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Abstract
After establishing a comparison result of the nonlinear Riemann-Liouville fractional
differential equation of order p ∈ (2, 3], we obtain the existence of maximal and
minimal solutions, and the uniqueness result for fractional differential equations. As
an application, an example is presented to illustrate the main results.
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1 Introduction
In the past years, much attention has been devoted to the study of fractional differential
equations due to the fact that they have many applications in a broad range of areas such
as physics, chemistry, aerodynamics, electrodynamics of complex medium and polymer
rheology. Many existence results of solutions to initial value problems and boundary value
problems for fractional differential equations have been established in terms of all sorts of
methods; see, e.g., [–] and the references therein. Generally speaking, it is difficult to get
the exact solution for fractional differential equations. To obtain approximate solutions of
nonlinear fractional differential problems, we can use the monotone iterative technique
and the lower and upper solutions. This technique is well known and can be used for both
initial value problems and boundary value problems for differential equations [–].
Recently, this method has also been applied to initial value problems and boundary value
problems for fractional differential equations; see [–]. To the best of our knowledge,
there is still little utilization of the monotone iterative method to a fractional differential
equation of order p ∈ (, ].

Consider the following nonlinear fractional differential equations:

{
Dpx(t) + f (t, x(t)) = , t ∈ (, ),
x() = x′() = , x() = ,

(.)

where Dp is the standard Riemann-Liouville derivative and p ∈ (, ]. In this paper, we
give some sufficient conditions, under which such problems have extremal solutions. To
formulate such theorems, we need the corresponding comparison results for fractional
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differential inequalities by use of the Banach fixed point theorem and the method of suc-
cessive approximations. An example is added to verify assumptions and theoretical results.

For convenience, let us set the following notations:

K =
M(p – )

�(p)

(
 –

(
M(p – )
�(p + )

))–

,

K =


�(p)
– M

(p – )

�(p) – K
M(p – )

�(p)


p(p + ) ,

K =
+∞∑
n=

Mn
(

p – 
�(p)

)n+( 
p(p + )

)n–

.

2 Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions and properties can be found in the recent litera-
ture; see [–].

Definition . ([]) The Riemann-Liouville fractional integral of order p >  of a function
f : (,∞) →R is given by

Ipf (t) =


�(p)

∫ t


(t – s)p–f (s) ds

provided that the right-hand side is pointwise defined on (,∞).

Definition . ([]) The Riemann-Liouville fractional derivative of order p >  of a con-
tinuous function f : (,∞) →R is given by

Dpf (t) =


�(n – p)

(
d
dt

)n ∫ t



f (s)
(t – s)p–n+ ds,

where n –  ≤ p < n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . ([]) Assume that u ∈ C(, )∩L(, ) with a fractional derivative of order p > 
that belongs to C(, ) ∩ L(, ). Then

IpDpu(t) = u(t) + ctp– + ctp– + · · · + cN tp–N

for some ci ∈ R, i = , . . . , N , N = [p].

For brevity, let us take E = {u : Dpu(t) ∈ C(, ) ∩ L(, )}. In the Banach space C[, ],
in which the norm is defined by ‖x‖ = maxt∈[,] |x(t)|, we set P = {x ∈ C[, ] | x(t) ≥ ,
∀t ∈ [, ]}. P is a positive cone in C[, ]. Throughout this paper, the partial ordering is
always given by P.

The following are the existence and uniqueness results of a solution for a linear boundary
value problem, which is important for us in the following analysis.
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Lemma . ([]) Let a ∈R, σ ∈ C(, ) ∩ L(, ) and  < p ≤ , then the unique solution of

{
Dpx(t) + σ (t) = , t ∈ (, ),
x() = x′() = , x() = a,

(.)

is given by

x(t) = atp– +
∫ 


G(t, s)σ (s) ds,

where G(t, s) is Green’s function given by

G(t, s) =

⎧⎨
⎩

(–s)p–tp––(t–s)p–

�(p) ,  ≤ s ≤ t ≤ ,
(–s)p–tp–

�(p) ,  ≤ t ≤ s ≤ .
(.)

The following properties of Green’s function play an important part in this paper.

Lemma . ([]) The function G(t, s) defined by (.) satisfies the following conditions:
() tp–( – t)s( – s)p– ≤ �(p)G(t, s) ≤ (p – )s( – s)p–, t, s ∈ (, ),
() tp–( – t)s( – s)p– ≤ �(p)G(t, s) ≤ (p – )tp–( – t), t, s ∈ (, ).

Lemma . Suppose that σ ∈ C(, ) ∩ L(, ), and there exists M >  satisfying

M(p – )
�(p + )

< , (.)

then the linear boundary value problem

{
Dpx(t) – Mx(t) + σ (t) = , t ∈ (, ),
x() = x′() = , x() = a

(.)

has exactly one solution given by

x(t) = atp– + a
∫ 


Q(t, s)sp– ds +

∫ 


H(t, s)σ (s) ds, (.)

where

Q(t, s) =
+∞∑
n=

Gn(t, s), G(t, s) = –MG(t, s),

Gn(t, s) = (–M)n
∫ 


· · ·

∫ 


G(t, r)G(r, r) · · ·G(r, s) dr · · ·drn–,

and

H(t, s) = G(t, s) +
∫ 


Q(t, τ )G(τ , s) dτ .
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Proof Using Lemma ., it is easy to show that problem (.) is equivalent to the following
integral equation:

x(t) = atp– +
∫ 


G(t, s)

(
–Mx(s) + σ (s)

)
ds,

i.e.,

x(t) = v(t) – M
∫ 


G(t, s)x(s) ds, (.)

where

v(t) = atp– +
∫ 


G(t, s)σ (s) ds. (.)

We write in the form x = Tx, where T is defined by the right-hand side of (.). Clearly,
T is an operator from C[, ] into C[, ]. Now, we have to show that the operator T has
a unique fixed point. To do this, we will prove that T is a contraction map. In fact, by
Lemma ., for x, y ∈ C[, ], we obtain

‖Tx – Ty‖ = max
≤t≤

|(Tx)(t) – (Ty)(t)| ≤ M max
≤t≤

∫ 


G(t, s) ds‖x – y‖

≤ M(p – )
�(p)

∫ 


s( – s)p– ds‖x – y‖

=
M(p – )

�(p)
�()�(p)
�(p + )

‖x – y‖ =
M(p – )
�(p + )

‖x – y‖.

This and condition (.) prove that problem (.) has a unique solution x(t) given by

‖xn – x‖ →  (n → +∞),

where

x(t) = v(t), xn(t) = Txn–(t), t ∈ [, ] (n = , , . . .).

Applying the method of successive approximations, it is easy to see that

x(t) = v(t) +
+∞∑
n=

∫ 


Gn(t, s)v(s) ds = v(t) +

∫ 


Q(t, s)v(s) ds. (.)

Substituting (.) into (.), we get (.) and the proof is complete. �

Lemma . Suppose that the constant M given in Lemma . satisfies inequality (.) and

(
KM + p( – p))M(p – ) < �(p)p( – p). (.)

Then the function H(t, s) has the following properties:

Ktp–( – t)s( – s)p– ≤ H(t, s) ≤ Ktp–( – t)s( – s)p–, t, s ∈ (, ).
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Proof It follows from the expression of Gn(t, s) that Gn(t, s) ≤  when n is odd and
Gn(t, s) ≥  when n is even. By Lemma ., we obtain that

Gn(t, s) = (–M)n
∫ 


· · ·

∫ 


G(t, r)G(r, r) · · ·G(rn–, s) dr · · ·drn–

≥ (–M)n
(

p – 
�(p)

)n

tp–( – t)s( – s)p–

×
∫ 


rp–

 ( – r) dr · · ·
∫ 


rp–

n–( – rn–) drn–

= (–M)n
(

p – 
�(p)

)n( 
p(p + )

)n–

tp–( – t)s( – s)p–, n = , , . . . ,

and

Gn(t, s) ≤ Mn
(

p – 
�(p)

)n( 
p(p + )

)n–

tp–( – t)s( – s)p–, n = , , . . . .

Consequently, we have

H(t, s) = G(t, s) +
∫ 


Q(t, τ )G(τ , s) dτ = G(t, s) +

+∞∑
n=

∫ 


Gn(t, τ )G(τ , s) dτ

≥ G(t, s) – M
∫ 


G(t, τ )G(τ , s) dτ +

+∞∑
n=

∫ 


Gn+(t, τ )G(τ , s) dτ

≥ tp–( – t)
�(p)

s( – s)p– – M
(p – )

�(p) tp–( – t)s( – s)p–

–
+∞∑
n=

Mn+
(

p – 
�(p)

)n+( 
p(p + )

)n–

tp–( – t)s( – s)p–

×
∫ 


τ ( – τ )p– dτ

≥ tp–( – t)s( – s)p–

×
[


�(p)

– M
(p – )

�(p) –
+∞∑
n=

Mn+
(

p – 
�(p)

)n+( 
p(p + )

)n
]

= tp–( – t)s( – s)p–
[


�(p)

– M
(p – )

�(p) – K
M(p – )

�(p)


p(p + )

]

= Ktp–( – t)s( – s)p–

(notice that (.) is equivalent to the inequality K > ) and

H(t, s) = G(t, s) +
∫ 


Q(t, τ )G(τ , s) dτ = G(t, s) +

+∞∑
n=

∫ 


Gn(t, τ )G(τ , s) dτ

≤
+∞∑
n=

∫ 


Gn(t, τ )G(τ , s) dτ
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≤
+∞∑
n=

Mn
(

p – 
�(p)

)n( 
p(p + )

)n–

tp–( – t)

×
∫ 


τ ( – τ )p– dτ · p – 

�(p)
s( – s)p–

= tp–( – t)s( – s)p–
+∞∑
n=

Mn
(

p – 
�(p)

)n+( 
p(p + )

)n–

= Ktp–( – t)s( – s)p–.

This completes the proof. �

Let

P =
{

x ∈ C[, ]
∣∣∣ x(t) ≥ K

K
tp–( – t)‖x‖, t ∈ [, ]

}
.

It is obvious that P is a cone and P ⊂ P. We define the operator S : C[, ] → C[, ] by

(Sx)(t) =
∫ 


H(t, s)x(s) ds, t ∈ [, ], x ∈ C[, ]. (.)

It is clear that S is a linear operator, and the operator equation x = Sσ is equivalent to the
existence of a solution for the problem

{
Dpx(t) – Mx(t) + σ (t) = , t ∈ (, ),
x() = x′() = , x() = .

Lemma . S is a completely continuous operator and S(P) ⊂ P.

Proof Applying the Arzela-Ascoli theorem and a standard argument, we can prove that S
is a completely continuous operator. In the following, we prove that S(P) ⊂ P. In fact, for
any x ∈ P, it follows from Lemma . that

(Sx)(t) =
∫ 


H(t, s)x(s) ds ≤ Ktp–( – t)

∫ 


s( – s)p–x(s) ds ≤ K

∫ 


s( – s)p–x(s) ds,

which implies that

‖Sx‖ ≤ K

∫ 


s( – s)p–x(s) ds. (.)

On the other hand, by Lemma . again, we have

(Sx)(t) =
∫ 


H(t, s)x(s) ds ≥ Ktp–( – t)

∫ 


s( – s)p–x(s) ds,

which together with (.) implies

(Sx)(t) ≥ K

K
tp–( – t)‖Sx‖, t ∈ [, ].



Cui et al. Advances in Difference Equations  (2017) 2017:248 Page 7 of 12

Therefore, S(P) ⊂ P. This completes the proof. �

Lemma . Suppose that x ∈ E satisfies

{
–Dpx(t) ≥ –Mx(t), t ∈ (, ),
x() = x′() = , x() ≥ ,

where M satisfies (.), (.) and

K =
M(p – )

�(p)

(
 –

(
M(p – )
�(p + )

))–

< . (.)

Then x(t) ≥  for t ∈ [, ].

Proof Let σ (t) = –Dpx(t) + Mx(t) and a = x(). Then

σ (t) ≥ , a ≥ .

By Lemma ., (.) holds. By the proof of Lemma ., we have

tp– +
∫ 


Q(t, s)sp– ds

≥ tp– – M
∫ 


G(t, s)sp– ds –

+∞∑
n=

∫ 


Gn+(t, s)sp– ds

≥ tp– –
p – 
�(p)

M( – t)tp–
∫ 


sp– ds –

+∞∑
n=

Mn+
(

p – 
�(p)

)n+( 
p(p + )

)n–

×
∫ 


tp–( – t)s( – s)p–sp– ds

≥ tp– –
p – 
�(p)

Mtp– – tp–
+∞∑
n=

Mn+
(

p – 
�(p)

)n+( 
p(p + )

)n–

×
∫ 


( – s)p–s ds

≥ tp– –
p – 
�(p)

Mtp– – tp–
+∞∑
n=

Mn+
(

p – 
�(p)

)n+( 
p(p + )

)n

= tp– – tp–
+∞∑
n=

Mn+
(

p – 
�(p)

)n+( 
p(p + )

)n

= tp–
[

 –
M(p – )

�(p)


 – ( M(p–)
�(p+) )

]
.

Thus, by (.) and Lemma ., we have that x(t) ≥  for t ∈ [, ], and the lemma is
proved. �

Lemma . ([]) Suppose that S : C[, ] → C[, ] is a completely continuous linear op-
erator and S(P) ⊂ P. If there exist ψ ∈ C[, ]\(–P) and a constant c >  such that cSψ ≥ ψ ,
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then the spectral radius r(S) �=  and S has a positive eigenfunction corresponding to its first
eigenvalue λ = (r(S))–, i.e., ϕ = λSϕ.

Lemma . Suppose that S is defined by (.), then the spectral radius r(S) �=  and S has
a positive eigenfunction ϕ∗(t) corresponding to its first eigenvalue λ = (r(S))–.

Proof By Lemma ., H(t, s) >  for all t, s ∈ (, ). Take ψ(t) = tp–(–t). Then, for t ∈ [, ],
by Lemma . we have

(Sψ)(t) =
∫ 


H(t, s)ψ(s) ds ≥ K

K
tp–( – t)‖Sψ‖.

So there exists a constant c >  such that c(Sψ)(t) ≥ ψ(t), ∀t ∈ [, ]. From Lemma ., we
know that the spectral radius r(S) �=  and S has a positive eigenfunction corresponding to
its first eigenvalue λ = (r(S))–. This completes the proof. �

3 Main results
In this section, we prove the existence of extremal solutions and the uniqueness result of
differential equation (.). We list the following assumptions for convenience.

(H) There exist α,β ∈ E with α(t) ≤ β(t) such that

Dpα(t) + f
(
t,α(t)

) ≥ , t ∈ (, ),α() = α′
() = ,α() ≤ ,

Dpβ(t) + f
(
t,β(t)

) ≤ , t ∈ (, ),β() = β ′
() = ,β() ≥ .

(H) f ∈ C([, ] ×R,R) and there exists M >  such that

f (t, x) – f (t, y) ≥ –M(x – y),

where α(t) ≤ y ≤ x ≤ β(t) and M satisfies (.), (.) and (.).

Theorem . Suppose that (H) and (H) hold. Then there exist monotone iterative se-
quences {αn(t)}, {βn(t)} which converge uniformly on [, ] to the extremal solutions of prob-
lem (.) in the sector 
 = {v ∈ C[, ] : α(t) ≤ v(t) ≤ β(t), t ∈ [, ]}.

Proof First, for any αn–, βn–, n ≥ , we define two sequences {αn(t)}, {βn(t)} by relations

{
Dpαn(t) – Mαn(t) + f (t,αn–(t)) + Mαn–(t) = , t ∈ (, ),
αn() = α′

n() = , αn() = ,{
Dpβn(t) – Mβn(t) + f (t,βn–(t)) + Mβn–(t) = , t ∈ (, ),
βn() = β ′

n() = , βn() = .

By Lemma ., {αn(t)}, {βn(t)} are well defined. Moreover, {αn(t)}, {βn(t)} can be rewritten
as follows:

αn = (SF)αn–, βn = (SF)βn–, n = , , . . . ,
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where F : C[, ] → C[, ] is given by

(Fx)(t) = f
(
t, x(t)

)
+ Mx(t).

Next, we show that {αn(t)}, {βn(t)} satisfy the property

αn– ≤ αn ≤ βn ≤ βn–. (.)

Let w(t) = α – α. By condition (H), we obtain
{

–Dpw(t) ≥ –Mw(t), t ∈ (, ),
w() = w′() = , w() ≥ .

Thus, by Lemma ., we have that w(t) ≥ , t ∈ [, ]. By a similar way, we can show that
β ≤ β.

Let w(t) = β – α. From condition (H), we obtain
{

–Dpw(t) ≥ –Mw(t), t ∈ (, ),
w() = w′() = , w() ≥ .

By Lemma ., we obtain w(t) ≥ , t ∈ [, ]. Hence, we have the relation α ≤ α ≤
β ≤ β. It follows from (H) that SF is nondecreasing in the sector 
, and then

α = (SF)α ≤ α = (SF)α ≤ β = (SF)β ≤ β = (SF)β.

Thus, by induction, we have

α ≤ α ≤ · · · ≤ αn ≤ αn+ ≤ βn+ ≤ βn ≤ · · · ≤ β ≤ β.

Applying the standard arguments and Lemma ., we have that

lim
n→∞αn(t) = α∗(t), lim

n→∞βn(t) = β∗(t)

uniformly on [, ], and that α∗, β∗ are the solutions of boundary value problem (.).
Furthermore, α∗ and β∗ are a minimal solution and a maximal solution of (.) in 
, re-
spectively. �

The uniqueness results of a solution to problem (.) are established in the following
theorem.

Theorem . Assume that conditions (H) and (H) hold, and that there exists M > 
such that

f (t, x) – f (t, y) ≤ M(x – y), (.)

where α(t) ≤ y ≤ x ≤ β(t) and M satisfies

(M + M)r(S) < . (.)

Then BVP (.) has a unique solution in 
, i.e., α∗ = β∗.
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Proof It follows from the proof of Theorem . that

α∗ = (SF)α∗, β∗ = (SF)β∗, n = , , . . . .

Let u(t) = β∗(t) – α∗(t). Then, by (.), we have u ∈ P and

u(t) = β∗(t) – α∗(t) =
∫ 


H(t, s)

(
f
(
t,β∗(s)

)
+ Mβ∗(s) – f

(
t,α∗(s)

)
– Mα∗(t)

)
ds

≤ (M + M)(Su)(t), t ∈ [, ].

Applying mathematical induction, for n ∈N, we get

u(t) ≤ (M + M)n(Snu
)
(t), t ∈ [, ].

The above inequality guarantees ‖u‖ ≤ (M + M)n‖S‖n‖u‖ for n ∈N. It is easy to see that

u(t) ≡ 
(
or β∗(t) = α∗(t)

)
, t ∈ [, ].

In fact, ‖u‖ �=  implies that  ≤ (M + M)n‖S‖n for n ∈ N , and consequently,  ≤
limn→∞ n

√
(M + M)n‖S‖n = (M + M)r(S), in contradiction to (.). �

Remark . From the point of view of differential equation, we know that (.) is equiv-
alent to the inequality Mr(S) < , where S : C[, ] → C[, ] is defined by

(Sx)(t) =
∫ 


G(t, s)x(s) ds, t ∈ [, ], x ∈ C[, ].

At the end of this section, we give a rough estimate for r(S). For x ∈ C[, ], we have

‖Sx‖ = max
≤t≤

|(Sx)(t)| ≤ max
≤t≤

∫ 


G(t, s) ds‖x‖

≤ (p – )
�(p)

∫ 


s( – s)p– ds‖x‖ =

(p – )
�(p + )

‖x‖,

which implies ‖S‖ ≤ (p–)
�(p+) , hence r(S) ≤ ‖S‖ ≤ (p–)

�(p+) . On the other hand, take ψ(t) =
tp–( – t), by Lemma ., we have

(Sψ)(t) =
∫ 


G(t, s)ψ(s) ds ≥ 

�(p)

∫ 


sp( – s)p ds · tp–( – t)

=
B(p + , p + )

�(p)
ψ(t), t ∈ [, ].

Thus r(S) = limn→∞ n√‖S‖n ≥ B(p+,p+)
�(p) . So we have

B(p + , p + )
�(p)

≤ r(S) ≤ (p – )
�(p + )

.
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4 Example
Consider the following problem:

{
D 

 x(t) +
√

π

 (t – x(t)) –
√

π

 tx(t) = , t ∈ (, ),
x() = x′() = , x() = .

(.)

Obviously, f (t, x) =
√

π

 (t – x) –
√

π

 tx. Take α(t) = –t, β(t) = t, then

{
D 

 α(t) + f (t,α) =
√

π

 (t + t) –
√

π

 tt = 
√

π

 t ≥ , t ∈ (, ),
α() = α′

() = , α() = – ≤ ,{
D 

 β(t) + f (t,β) = –
√

π

 tt(t) = –t ≤ , t ∈ (, ),
β() = β ′

() = , β() =  ≥ .

It shows that condition (H) of Theorem . holds. On the other hand, it is easy to verify
that condition (H) and (.) hold for M = M =

√
π

 and r(S) ≤ ‖S‖ ≤ 


√
π

.
Therefore, by Theorem ., there exist iterative sequences {αn}, {βn} which converge

uniformly to the unique solution in [α,β], respectively.
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