (2.3)
0

Before proceeding further, we need to observe the following.

Y. (aBya®By()- B, ()

toet Cchl (x)Bcz (x) o 'Bc,_l (x)Bcr—l (x))
Z Cchl—l(x)Bcz (%) - -B., (%)

c1+co++cp=m,c1>1

4ot Z Cch1—1 (x)BQ (x) o ‘Bcr (x)

c1+c2+-+ep=m,cr>1
=(m+r-1) > By®)Be,): B, ()
c1+cp+tep=m—1

= (m+r—1)a,,_1(x). (2.4)

a,, (%)

From this, we have

(“’”—1(")) — () 2.5)

m+r
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and

1 1
/ (%) dx =
0 m+r

For m > 1, we put

(am+1 (1) — Qi1 (0)) (26)

Ay = am(l) - Olm(O)

= Z (Bcl (I)Bcz (1) .. Bc,(l) _Bcchz .. 'Bcr)

C1+Co+ - +Cr=m

Z ((Bc1 +81,¢,) - (Be, + 81,c,) — By B, - 'Bc,)

cl1HCa+tep=m

Z (;) Z BB, B, — Z BB, B,

0<a<r Cc1+Ca++Cqg=m+a-r c1+Co+-+Ccr=m
az>r-m

2 (2) > BaBoBu (2.7)

max{0,r—m}<a<r-1 C1+Co+ -+ Cqg=m+a—r

where we understand that, for » — m < 0 and a = 0, the inner sum is §,,,.
Observe here that the sum over all ¢; + ¢3 + - - - + ¢, = m of any term with a of B, and b
of 81,cf (1<e,f <r,a+b=r),all give the same sum

E Bey - Beicyn  S1c,,,

C1+Co++Cr=m

- > BB, B, (2.8)

C1+Co+ - +Cqg=m+a—r

which is not an empty sum as longas m+a—r>0,ie,a>r—-m.

Thus
o,(1)=a,0) < A,=0 (2.9)
and
1 1
/ (X)) dx = —— Ay (2.10)
0 m+r

Now, we are ready to determine the Fourier coefficients AE,’").
Casel:n#0.

1
A(n’") / ()27 gy
0

1 —2minxl 1 /1 ’ —2mwinx
=———|a(x)e +— [ o (x)e dx
27rin[ m(®) lo 2in Jo )
_ m+r—1 (m-1) _ 1
2win " 2min

2win " 2min

:m+r—1 m+r—2A(m_2)_ 1 A, B 1
2mwin 2mwin
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2
(m+r-1), m+r-1)4
=AM N TN,
Q2min)2 " Z Qminy mjH

j=0
_(m+r=1), i m+r—1)
Q2min)m = Q2miny Bt
1 & (m+ r)j
= = A sisly 2.11
m+rZ(2mn)1 m 211)
where A'? = fol ey gy = .
Case2:n=0.
! 1
Al = / U (%) dic = ——— A (2.12)
0 m+r

Let us recall the following facts about Bernoulli functions B,,({x)):
(a) form > 2,

By((x)) =—m! Y (;mn)m; (2.13)
o

(b) form =1,

O glminx Bi({(x)) forx¢?Z,
B e " 1({x)) (2.14)
e 2min 0 forx € Z.
n#0

a,((x)) (m > 1) is piecewise C*°. Moreover, o,,({(x)) is continuous for those positive
integers m with A, = 0 and discontinuous with jump discontinuities at integers for those
positive integers m with A,, #0.

Assume first that m is a positive integer with A, = 0. Then «,,,(1) = «,,,(0). Hence a,,, ({x))
is piecewise C* and continuous. Thus the Fourier series of «,,({(x)) converges uniformly
to a,,({x)), and

m+1

om( ()

m+r

+ i _ 1 i (m + r)jA o eZﬂinx
mr s Qriny ~ "7

n=—00,n#0

1 1 < (m+r eminx
A

mir m+r§< j ) ml+1<] Z 2nmy)

1 1 &K (m+r
m+r’Am+l+m+VZ< . )Am—j+1Bj(<x>)

[

I
B>
3
+

B for x ¢ Z,
+ A, x 1((®)  forx (2.15)
0 for x € Z.
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We can now state our first result.

Theorem 2.1 For each positive integer [, we let

A=Y (;) > ByB,-B,

max{0,r-l}<a<r-1 c1+co+teg=l+a—r

Assume that A, = 0 for a positive integer m. Then we have the following.
(a) Zq rextmrey=m Ber ((x))Be, ({x)) - - - B, ({x)) has the Fourier series expansion

clHea+-tep=m

1 nd 1 & (m+r);
= A — —},A » lerinx,
mer " Z (m +r Z: Qriny " ”1)

n=—00
n#0 J=1

for all x € R, where the convergence is uniform.

(b)

cl+Ca+tep=m

1 1 “ (m+r
= MHAWHMHZ( . )Am,»ﬂBj((x)),

2 s

Jor all x € R, where Bj({x)) is the Bernoulli function.

Assume next that A, # 0 for a positive integer m. Then «,,(1) # ,,(0). Hence a,,,({x)) is
piecewise C* and discontinuous with jump discontinuities at integers. The Fourier series

of a,,({x)) converges pointwise to ,,({x)) for x ¢ Z and converges to

%(am(O) + (1)) = 2, (0) + %Am (2.16)

forx € Z.

Now, we can state our second result.

Theorem 2.2 For each positive integer [, we let

A=Y <;> S BuBy---B.,

max{0,r—l}<a<r-1 c1+cp+teg=lta—r

Assume that A, # 0 for a positive integer m. Then we have the following.

(a) ;A + i _ 1 i (m + r)JA . e2ﬂimc
mar e\ M miny mjl

n#0

ch+62+---+c,=m B€1(<x>)Bc2(<x>) e Bcr(<x>) forx ¢ Z,
ch+62+m+c,:m BClBﬁz o 'Bcr + %Am forx eZ.
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1 1 " m+r
p— rAm+l i Z ( . )Am-j+13j((x>)

=2~/

1
= Z By B, B, + EAW’ forx € Z.

C1+Cp+-+Cr=m

3 The function $,,({x))
Let B, (x) = ch+02+m+cr:m chl (%)Be, (%) - - - B, () (m > 1). Here the sum runs over all

nonnegative integers ci, ¢y, ..., ¢, with ¢; + ¢3 + + - + ¢, = m (r > 1). Then we will consider

the function

1
(@)= D0 SoBa(()Ba(() - Bo (@), (3.1)

defined on (-00, 00), which is periodic with period 1. The Fourier series of 8,,({x)) is

Z Bglm)eZTtimc, (3.2)
where
1 . 1 .
B = / B () ) ™2™ dx = / B (x)e™ 2" dx. (3.3)
0 0

Before proceeding further, we need to observe the following.

a
Br() > (msq_l(xmcz (%) B, (%)
Cc1+Co++Cr=m

C
bt ;Bcl (%)Be, (%) - -+ B, -1(x)
cale!---cp!
1
= Z chrﬂx)Bcz (x)---B,,(x)
1 —Dlcy!- - ¢!

c1+ca++ep=m,c1>1

1
R e e R R
c1+co+tep=m,cp>1

r Z ;Bcl (x)Bcg (x) e Bcr (x)

161!62!---Cr!

Cl+ea+eCp=m

= Bt (®)- 34
From this, we have

(’3’”—1(")> — Bl) (3.5)

r
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and

1
/0 Bol) dlx = i (Bust (1) = Ben (0)).
Let

S2m = lgm(l) - ﬁm(o)

cley!--- ¢!
Cl+ca+-+Cr=m clHe+ter=m

Z (Bcl + 81,61)(862 + 61,62) e (Bcr + 81,07)

aley!---cp!
c1+Co+eter=m 1:62 r

B BB, B,
Z Ico!...c.!
c1HCo e tCr=m Cr:cae - Cpt
r B.B., B,
> > e
cley!---c,!

max{0,r—m}<a<r-1 c1+Co++Cg=m+a—r

where we understand that, for » — m < 0 and a = 0, the inner sum is §,,,.

Bcl (I)Bcz (1) v 'Bcr (1) Bcchz e
2 2. aiier

01!62!' .

Page 7 of 15

(3.6)

3.7)

Observe here that the sum over all ¢; + ¢3 + - - - + ¢, = m of any term with a of B, and b

of 81, (1 <e,f <r,a+b=r),all give the same sum

Z BCI B 'BCa‘Sl,ch T 51,Cu+b

aley!- ¢!
Cl+Co+tCp=m 1:62 r

~ Z B.B.,---B,,
= i i B
cley!--- ¢!

C1HCo+ - +Cq=m+a—r

which is not an empty sum as longas m+a—-r>0,ie,a>r—-m.

Also, we have
:Bm(l) = ,Bm(o) < S-Zm =0

and

! 1
/ Bm(x) dx = = Q211
0 r

Now, we would like to determine the Fourier coefficients qum).

Casel: n #0.

1
BE’IWI) - / ﬂm(x)e—Zninx dx
0

_ 1 —2minx]l 1 ! / —-2minx
=~ [Brn(x)e "] + Tin /O Bm(x)e dx

e L (B - ) + [ st
T 27in (ﬂm = b ) ¥ 2mwin /0 Pl *

(3.8)

(3.9)

(3.10)
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T Bom-D 1

2in " 27in
r r 1 1

= B2 _ Qs ) - Q

2win <2m'n " omin ") T 2min

r\? 2,
B N ——Q,
(2nin> " ;:21 @iny "7

Qp

r \"go_y "
= B9y __q,,
(2nin) " /;(27tin)l o
m rl;l
= 21: WQM_,+1, (3.11)
i

where B = fol e 2minE gy = ().
Case2:n=0.

1 1
_ / Bo®) = 2. (3.12)
0 r

Bm({x)) (m > 1) is piecewise C*°. Moreover, §,,({(x)) is continuous for those positive
integers m with €2, = 0 and discontinuous with jump discontinuities at integers for those
positive integers m with €2, # 0.

Assume first that ,, = 0 for a positive integer m. Then S,,(1) = 8,,(0). Hence B,,({x)) is
piecewise C* and continuous. Thus the Fourier series of 8,,({x)) converges uniformly to

Bm((x)), and

1 [} m rj’l -
ﬂm((x)) = ;QW[+1 + Z — Z QO_j+l p2minx
":;8° =

1 2ﬂmx
= _Qm*l + Z _Q mjr1 X | ! Z < (2miny
= n#

r’1

= _Qm+1 +Z Q, ]+IB ( ))

B fi ¢ 7,
+Q,, X () forx (3.13)
0 forx € Z.

Now, we can state our first result.
Theorem 3.1 For each positive integer [, we let

r BB, B
Q= —= 3.14
! Z 1<a> Z aleal- ¢! ( )

max{0,r—l}<a<r- c1+ca+-tcqg=l+a-r

Assume that Q,, = 0 for a positive integer m. Then we have the following.
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(a) ch+c2+ ey m e, ((2))Be, ((x)) - - - Be, ((x)) has the Fourier series expansion

1
Z C1!C2!...cr!Bcl(<x>)BCZ((x>) ~~~Bc,((x))

1 ad “op
Z_Qm+ _ Qm n Zmnx 3.15
t00- 3 (3 gy ) a15)

n=-00
n#0

Sor all x € (—00, 00), where the convergence is uniform.

(b)

1
c+c ;c =m mBq (<x>)BC2 (<x>) B .Bcr((x))

r’1

= —Qmﬂ + Z Qi By (%)), (3.16)

Jor all x € (00, 00), where Bj({x)) is the Bernoulli function.

Assume next that m is a positive integer with ©,,, # 0. Then 8,,(1) # 8,,(0). Hence B,,,({x})
is piecewise C*™ and discontinuous with jump discontinuities at integers. Thus the Fourier
series of B,,({x)) converges pointwise to 8,,({x)) for x ¢ Z and converges to

S (B0 + D) = £,(0) + 52,

1 1
= E —— BB, - B, + =, (3.17)
cley!---¢p! 2
c1+ey+-+Cr=m

forx € Z.
Now, we can state our second result.

Theorem 3.2 For each positive integer l, let
r B. B, B,
a- ¥ (1) ¥ ket 618
lea!- !
max{0,r-l}<a<r-1 eyt teg=l+a-r

Assume that Q,, # 0 for a positive integer m. Then we have the following.

1 > i i
T inx
(a) ;Qmﬂ - Z Z —(27_””) Qm —j+1 |€
n=—00,n#0

ch+52+ +Cp=m 01'52' BCl( )BC2(<x)) o .BCr(<x>) forx é Z’

Zc1+c2+ - 01,62, coraiBaBe, B, + %Qm forx eZ.
Here the convergence is pointwise.
1 Pt
(b) ~Qyrr + Z — Qa1 By(())
j=1 /!
1
= Y ————B,(®)Be, () B, () forxé¢Z,

1ch!. .. c.)
Cl+C+etep=m L Cre
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Pt
~ S + Z -_;Qm—HlBJ((?C))
[N
_ P Y i
= 2 eyl g e e o R forxeZ.

C1+C+-+Cr=m

Here Bj((x)) is the Bernoulli function.

4 The function y, ,({x))

p— —1 ..
Let ¥y (%) = ch+cz+---+cy=m,cl,...,cy21 clcg---c,Bcl (%)Bgy (%) - - B, (x) (m > r > 1). Here the sum
is over all positive integers c1,¢3,..., ¢, withc; + c2 + - -+ + ¢, = m.

V() = >

Bcl—l (x)Bcz (x) e Bcr (x)

C1+Co 4+ +Cr=m,C],....Cr>1 AR
1
b Y B @Byl By
C1C3 - Cp
C1+C2+++4+Cr=M,C],..,Cr>1
1
Foot > B, (¥)Bey (%) - Be, 1 (%)
Cl1H+C 4 +Cr=m,C] yeyCr>1 €162 Cr1
1+¢2 r 1CLyeesCr 2
1
= Z B, (x) - - - Bc,(x)
cy+-+ep=m—1,c9,...,cp>1 €2 Cr
1
+ Z Bq (x) o Bcr (x)
62 e Cr
c1+--+cp=m-1,c1,...,cr>1
1
P Z —— B, (%) B, , (%)
c1+ep++Cr_1=m=1,01,000Cr—1>1 G162 Cr1
1
N 3 —  By() By
c1+cy++Cr=m—1,c1,0,0r>1 €162 "~ Cr-1
= rYrma1(®) + (M = 1)V o1 (%). (4.1)
Thus,
Vim@®) =1V ma (%) + (m = 1)y ma(x)  (m=7), (4.2)
with y,.,_1(x) = 0.
Replacing m by m + 1, we get
MYy (%) = V) 1 (X)) = TV m (). (4.3)
Denoting fol Yrm(x) dx by a, ., we have
r 1
Arm = ——Ar-1m t _Ar,m+1: (44)
m m

where A, = ¥rm(1) = ¥r,m(0). From the recurrence relation (4.4), we can easily show that

1 r-1
1 (r)i-
/ Vr,m(x) dx = Z(—l)’_l (’L—}lerfjJrl,erlr (45)
0

=1
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Ar,m = Vr,m(l) - yr,m(o)

Bcl (1) o 'Bcr (1)
Z —a\ T

Cl1---C
C1+CQ+ +Cr=M,C] yernCr>1 ! 4

_ Z B, ---B,,
cl...cr

C1+C2 4+ +Cr=m,C],....Cr>1

= E (Bcl + 51,01) te (Bc, + Sl,cr)
C1+C2+++Cp=mM,C],....Cr>1
B Z Bq .. .ch
C ... C
C1+C2 4+ +Cr=M,C,....Cr>1 1 r
() o x o e 46)
a CcyCy '

0<a<r-1 C14CQ+++Cq=M+A—T,C],5....Cq>1

Observe here that the sum over all positive integers ¢y, .. ., ¢, satisfying c; + ¢ + -+ - + ¢, =

m of any term with a of B, and b of 61, (1 <e,f <r, a+ b =r), all give the same sum

BC1 .. 'Bcﬂ61,6u+1 e 81v0a+b
§ C1Cy -+ C
CL+CY+e+Cr =M, CL e =1 s '
Bc B..--B
1P¢ Ca
) ByBo:-Be, (4.7)
E C1Cy -+ Cy

C1+C++Cq=M+A~T,C] 5...,.Cq>1

and that, as m + a — r > a, there are no empty sums.

Here we note that, for a = 0, the inner sum is §,,, since it corresponds to the sums

Z 81,c1 81,02 e Sl,c, (4 8)

C1HCo+eF+Cr=M,C] porCr>1 Gy Cr
Also, yr,m(l) = J/r,m(o) d Ar,m =0.
Now, we would like to consider the function

(@)=Y By ((0)Bay (1) - B (), (4.9)

C C . C
C1+C2 4+ +Cp=mM,C,....Cr>1 1¢2 r

defined on (—00, 00), which is periodic with period 1.

The Fourier series of y, ,((x)) is

[e¢]
Z C}(/lr,m)eZ'ﬂinx, (410)
n=—00
where
Cff’”’) :/ y,,m((x))e_2”’"x dx :/ Ve (®)e™27 " dx. (4.11)
0 0

Now, we are going to determine the Fourier coefficients cirm,
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Case 1: n #0.

1
Cilr,m) _ / yr,m(x)e—Zﬂinx dx
0

1 . 1 ,
- _ . [Vr,m (x)e—ermx](l) + / yr,,m (x)e—ermx dx
0

2mwin 2win

1 1
e @) = (@) + /0 (oot @) + (1= D s ()

omin 2min
X e—27‘rimc dx
= _LA + 1 C(r,m—l) + LC(V—LWI—I) (4 12)
2min” " 2min " 2min " ’ '
From this, we obtain
m-—1 r 1
C(r,m) _ C(r,m—l) + C(r—l,m—l) _
" 2min " 2min " 2win. "
m—-1/m-2 r 1
_ C(r,m—Z) + C(r—l,m—Z) _ A
27 in (2m'n " 2in " amin”
r 1
+ _C(r—l,m—l) _
2min " 2win’ "

2 2
(m—1), clrm=2) , Z r(m— 1)}’—1 Clr-1m=j) _ Z (m— 1)j—l

" Quinp " = 2miny " Quiny I
(m = 1) "o ~ 7(m - 1)] L 2 - 1)
W s Z (2miny Gy Z WAWI—/’H' (4.13)
j=1 j=1

Here,

1 1 r )
Czr,r) :/ <x_ _) e—2ﬂmxdx

0 2

1 -1
1 x_l re—27n'mc + r /1 x_l " e—2m’nxdx
2 2mwin Jo 2
0
1\ 1\ r

(- () e

2min

|
i

and
1 r 1 r
Ar,r = Vr,r(l) - yr,r(o) =\ 5 “\75 ) (4'15)
2 2
Thus
crn - _ 1 A+ r clr-1r-1) (4.16)
" 2min " 2mwin " ' '

Finally, we obtain, for n # 0,

m-r+1 m-r+1

rm—=1)1 g (m—-1),
clrm = 3 iy O 2 Ty B (4.17)
j=1 j=1
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Also, we note that, for n # 0,

1t , -1
clm - —f Byu(x)e ™" dy = _{m-1} ( ) . (4.18)
m J, 2min)m
Thus, for n # 0, (4.17) together with (4.18) determine all com recursively.
Case2:n=0.
cirm - 1 (%) dx = i(-lY*l(r)iA - (4.19)
0 = o Yrom = o r—j+l,m+1- .

Jj=1

Vem((x)) (m > r > 1) is piecewise C*. In addition, y;,,,({x)) is continuous for those pos-
itive integers r, m with A,,, = 0 and discontinuous with jump discontinuities at integers
for those positive integers r, m with A,,,, # 0.

Assume first that A,,,, = 0 for some integers r, m with m > r > 1. Then y,.,,(1) = y,,,(0).
Hence y;,,({x)) is piecewise C* and continuous. Thus the Fourier series of y,,({x)) con-
verges uniformly to y,,({x)), and

oo
VWI((x)) = Cér’m) + Z CEl’le)EZHinx’

n=-00
n#0

where C(()r’m) is given by (4.19), and C"™ for each 1 # 0, are determined by relations (4.17)
and (4.18).

Now, we are ready to state our first theorem.

Theorem 4.1 For all integers s, I, with [ > s > 1, we let

B B,
w2 () B

a
0<a<s-1 c1+-teg=l+a—s,c1,,cq>1

oy Y (S) ) BarBe, (4.20)

a
1<a<s-1 C1+ea++Cg=l+a—s,c1,ncq>1

Assume that A, =0 for some integers r,m with m > r > 1. Then we have the following.

1

ch+52+---+cy:m,51,.‘.,cyzl s B, ({x)) - - - B.,({x)) has the Fourier series expansion

> B () B, ()

c1---Cr
CL+C++++Cr=M,C]eusCr>1

00
_ C(()r,m) ¥ Z C}(/Ir,m)eZHinx7

n=-—00,n#0

(rm) -1 i1
where Cy"" = Z}Ll (-1y1 -
termined recursively from

Arjirmirs with C(()l’”’) =0, and Cf,r’m),for each n #0, are de-

m—r+1 m-r+1
crm = 3 =Dt a1 =D (4.21)

n BAY; n Y r,m—j+1s
= (2min) = (2min)
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and

ctm) _ (m-1)!

T Qrin)m (4.22)

Here the convergence is uniform.

Next, assume that A,,,, # 0 for some integers r, m with m > r > 1. Then y,.,,(1) # ¥,m(0).
Hence y,,,({x)) is piecewise C* and discontinuous with jump discontinuities at integers.
Then the Fourier series of y,,,({x)) converges pointwise to y,,,({x)) for x ¢ Z and con-

verges to

1 1
5 (Vr,m(o) + Vr,m(l)) = yr,m(o) + EAr,m

1 1
C1ee-Cr 2
CLHCQ+e -+ Cp=MI,CL ysCr =1

forx € Z.
Now, we can state our second result.

Theorem 4.2 For all integers s, [ with [ > s > 1, we let

B, ---B,,
A= Y () ) SRS

0<a<s-1 c1+ea++Cg=l+a—s,c1,nCqa>1

s B, ---B,
) Z 2 : " 4.24
st ¥ (a) ¢y ( )

1<a<s-1 C1+ea++Cq=l+a—s,c1,nCq>1

Assume that A, # 0 for some integers r, m with m > r > 1. Let C(() 'm), Cﬁ,r’m) (n #0) be
as in Theorem 4.1. Then we have the following.

o0
C(()va) + Z CEIr,m)EZJme
n=—00,n#0
e Ba@)- By (x)  forxdZ,
L B ---B, + %A,,m forxeZ.

ch +CQ -+ Cr=m,C1,enCr =1 cpoe-cp

Zc1+c2+---+cr=m,c1,...,crzl

(4.25)
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