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Abstract
In this paper, some explicit bounds on solutions to a class of new power nonlinear
Volterra-Fredholm type dynamic integral inequalities on time scales are established,
which can be used as effective tools in the study of certain dynamic equations.
Application examples are also given.
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1 Introduction
The calculus on time scales, which was initiated by Hilger in  [], has received con-
siderable attention in recent years due to its broad applications in economics, population’s
models, quantum physics and other science fields.

In the past  years, there has been much research activity concerning Volterra integral
equations and the dynamic integral inequalities on time scales which usually can be used
as handy tools to study the qualitative theory of dynamic integral equations and dynamic
equations on time scales. We refer the reader to [–] and the references therein. How-
ever, nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales have
been paid little attention to. To the best of our knowledge, Meng and Shao [] and Gu
and Meng [] have established the linear Volterra-Fredhlom type dynamic integral in-
equalities on time scales. On the other hand, various Volterra-Fredholm type inequalities
including continuous and discrete versions have been established. For example, Pachpatte
[, ] has established the useful linear Volterra-Fredholm type continuous and discrete
integral inequalities. Ma [–] has established some nonlinear Volterra-Fredholm type
continuous and discrete integral inequalities. Liu and Meng [] have investigated some
new generalized Volterra-Fredholm type discrete fractional sum inequalities.

The aim of this paper is to give some explicit bounds to some new power nonlinear
Volterra-Fredhlom type dynamic integral inequalities on time scales, which can be used
as handy and effective tools in the study of Volterra-Fredhlom type dynamic equations on
time scales.

Throughout this paper, a knowledge and understanding of time scales and time scale
notations is assumed. For an excellent introduction to the calculus on time scales, we refer
the reader to [, ].
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2 Preliminaries
In what follows, T is an arbitrary time scale, Crd denotes the set of rd continuous func-
tions. R denotes the set of all regressive and rd continuous functions, R+ = {P ∈ R,
 + μ(t)P(t) > , t ∈ T}. R denotes the set of real numbers, R+ = [, +∞), while Z denotes
the set of integers.

In the rest of this paper, for the convenience of notation, we always assume that I =
[t,α] ∩ T, where t ∈ T, α ∈ T, α > t.

Lemma . ([]) Suppose u, b ∈ Crd(I), a ∈ R+. Then

u�(t) ≤ a(t)u(t) + b(t), t ∈ T,

implies

u(t) ≤ u(t)ea(t, t) +
∫ t

t

ea
(
t,σ (τ )

)
b(τ )�τ , t ∈ T.

Lemma . ([]) Let a ≥ , p ≥ q ≥ , then

a
q
p ≤ q

p
k(q–p)/pa +

p – q
p

kq/p,

for any k > .

Theorem . Assume that u, a, f , g, l, h, h, h, h, h ∈ Crd(I), u(t), a(t), f (t), g(t), l(t),
h(t), h(t), h(t), h(t), h(t) are nonnegative. Suppose that u(t) satisfies

up(t) ≤ a(t) +
∫ t

t

f (τ )
[

uq(τ ) +
∫ τ

t

[
g(s)ur(s) +

∫ s

t

l(v)un(v)�v
]
�s

]
�τ

+
∑

i=

∫ α

t

hi(τ )umi (τ )�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)um (s)�s�τ , t ∈ I, ()

where p, q, r, n and mi (i = , , , ) are constants with p ≥ q > , p ≥ r > , p ≥ n > ,
p ≥ mi >  (i = , , , ). If

λpqrnmmmm =
∑

i=

mi

p
k

mi–p
p

∫ α

t

hi(τ )eBpqrn (τ , t)�τ

+
∫ α

t

h(τ )
∫ τ

t

m

p
k(m–p)/ph(s)eBpqrn (s, t)�s�τ

< , ()

then

u(t) ≤
[

a(t) +
Cpmmmm + Apqrn(t)

 – λpqrnmmmm
eBpqrn (t, t)

] 
p

()
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for t ∈ I and for any k > , where

Cpmmmm =
∑

i=

∫ α

t

hi(τ )
[

mi

p
k(mi–p)/pa(τ ) +

p – mi

p
kmi/p

]
�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[

m

p
k(m–p)/pa(s) +

p – m

p
km/p

]
�s�τ , ()

Apqrn(t) =
∫ t

t

f (τ )
{

q
p

k(q–p)/pa(τ ) +
p – q

p
kq/p

+
∫ τ

t

[
g(s)

[
r
p

k(r–p)/pa(s) +
p – r

p
kr/p

]

+
∫ s

t

l(v)
[

n
p

k(n–p)/pa(v) +
p – n

p
kn/p

]
�v

]
�s

}
�τ , ()

and

Bpqrn(t) = f (t)
[

q
p

k(q–p)/p +
∫ t

t

[
r
p

k(r–p)/pg(s) +
∫ s

t

n
p

k(n–p)/pl(v)�v
]
�s

]
. ()

Proof Define a function z(t), t ∈ I , by

z(t) =
∫ t

t

f (τ )
[

uq(τ ) +
∫ τ

t

[
g(s)ur(s) +

∫ s

t

l(v)un(v)�v
]
�s

]
�τ

+
∑

i=

∫ α

t

hi(τ )umi (τ )�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)um (s)�s�τ ,
()

then

up(t) ≤ a(t) + z(t) or u(t) ≤ (
a(t) + z(t)

) 
p . ()

By Lemma . and () for any k > , we have

uq(t) ≤ [
a(t) + z(t)

] q
p ≤ q

p
k(q–p)/p[a(t) + z(t)

]
+

p – q
p

kq/p,

ur(t) ≤ [
a(t) + z(t)

] r
p ≤ r

p
k(r–p)/p[a(t) + z(t)

]
+

p – r
p

kr/p,

un(t) ≤ [
a(t) + z(t)

] n
p ≤ n

p
k(n–p)/p[a(t) + z(t)

]
+

p – n
p

kn/p,

umi (t) ≤ [
a(t) + z(t)

] mi
p ≤ mi

p
k(mi–p)/p[a(t) + z(t)

]
+

p – mi

p
kmi/p, i = , , , .

Substituting the last seven inequalities into () we have

z(t) ≤
∫ t

t

f (τ )
{[

q
p

k(q–p)/p[a(τ ) + z(τ )
]

+
p – q

p
kq/p

]

+
∫ τ

t

[
g(s)

[
r
p

k(r–p)/p[a(s) + z(s)
]

+
p – r

p
kr/p

]
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+
∫ s

t

l(v)
[

n
p

k(n–p)/p[a(v) + z(v)
]

+
p – n

p
kn/p

]
�v

]
�s

}
�τ

+
∑

i=

∫ α

t

hi(τ )
[

mi

p
k(mi–p)/p[a(τ ) + z(τ )

]
+

p – mi

p
kmi/p

]
�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[

m

p
k(m–p)/p[a(s) + z(s)

]
+

p – m

p
km/p

]
�s�τ

= Cpmmmm + Apqrn(t)

+
∫ t

t

f (τ )
[

q
p

k(q–p)/pz(τ ) +
∫ τ

t

[
r
p

k(r–p)/pg(s)z(s)

+
∫ s

t

n
p

k(n–p)/pl(v)z(v)�v
]
�s

]
�τ

+
∑

i=

∫ α

t

mi

p
k(mi–p)/phi(τ )z(τ )�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[

m

p
k(m–p)/pz(s)

]
�s�τ .

Fix any arbitrary t̃ ∈ I . Since Apqrn(t) is nondecreasing for each t ∈ I , then, for t ∈ Ĩ , where
Ĩ = [t,̃ t] ∩ T, from the above inequality we have

z(t) ≤ Cpmmmm + Apqrn (̃t)

+
∫ t

t

f (τ )
[

q
p

k(q–p)/pz(τ )

+
∫ τ

t

[
r
p

k(r–p)/pg(s)z(s) +
∫ s

t

n
p

k(n–p)/pl(v)z(v)�v
]
�s

]
�τ

+
∑

i=

∫ α

t

mi

p
k(mi–p)/phi(τ )z(τ )�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[

m

p
k(m–p)/pz(s)

]
�s�τ , t ∈ Ĩ. ()

Let

N = Cpmmmm + Apqrn (̃t) +
∑

i=

∫ α

t

mi

p
k(mi–p)/phi(τ )z(τ )�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[

m

p
k(m–p)/pz(s)

]
�s�τ , ()

then () can be restated as

z(t) ≤ N +
∫ t

t

f (τ )
[

q
p

k(q–p)/pz(τ ) +
∫ τ

t

[
r
p

k(r–p)/pg(s)z(s)

+
∫ s

t

n
p

k(n–p)/pl(v)z(v)�v
]
�s

]
�τ , ()
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for t ∈ Ĩ . Since z(t) is nondecreasing, by () we have

z(t) ≤ N +
∫ t

t

f (τ )
[

q
p

k(q–p)/p +
∫ τ

t

[
r
p

k(r–p)/pg(s)

+
∫ s

t

n
p

k(n–p)/pl(v)�v
]
�s

]
z(τ )�τ . ()

Set

w(t) = N +
∫ t

t

f (τ )
[

q
p

k(q–p)/p +
∫ τ

t

[
r
p

k(r–p)/pg(s)

+
∫ s

t

n
p

k(n–p)/pl(v)�v
]
�s

]
z(τ )�τ , ()

then

w�(t) = f (t)
[

q
p

k(q–p)/p +
∫ t

t

[
r
p

k(r–p)/pg(s)

+
∫ s

t

n
p

k(n–p)/pl(v)�v
]
�s

]
z(t)

≤ f (t)
[

q
p

k(q–p)/p +
∫ t

t

[
r
p

k(r–p)/pg(s)

+
∫ s

t

n
p

k(n–p)/pl(v)�v
]
�s

]
w(t)

= Bpqrn(t)w(t), t ∈ Ĩ, ()

where Bpqrn(t) is defined as in (). Using Lemma ., from (), we get

w(t) ≤ NeBpqrn (t, t), t ∈ Ĩ. ()

From (), () and (), we have

z(t) ≤ NeBpqrn (t, t), t ∈ Ĩ. ()

Let t = t̃ in the above inequality, we have

z(̃t) ≤ NeBpqrn (̃t, t).

Since t̃ ∈ I is arbitrary, from the above inequality with t̃ replaced by t we get

z(t) ≤ NeBpqrn (t, t), t ∈ I. ()

Using () on the right side of () and according to () we get

N ≤ Cpmmmm + Apqrn (̃t)
 – λpqrnmmmm

. ()
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From () and () we have

z(t) ≤ Cpmmmm + Apqrn (̃t)
 – λpqrnmmmm

eBpqrn (t, t), t ∈ Ĩ. ()

Since t̃ ∈ I is arbitrary, from () with t̃ replaced by t we get

z(t) ≤ Cpmmmm + Apqrn(t)
 – λpqrnmmmm

eBpqrn (t, t), t ∈ I. ()

Now the desired inequality in () follows by using () and combining with (). This com-
pletes the proof of Theorem .. �

When p = , q = r = n = m = , h(t) ≡ , h(t) ≡ , h(t) ≡  in Theorem . we get a
new Volterra-Fredholm-Ou-Iang type inequality as follows.

Corollary . Let u(t), a(t), f (t), g(t), l(t), h(t) and α be defined as in Theorem .. If u(t)
satisfies

u(t) ≤ a(t) +
∫ t

t

f (τ )
[

u(τ ) +
∫ τ

t

[
g(s)u(s) +

∫ s

t

l(v)u(v)�v
]
�s

]
�τ

+
∫ α

t

h(τ )u(τ )�τ , t ∈ I, ()

and

λ =



k
–


∫ α

t

h(τ )eB (τ , t)�τ < , ()

then

u(t) ≤
[

a(t) +
C + A(t)

 – λ
eB (t, t)

] 


()

for t ∈ I and for any k > , where

C =
∫ α

t

h(τ )
[




k–/a(τ ) +



k/
]
�τ , ()

A(t) =
∫ t

t

f (τ )
{




k–/a(τ ) +



k/

+
∫ τ

t

[
g(s)

[



k–/a(s) +



k/
]

+
∫ s

t

l(v)
[




k–/a(v) +



k/
]
�v

]
�s

}
�τ , ()

and

B(t) = f (t)
[




k–/ +
∫ t

t

[



k–/g(s) +
∫ s

t




k–/l(v)�v
]
�s

]
. ()
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When p =  in Theorem ., we get the following inequality.

Corollary . Let u(t), a(t), f (t), g(t), l(t), hi(t) (i = , , , , ), q, r, n, mi (i = , , , ) and
α be as in Theorem .. If u(t) satisfies

u(t) ≤ a(t) +
∫ t

t

f (τ )
[

uq(τ ) +
∫ τ

t

[
g(s)ur(s) +

∫ s

t

l(v)un(v)�v
]
�s

]
�τ

+
∑

i=

∫ α

t

hi(τ )umi (τ )�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)um (s)�s�τ , t ∈ I, ()

and

λqrnmmmm =
∑

i=

mikmi–
∫ α

t

hi(τ )eBqrn (τ , t)�τ

+
∫ α

t

h(τ )
∫ τ

t

mkm–h(s)eBpqrn (s, t)�s�τ

< , ()

then

u(t) ≤ a(t) +
Cmmmm + Aqrn(t)

 – λqrnmmmm
eBqrn (t, t) ()

for t ∈ I and for any k > , where

Cmmmm =
∑

i=

∫ α

t

hi(τ )
[
mikmi–a(τ ) + ( – mi)kmi

]
�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[
mkm–a(s) + ( – m)km

]
�s�τ , ()

Aqrn(t) =
∫ t

t

f (τ )
{

qkq–a(τ ) + ( – q)kq

+
∫ τ

t

[
g(s)

[
rkr–a(s) + ( – r)kr]

+
∫ s

t

l(v)
[
nkn–a(v) + ( – n)kn]�v

]
�s

}
�τ , ()

and

Bqrn(t) = f (t)
[

qkq– +
∫ t

t

[
rkr–g(s) +

∫ s

t

nkn–l(v)�v
]
�s

]
. ()

When p = , q = r = n = m = m = , h(t) ≡ , h(t) ≡  in Theorem ., we get the
following inequality.
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Corollary . Let u(t), a(t), f (t), g(t), l(t), h(t), h(t), h(t) and α be defined as in Theo-
rem .. If u(t) satisfies

u(t) ≤ a(t) +
∫ t

t

f (τ )
[

u(τ ) +
∫ τ

t

[
g(s)u(s) +

∫ s

t

l(v)u(v)�v
]
�s

]
�τ

+
∫ α

t

h(τ )u(τ )�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)u(s)�s�τ , t ∈ I, ()

and

λ =
∫ α

t

h(τ )eB (τ , t)�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)eB (s, t)�s�τ

< , ()

then

u(t) ≤ a(t) +
C + A(t)

 – λ
eB (t, t) ()

for t ∈ I and for any k > , where

C =
∫ α

t

h(τ )a(τ )�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)a(s)�s�τ , ()

A(t) =
∫ t

t

f (τ )
{

a(τ ) +
∫ τ

t

[
g(s)a(s) +

∫ s

t

l(v)a(v)�v
]
�s

}
�τ , ()

and

B(t) = f (t)
[

 +
∫ t

t

[
g(s) +

∫ s

t

l(v)�v
]
�s

]
. ()

Remark . When a(t) = u (u is a constant), l(t) ≡  and h(t) ≡ , () will deduce in-
equality (.) given in [], so Corollary . can be taken as a generalization of Theorem .
given in [].

Remark . Though the inequalities discussed in Theorem . and its corollaries be-
long to a class of nonlinear Volterra-Fredholm type dynamic integral inequalities on time
scales, the estimates obtained in (), (), () and () cannot be derived by some known
results given in [, ].

Using procedures similar to the proof of Theorem ., we can get a more general result
as follows.
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Theorem . Suppose that u(t), a(t), fi(t), gi(t) (i = , , . . . , n) and hj(t) ∈ Crd(I)
(j = , , . . . , l) are nonnegative (n and l are some positive integers). If u(t) satisfies

up(t) ≤ a(t) +
n∑

i=

∫ t

t

fi(τ )
[

uqi (τ ) +
∫ τ

t

gi(s)uri (s)�s
]
�τ

+
l∑

j=

∫ α

t

hj(τ )umj (τ )�τ , ()

for t ∈ I , where p ≥ qi > , p ≥ ri > , p ≥ mj >  and k >  are constants, and

λ =
l∑

j=

mj

p
k(mj–p)/p

∫ α

t

hj(τ )eB(τ , t)�τ < , ()

then

u(t) ≤
[

a(t) +
C + A(t)

 – λ
eB(t, t)

] 
p

()

for t ∈ I , where

C =
l∑

j=

∫ α

t

hj(τ )
[

mj

p
k(mj–p)/pa(τ ) +

p – mj

p
kmj/p

]
�τ , ()

A(t) =
n∑

i=

∫ t

t

fi(τ )
{

qi

p
k(qi–p)/pa(τ ) +

p – qi

p
kqi/p

+
∫ τ

t

g(s)
[

ri

p
k(ri–p)/pa(s) +

p – ri

p
kri/p

]
�s

}
�τ , ()

and

B(t) =
n∑

i=

fi(t)
[

qi

p
k(qi–p)/p +

∫ t

t

ri

p
k(ri–p)/pgi(s)�s

]
. ()

Theorem . Let u(t), f (t), g(t), a(t) be as in Theorem . and hi(t) (i = , , . . . , l) ∈ Crd(I)
are nonnegative. If u(t) satisfies

up(t) ≤ a(t) +
∫ t

t

f (τ )
[

uq(τ ) +
∫ τ

t

g(s)ur(s)�s
]
�τ

+
l∑

i=

∫ α

t

hi(τ )Hi
(
τ , u(τ )

)
�τ , ()

for t ∈ I , where p, q and r are constants with p ≥ , p ≥ q > , p ≥ r >  and Hi, Li : I ×
R+ −→ R+ satisfying

 ≤ Hi(t, u) – Hi(t, v) ≤ Li(t, v)(u – v), i = , , . . . , l, ()
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for u ≥ v ≥  and

λ∗
pqr =

k(–p)/p

p

l∑
i=

∫ α

t

hi(τ )Li

(
τ ,

p – 
p

k/p +
k(–p)/p

p

)
eB∗

pqr (τ , t)�τ < , ()

then

u(t) ≤
[

a(t) +
C∗

p + A∗
pqr(t)

 – λ∗
pqr

eB∗
pqr (t, t)

] 
p

()

for t ∈ I and for any k > , where

C∗
p =

l∑
i=

∫ α

t

hi(τ )Hi

(
τ ,

p – 
p

k/p +
k(–p)/p

p
a(τ )

)
�τ , ()

A∗
pqr(t) =

∫ t

t

f (τ )
{

q
p

k(q–p)/pa(τ ) +
p – q

p
kq/p

+
∫ τ

t

g(s)
[

r
p

k(r–p)/pa(s) +
p – r

p
kr/p

]
�s

}
�τ , ()

and

B∗
pqr(t) = f (t)

[
q
p

k(q–p)/p +
∫ t

t

r
p

kr–p/pg(s)�s
]

. ()

Proof Define a function z(t) by

z(t) =
∫ t

t

f (τ )
[

uq(τ ) +
∫ τ

t

g(s)ur(s)�s
]
�τ +

l∑
i=

∫ α

t

hi(τ )Hi
(
τ , u(τ )

)
�τ , t ∈ I. ()

Then

up(t) ≤ a(t) + z(t) or u(t) ≤ (
a(t) + z(t)

) 
p . ()

By Lemma ., for any k > , we have

u(t) ≤ [
a(t) + z(t)

] 
p ≤ 

p
k(–p)/p[a(t) + z(t)

]
+

p – 
p

k/p,

uq(t) ≤ [
a(t) + z(t)

] q
p ≤ q

p
k(q–p)/p[a(t) + z(t)

]
+

p – q
p

kq/p,

ur(t) ≤ [
a(t) + z(t)

] r
p ≤ r

p
k(r–p)/p[a(t) + z(t)

]
+

p – r
p

kr/p.

Substituting the last relations into () and using (), it follows that

z(t) ≤
∫ t

t

f (τ )
{[

q
p

kq–p/p[a(τ ) + z(τ )
]

+
p – q

p
kq/p

]

+
∫ τ

t

g(s)
[

r
p

k(r–p)/p[a(s) + z(s)
]

+
p – r

p
kr/p

]
�s

}
�τ



Wang et al. Advances in Difference Equations  (2017) 2017:257 Page 11 of 16

+
l∑

i=

∫ α

t

hi(τ )Hi

(
τ ,


p

k(–p)/p[a(τ ) + z(τ )
]

+
p – 

p
k/p

)
�τ

–
l∑

i=

∫ α

t

hi(τ )Hi

(
τ ,


p

k(–p)/pa(τ ) +
p – 

p
k/p

)
�τ

+
l∑

i=

∫ α

t

hi(τ )Hi

(
τ ,


p

k(–p)/pa(τ ) +
p – 

p
k/p

)
�τ

= C∗
p + A∗

pqr(t) +
∫ t

t

f (τ )
[

q
p

k(q–p)/pz(τ ) +
∫ τ

t

g(s)
r
p

k(r–p)/pz(s)�s
]
�τ

+
l∑

i=

∫ α

t

hi(τ )

p

k(–p)/pLi

(
τ ,


p

k(–p)/pa(τ ) +
p – 

p
k/p

)
z(τ )�τ ,

i.e.,

z(t) ≤ C∗
p + A∗

pqr(t) +
∫ t

t

f (τ )
[

q
p

k(q–p)/pz(τ ) +
∫ τ

t

g(s)
r
p

k(r–p)/pz(s)�s
]
�τ

+
l∑

i=

∫ α

t

hi(τ )

p

k(–p)/pLi

(
τ ,


p

k(–p)/pa(τ ) +
p – 

p
k/p

)
z(τ )�τ , t ∈ I. ()

Here C∗
p and A∗

pqr and defined in () and (), respectively. From () and employing a
procedure similar to ()-(), we obtain the desired inequality (). �

3 Applications
In this section, we apply our results to study the boundedness, uniqueness and continuous
dependence of the solutions of certain Volterra-Fredholm type dynamic integral equations
of the form

up(t) = a(t) +
∫ t

t

F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)
�τ

+
∫ α

t

H
(

τ , u(τ ),
∫ τ

t

L
(
s, u(s)

)
�s

)
�τ , ()

for t ∈ I , where u, a : I → R, F , H : I × R × R → R, G and L : I × R → R and p >  is a
constant. The following theorem gives a bound on the solutions of equation ().

Theorem . Assume that the functions F , G, H and L in () satisfy the conditions

∣∣F(t, u,ν)
∣∣ ≤ f (t)

(|u|q + |ν|), ()
∣∣G(t, u)

∣∣ ≤ g(t)|u|r , ()

and

∣∣H(t, u,ν)
∣∣ ≤

∑
i=

hi(t)|u|mi + h(t)|ν|, ∣∣L(t, u)
∣∣ ≤ h(t)|u|m , ()
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for t ∈ I , u,ν ∈ R, where f (t), g(t), hi(t) (i = , , , , ), mi (i = , , , ), p, q and r are the
same as in Theorem ., if

λpqrmmmm =
∑

i=

mi

p
k

mi–p
p

∫ α

t

hi(τ )eBpqr(τ )(τ , t)�τ

+
∫ α

t

h(τ )
∫ τ

t

m

p
k(m–p)/ph(s)eBpqr (s, t)�s�τ

< , ()

then all solutions of equation () satisfy

u(t) ≤
[

a(t) +
Cpmmmm + Apqr(t)

 – λpqrmmmm
eBpqr (t, t)

] 
p

()

for t ∈ I and for any k > , where

Cpmmmm =
∑

i=

∫ α

t

hi(τ )
[

mi

p
k(mi–p)/pa(τ ) +

p – mi

p
kmi/p

]
�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
[

m

p
k(m–p)/pa(s) +

p – m

p
km/p

]
�s�τ , ()

Apqr(t) =
∫ t

t

f (τ )
{

q
p

k(q–p)/pa(τ ) +
p – q

p
kq/p

+
∫ τ

t

g(s)
[

r
p

k(r–p)/pa(s) +
p – r

p
kr/p

]
�s

}
�τ , ()

and

Bpqr(t) = f (t)
[

q
p

k(q–p)/p +
∫ t

t

[
r
p

k(r–p)/pg(s)
]
�s

]
. ()

Proof From () and the conditions ()-(), we have

∣∣u(t)
∣∣ ≤ ∣∣a(t)

∣∣ +
∫ t

t

f (τ )
[∣∣u(τ )

∣∣q +
∫ τ

t

g(s)
∣∣u(s)

∣∣r
�s

]
�τ

+
∑

i=

∫ α

t

hi(τ )
∣∣u(τ )

∣∣mi�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)
∣∣u(s)

∣∣m
�s�τ , ()

for t ∈ I . By a suitable application of Theorem . to |u(t)| in the last inequality follows the
desired () immediately. �

Secondly, we consider the uniqueness of the solutions of equation ().

Theorem . Assume that the function F , G, H and L in () satisfy the conditions:

∣∣F(t, u,ν) – F(t, u,ν)
∣∣ ≤ f (t)

(∣∣up
 – up


∣∣ + |ν – ν|

)
, ()

∣∣G(t, u) – G(t,ν)
∣∣ ≤ g(t)

∣∣up – νp∣∣, ()
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∣∣H(t, u,ν) – H(t, u,ν)
∣∣ ≤ h(t)

∣∣up
 – up


∣∣ + h(t)|ν – ν|,∣∣L(t, u) – L(t,ν)

∣∣ ≤ h(t)
∣∣up – νp∣∣, ()

where f , g , h, h and h are the same as in Theorem ., and if

λ =
∫ α

t

h(τ )eB(τ , t)�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)eB(s, t)�s�τ < ,

where

B(t) = f (t)
[

 +
∫ t

t

g(s)�s
]

,

then if p = m/n (m, n ∈ N ) and m is odd, () has at most one solution on I .

Proof Let u(t) and ν(t) be two solutions of equation () on I . From () and conditions
(), () and (), we have

∣∣up(t) – νp(t)
∣∣

≤
∫ t

t

[
F(τ , u(τ ),

∫ τ

t

G
(
s, u(s)

)
– F

(
τ ,ν(τ ),

∫ τ

t

G
(
s,ν(s)

)]
�s

)
�τ

+
∫ α

t

[
H

(
τ , u(τ ),

∫ τ

t

L
(
s, u(s)

)
�s

)
– H

(
τ ,ν(τ ),

∫ τ

t

L
(
s,ν(s)

)
�s

)]
�τ ,

≤
∫ t

t

f (τ )
[∣∣up(τ ) – νp(τ )

∣∣ +
∫ τ

t

∣∣G(
s, u(s)

)
– G

(
s,ν(s)

)∣∣�s
]
�τ�s

+
∫ α

t

h(τ )
∣∣up(τ ) – νp(τ )

∣∣�τ +
∫ α

t

h(τ )
∫ τ

t

∣∣L(
s, u(s)

)
– L

(
s,ν(s)

)∣∣�s�τ

≤
∫ t

t

f (τ )
[∣∣up(τ ) – νp(τ )

∣∣ +
∫ τ

t

g(s)
∣∣up(s) – νp(s)

∣∣�s
]
�τ

+
∫ α

t

h(τ )
∣∣up(τ ) – νp(τ )

∣∣�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)
∣∣up(s) – νp(s)

∣∣�s�τ , t ∈ I.

()

An application of Corollary . (with a(t) = ) to the function |up(t)–νp(t)| in () yields

∣∣up(t) – νp(t)
∣∣ ≤ 

for all t ∈ I . Hence up(t) = νp(t) on I . This completes the proof of Theorem .. �

The next result deal with the continuous dependence of the solutions of () on the
functions F , G, H and L. For this purpose we consider the following variation of ():

up(t) = a(t) +
∫ t

t

F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)
�τ

+
∫ α

t

H
(

τ , u(τ ),
∫ τ

t

L
(
s, u(s)

)
�s

)
�τ , ()
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for t ∈ I , where F , H : I × R × R −→ R, G, L : I × R −→ R and p >  is a constant as
in ().

Theorem . Consider () and (). If
(i)

∣∣F(t, u,ν) – F(t, u,ν)
∣∣ ≤ f (t)

(∣∣up
 – up


∣∣ + |ν – ν|

)
,

∣∣G(t, u) – G(t,ν)
∣∣ ≤ g(t)

∣∣up – νp∣∣,
∣∣H(t, u,ν) – H(t, u,ν)

∣∣ ≤ h(t)
∣∣up

 – up

∣∣ + h(t)|ν – ν|,∣∣L(t, u) – L(t,ν)

∣∣ ≤ h(t)
∣∣up – νp∣∣;

(ii) |a(t) – a(t)| ≤ ε/;
(iii) λ =

∫ α

t
h(τ )eB(τ , t)�τ +

∫ α

t
h(τ )

∫ τ

t
h(s)eB(s, t)�s�τ < , where

B(t) = f (t)[ +
∫ t

t
g(s)�s];

(iv) for all solutions u of (),

∫ t

t

∣∣∣∣F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)
– F

(
τ , u(τ ),

∫ τ

t

G
(
s, u(s)

)
�s

)∣∣∣∣�τ ≤ ε/

and
∫ α

t

∣∣∣∣H
(

τ , u(τ ),
∫ τ

t

L
(
s, u(s)

)
�s

)
– H

(
τ , u(τ ),

∫ τ

t

L
(
s, u(s)

)
�s

)∣∣∣∣�τ < ε/,

for t ∈ I and u, u,ν,ν ∈ R, where ε >  is an arbitrary constant, then

∣∣up(t) – up(t)
∣∣ ≤ ε

[
 +

C + A(t)
 – λ

eB(t, t)
]

, ()

for t ∈ I where

C =
∫ α

t

h(τ )�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)�s�τ

and

A(t) =
∫ t

t

f (τ )
[

 +
∫ τ

t

g(s)�s
]
�τ .

Hence up(t) depends continuously on F , G, H and L. In particular, if u does not change sign,
it depends continuously on F , G, H and L.

Proof Let u(t) and u(t) ba solutions of () and (), respectively. Then from () and (),
we have

∣∣up(t) – up(t)
∣∣

≤ ∣∣a(t) – a(t)
∣∣ +

∫ t

t

∣∣∣∣F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)
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– F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)∣∣∣∣�τ

+
∫ α

t

∣∣∣∣H
(

τ , u(τ ),
∫ τ

t

L
(
s, u(s)

)
�s

)
– H

(
τ , u(τ ),

∫ τ

t

L
(
s, u(s)

)
�s

)∣∣∣∣�τ

≤ ε/ +
∫ t

t

∣∣∣∣F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)
– F

(
τ , u(τ ),

∫ τ

t

G
(
s, u(s)

)
�s

)∣∣∣∣�τ

+
∫ t

t

∣∣∣∣F
(

τ , u(τ ),
∫ τ

t

G
(
s, u(s)

)
�s

)
– F

(
τ , u(τ ),

∫ τ

t

G
(
s, u(s)

)
�s

)∣∣∣∣�τ

+
∫ α

t

∣∣∣∣H
(

τ , u(τ ),
∫ τ

t

L
(
s, u(s)

)
�s

)
– H

(
τ , u(τ ),

∫ τ

t

L
(
s, u(s)

)
�s

)∣∣∣∣�τ

+
∫ α

t

∣∣∣∣H
(

τ , u(τ ),
∫ τ

t

L
(
s, u(s)

)
�s

)
– H

(
τ , u(τ ),

∫ τ

t

L
(
s, u(s)

)
�s

)∣∣∣∣�τ

≤ ε +
∫ t

t

f (τ )
[∣∣up(τ ) – up(τ )

∣∣ +
∫ τ

t

g(s)
∣∣up(s) – up(s)

∣∣�s
]
�τ

+
∫ α

t

h(τ )
∣∣up(τ ) – up(τ )

∣∣�τ +
∫ α

t

h(τ )
∫ τ

t

h(s)
∣∣up(s) – up(s)

∣∣�s�τ ,

i.e.,

∣∣up(t) – up(t)
∣∣ ≤ ε +

∫ t

t

f (τ )
[∣∣up(τ ) – up(τ )

∣∣ +
∫ τ

t

g(s)
∣∣up(s) – up(s)

∣∣�s
]
�τ

+
∫ α

t

h(τ )
∣∣up(τ ) – up(τ )

∣∣�τ

+
∫ α

t

h(τ )
∫ τ

t

h(s)
∣∣up(s) – up(s)

∣∣�s�τ , t ∈ I. ()

Now by applying Corollary . (with a(t) = ε) to the function |up(t) – up(t)|, the last in-
equality provides the desired inequality (). Evidently, if the function A(t) and eB(t, t)
are bounded on I ,

∣∣up(t) – up(t)
∣∣ ≤ εM

for some M >  and t ∈ I . Hence up depends continuously on F , G, H and L. This completes
the proof of Theorem .. �
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