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Abstract
This paper aims to provide the high order numerical schemes for the time-space
tempered fractional Fokker-Planck equation in a finite domain. The high order
difference operators, called the tempered and weighted and shifted Lubich difference
operators, are used to approximate the time tempered fractional derivative. The
spatial operators are discretized by the central difference methods. We apply the
central difference methods to the spatial operators and obtain that the numerical
schemes are convergent with orders O(τ q + h2) (q = 1, 2, 3, 4, 5). The stability and
convergence of the first order numerical scheme are rigorously analyzed. And the
effectiveness of the presented schemes is testified with several numerical
experiments. Additionally, some physical properties of this diffusion system are
simulated.

Keywords: tempered fractional Fokker-Planck equation; weighted and shifted
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1 Introduction
In recent decades, fractional partial differential equations have become a powerful tool to
model the particle transport in anomalous diffusion in various fields. Effectively solving
them naturally becomes an urgent topic of researchers. Luckily, some important achieve-
ments have been made for the fractional differential equations [–]. Recently, the tem-
pered anomalous diffusion equations [–] have drawn the wide interests of the re-
searchers. It is closer to reality in the sense of the finite life span or bounded physical space
of the diffusion particles. The detailed introductions about the definitions and properties
of the tempered fractional calculus can be seen in [–] and the references therein. As
the generalization of fractional calculus, tempered fractional calculus does not simply have
the properties of the fractional calculus, but can describe some of the other complex dy-
namics []. Tempered fractional derivatives and the corresponding tempered fractional
differential equations have played a key role in physics [], ground water hydrology [],
finance [], poroelasticity [], and so on.

In the continuous time random walk (CTRW) model, the corresponding time tempered
fractional Fokker-Planck equation is derived [, ], where the jump length for Brownian
particles is a constant. In practical application, however, the Brownian particles contain
arbitrary distance and direction. Moreover, if the jump length probability η(x) follows the
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Lévy distribution [, ], i.e., η(x) � |x|–β– ( < β ≤ ), then the following time-space
tempered fractional Fokker-Planck equation can well describe the probability density of
particles [, , ]:

∂u(x, t)
∂t

= D–α,λ
t

[
–

∂

∂x
F(x) +

∂β

∂|x|β
]

u(x, t) – λu(x, t), (.)

where the tempering parameter λ ≥ , the function F(x) is the external force, u(x, t) rep-
resenting the probability density, Dα,λ

t denotes the left Riemann-Liouville tempered frac-
tional derivative of order α ∈ (, ), which is defined as []

Dα,λ
t u(t) = e–λt

Dα
t
(
eλtu(t)

)
=

e–λt

�( – α)
d
dt

∫ t


(t – τ )–αeλτ u(τ ) dτ , (.)

where ∂β/∂|x|β is the Riesz fractional derivative of order β defined by []

∂βu(x, t)
∂|x|β = –


 cos(πβ/)�( – β)

d

dx

∫ ∞

–∞
|x – ξ |–βu(ξ , t) dξ ,  < β ≤ , (.)

and �(·) denotes the gamma function.
There are several ways to approximate the Riesz fractional derivative. At first, the Riesz

fractional derivative was generally approached by the Grünwald-Letnikov derivative ap-
proximation with the first order of accuracy []. In order to improve the convergence
order, various mathematical methods, such as Richardson extrapolation method, the
method of lines, fractional central difference method, the matrix transform method and
other high order algorithms, were developed and applied to numerically solve the Riesz
fractional diffusion equation, one can see [, –] and the references therein. Here we
use the second order fractional central difference method provided in [, ] to discrete
the Riesz fractional derivative of equation (.). It is interesting to note that in the case of
λ = , the time-space tempered fractional Fokker-Planck equation (.) reduces to the time
and space fractional Fokker-Planck equation with Riesz fractional derivative. And the nu-
merical solutions of the fractional Fokker-Planck equations have recently been presented
in a number of works. Many works have been done on the study of numerical methods
for time fractional Fokker-Planck equations [–] and space fractional Fokker-Planck
equations [–]. There are some efficient computational techniques for numerically
solving the space and time fractional Fokker-Planck equations [–]. However, very
few theoretical results were provided to validate the effectiveness of the presented nu-
merical methods. Deng [] developed the finite element method for numerical solutions
of the time and space-symmetric fractional Fokker-Planck equation, the theoretical anal-
ysis of stability and convergence are rigorously established. They proved that the obtained
numerical scheme has ( –α) order accuracy in time direction and numerically verified by
extensive experiments. Deng et al. [] proposed the finite difference/predictor-corrector
approach for the time and space-symmetric fractional Fokker- Planck equation, their theo-
retical analysis and numerical experiment results show that the numerical scheme is stable
and converges with order O(h + τmin{+α,}).

So far, there have been only a limited number of works for the numerical solutions of
the tempered fractional Fokker-Planck equations. Kullberg [, ] numerically solved
the space tempered fractional Fokker-Planck equation with finite difference and spectral
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method. Gajda et al. [, ] established the numerical solution of the time tempered
fractional Fokker-Planck equation via Monte Carlo methods. As far as we know, there
are very few published papers for numerically solving the time-space tempered fractional
Fokker-Planck equation. Therefore, the main objective of this paper is to design the high
order numerical schemes for the time-space tempered fractional Fokker-Planck equation.
The qth (q = , , , , ) order operators, named the tempered and weighted and shifted
Lubich difference (TWSLD) operators, are used to approximate the tempered fractional
derivative, and the classical central difference and fractional centered difference are used
in the spatial discretization. The detailed theoretical analysis and numerical experiments
are given to confirm the validity of the numerical schemes.

The outline of this paper is as follows. In Section , based on some definitions and prop-
erties of the tempered fractional calculus, we derive the equivalent form of Eq. (.). In
Section , we apply TWSLD operators and central difference operators to approximate the
time derivative and spatial derivatives, respectively. In Section , we perform the detailed
theoretical analysis for the stability and convergence of the presented schemes. Exten-
sive numerical experiments are carried out in Section  to confirm the theoretical results
of our schemes. In Section , the probability density distribution of diffusion particles is
simulated. We conclude the paper in the last section.

2 The equivalent equation of Eq. (1.1)
In this section, using the definitions and properties of fractional calculus, we transform
Eq. (.) into another equivalent form, which is more convenient for approximating by our
methods.

Using the definition of Riemann-Liouville tempered fractional derivative, Eq. (.) can
be rewritten as

∂(eλtu(x, t))
∂t

= D–α
t

[
–

∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)
. (.)

Applying the operator Dα–
t (or I–α

t ) on both sides of Eq. (.) leads to

Dα–
t

[
∂(eλtu(x, t))

∂t

]
= Dα–

t

{
D–α

t

[
–

∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)}

. (.)

Recalling the composite properties of the Riemann-Liouville fractional calculus [–
], the left-hand side and the right-hand side of Eq. (.) can be rewritten as

Dα–
t

[
∂(eλtu(x, t))

∂t

]
= Dα

t
(
eλtu(x, t)

)
–

t–α

�( – α)
u(x, ), (.)

and

Dα–
t

{
D–α

t

[
–

∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)}

=
[

–
∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)

– D–α
t

{[
–

∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)|t=

}
t–α

�( – α)
. (.)
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If the function u(t) is continuously differentiable in the interval [, t], then

D–α
t

(
eλtu(t)

)|t= = lim
t→+


�(α)

∫ t


(t – τ )α–eλτ u(τ ) dτ

= lim
t→+

[
tαu()

�(α + )
+


�(α + )

∫ t


(t – τ )αeλτ

(
λu(τ ) +

d(u(τ ))
dτ

)
dτ

]

= . (.)

Since u(x, t) ∈ C,
x,t ([a, b] × [, T]), we can obtain

D–α
t

{[
–

∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)|t=

}
= . (.)

From above Eqs. (.)-(.), we get

Dα
t
(
eλtu(x, t)

)
–

t–α

�( – α)
u(x, ) =

[
–

∂

∂x
F(x) +

∂β

∂|x|β
](

eλtu(x, t)
)
, (.)

multiplying both sides of Eq. (.) by e–λt and using the definition defined in (.), we have

Dα,λ
t

(
u(x, t)

)
–

t–αe–λt

�( – α)
u(x, ) =

[
–

∂

∂x
F(x) +

∂β

∂|x|β
]

u(x, t). (.)

The relationship between Riemann-Liouville and the Caputo tempered fractional
derivatives shows

Dα,λ
t u(x, t) –

t–αe–λt

�( – α)
u(x, ) = C

 Dα,λ
t u(x, t) = Dα,λ

t
[
u(x, t) – e–λtu(x, )

]
, (.)

then the equivalent form of Eq. (.) can be rewritten as follows:

Dα,λ
t

[
u(x, t) – e–λtu(x, )

]
=

[
–

∂

∂x
F(x) +

∂β

∂|x|β
]

u(x, t). (.)

3 Numerical schemes of Eq. (2.10)
In this section, we consider Eq. (.) in a finite domain [a, b] subject to the initial condi-
tion

u(x, ) = ψ(x), a ≤ x ≤ b, (.)

and the homogeneous Dirichlet boundary conditions

u(a, t) = , u(b, t) = ,  < t ≤ T . (.)

Note that the non-zero boundary conditions can be homogenized mathematically.
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3.1 TWSLD operators and the fractional centered difference operator
In this subsection, we derive the qth order (q ≤ ) operators, named TWSLD operators,
by the corresponding coefficients of the generating functions �q,α(ζ ) to approximate the
Riemann-Liouville tempered fractional derivative of order α. The form of the generating
functions is as follows:

�q,α(ζ ) =

( q∑
i=


i
(
 – e–λτ ζ

)i
)α

, q = , , , , . (.)

For λ = , formula (.) reduces to the fractional Lubich methods. For λ = , α = , the
scheme reduces to the classical (q + )-point backward difference formula []. We can
also write formula (.) as the following form:

�q,α(ζ ) =

( q∑
i=


i
(
 – e–λτ ζ

)i
)α

=
∞∑

k=

dq,α
k ξ k . (.)

Then, for the Riemann-Liouville tempered fractional derivative, there is

Dα,λ
t u(tn) = τ–α

n∑
k=

dq,α
k u(tn–k) + O

(
τ q), q = , , , , , (.)

where τ is the step size, tn = nτ , dq,α
k can also be rewritten as

dq,α
k = e–λkτ lq,α

k , q = , , , , , k = , , , . . . , n. (.)

For more about the detailed description of lq,α
k , one can refer to [].

Lemma . ([]) For q = , the coefficients lq,α
k satisfy

l,α
 = , l,α

k <  (k ≥ ),
n–∑
k=

l,α
k > ,

∞∑
k=

l,α
k = , (.)

and


nα�( – α)

<
n–∑
k=

l,α
k = –

∞∑
k=n

l,α
k ≤ 

nα
. (.)

Lemma . ([]) Let f ∈ C(R) and all derivatives up to order five belong to L(R), and


β

h f (x) =
∞∑

j=–∞

(–)j�(β + )
�(β/ – j + )�(β/ + j + )

f (x – jh)

be the fractional central difference. Then the Riesz fractional derivative for  < β ≤  can
be approximated as

∂β f (x)
∂|x|β = –


β

h f (x)
hβ

+ O
(
h). (.)
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If f̂ is defined by

f̂ (x) =

⎧⎨
⎩

f (x), x ∈ [a, b],

, x /∈ [a, b]

such that f̂ satisfies the conditions of Lemma ., then we have

∂β f̂ (x)
∂|x|β = –h–β

∞∑
j=–∞

(–)j�(β + )
�(β/ – j + )�(β/ + j + )

f̂ (x – jh) + O
(
h).

Since f̂ (x) =  for x /∈ [a, b], then

∂β f (x)
∂|x|β = –h–β

x–a
h∑

j=– b–x
h

(–)j�(β + )
�(β/ – j + )�(β/ + j + )

f (x – jh) + O
(
h), (.)

where h = (b – a)/M, and M is the number of partitions of the interval [a, b].

3.2 Derivation of numerical schemes
Let the mesh points xi = a + ih (i = , . . . , M) and tn = nτ (n = , , , . . . , N ), where τ = T/N
and h = (b – a)/M are the equidistant time step length and space step size, respectively.

Using the TWSLD operators (.) to approximate the Riemann-Liouville tempered frac-
tional derivative Dα,λ

t u(x, t) and Dα,λ
t (e–λtu(x, )), we arrive at

Dα,λ
t u(x, t)|(xi ,tn) = τ–α

n∑
k=

dq,α
k u(xi, tn–k) + O

(
τ q), q = , , , , , (.)

Dα,λ
t

[
e–λtu(x, )

]
(xi ,tn) = τ–α

n∑
k=

dq,α
k e–λ(n–k)τ u(xi, ) + O

(
τ q), q = , , , , . (.)

To approximate Eq. (.), we apply the classical central difference formula and frac-
tional centered difference formula (.) for the spatial derivatives, that is,

∂

∂x
(
–F(x)u(x, t)

)|(xi ,tn) = –
F(xi+)u(xi+, tn) – F(xi–)u(xi–, tn)

h
+ O

(
h), (.)

∂βu(xi, tn)
∂|x|β = –h–β

i∑
j=–M+i

gju(xi–j, tn) + O
(
h), (.)

where

gj =
(–)j�(β + )

�(β/ – j + )�(β/ + j + )
. (.)
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Combining Eqs. (.)-(.) and (.), we can obtain the following equation:

τ–α

[ n∑
k=

e–λkτ lq,α
k u(xi, tn–k) – e–λnτ

n∑
k=

lq,α
k u(xi, )

]

= –
F(xi+)u(xi+, tn) – F(xi–)u(xi–, tn)

h
–


hβ

i∑
j=–M+i

gju(xi–j, tn) + rn
i , (.)

with

∣∣rn
i
∣∣ ≤ C

(
τ q + h), q = , , , , , (.)

where C is a positive constant independent of τ and h.
Multiplying both sides of Eq. (.) by τα results in

lq,α
 u(xi, tn) +

n–∑
k=

e–λkτ lq,α
k u(xi, tn–k) – e–λnτ

n–∑
k=

lq,α
k u(xi, )

= –τα F(xi+)u(xi+, tn) – F(xi–)u(xi–, tn)
h

–
τα

hβ

i∑
j=–M+i

gju(xi–j, tn) + Rn
i , (.)

with

∣∣Rn
i
∣∣ =

∣∣ταrn
i
∣∣ ≤ Cτα

(
τ q + h), q = , , , , . (.)

Denoting un
i as the numerical approximation of u(xi, tn) and omitting the local trunca-

tion errors Rn
i , we obtain the numerical schemes of Eq. (.) as follows:

lq,α
 un

i +
n–∑
k=

e–λkτ lq,α
k un–k

i – e–λnτ

n–∑
k=

lq,α
k u

i = –τα Fi+un
i+ – Fi–un

i–
h

–
τα

hβ

i∑
j=–M+i

gjun
i–j,

i = , , . . . , M – , n ≥ , (.)

or

τα

hβ

i∑
j=–M+i

gjun
i–j – τα Fi–

h
un

i– + lq,α
 un

i + τα Fi+

h
un

i+ = e–λnτ

n–∑
k=

lq,α
k u

i –
n–∑
k=

e–λkτ lq,α
k un–k

i ,

i = , , . . . , M – , n ≥ . (.)

The discrete schemes of (.)-(.) are given by (.)-(.), respectively

u
i = ψ(xi),  ≤ i ≤ M, (.)

un
 = , un

M = , n ≥ . (.)
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4 Stability and convergence analysis
In this section, we prove the stability and convergence of schemes (.) for q =  by the
discrete L∞ norm. We first introduce several lemmas that will be used later.

Lemma . ([]) The coefficients gj defined in Eq. (.) for j = ,±,±, . . . ,β > –, sat-
isfy

() g ≥ , (.)

() g–j = gj ≤  for all |j| ≥ , (.)

()
∞∑

j=–∞
gj =  and

i∑
j=–M+i

j 	=

gj ≤ g. (.)

Lemma . ([]) Let {ui}M
i= be the grid functions defined on grid �̄ = {xi}M

i=. For the dif-
ference operator equation

⎧⎨
⎩
Lhui := aiui –

∑
p	=i apup = ϕi, xi ∈ � = {xi}M–

i= ,

u = , uM = ,
(.)

where ai > , and di = ai –
∑

p	=i ap > , i = , , . . . , M – , there exists

max
≤i≤M–

|ui| ≤ max
≤i≤M–

|ϕi|
di

. (.)

Theorem . Let F(x) be an increasing function in the interval [a, b] and λ ≥ , then the
numerical scheme (.) is unconditionally stable, i.e.,

∥∥εn∥∥∞ ≤ ∥∥ε∥∥∞, n = , , . . . , N . (.)

Proof Let vn
i (i = , , , . . . , M, n = , , , . . . , N ) be the approximate solution of scheme

(.). Denote εn = {εn
i = vn

i – un
i | ≤ i ≤ M, n ≥ }, then from Eq. (.) we get

τα

hβ

i∑
j=–M+i

gjε
n
i–j – τα Fi–

h
εn

i– + l,α
 εn

i + τα Fi+

h
εn

i+ = e–λnτ

n–∑
k=

l,α
k ε

i –
n–∑
k=

e–λkτ l,α
k εn–k

i ,

i = , , , . . . , M, n ≥ , (.)

since εn
 = , εn

M =  and l,α
 = , we obtain

εn
i +

ταFi+

h
εn

i+ –
ταFi–

h
εn

i– +
τα

hβ

i–∑
j=–M+i+

gjε
n
i–j = e–λnτ

n–∑
k=

l,α
k ε

i –
n–∑
k=

e–λkτ l,α
k εn–k

i ,

i = , , . . . , M – , n ≥ . (.)

According to Lemma ., we have

 =
∞∑

j=–∞
gj =

–M+i∑
j=–∞

gj +
i–∑

j=–M+i+

gj +
∞∑
j=i

gj, i = , , . . . , M – ,
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and g–j = gj ≤  for all |j| ≥ , then
∑–M+i

j=–∞ gj ≤ ,
∑∞

j=i gj ≤ , we can further get

i–∑
j=–M+i+

gj ≥ , i = , , . . . , M – .

Since F(x) is an increasing function, we can easily obtain

(
 +

τα

hβ
g

)
+

τα

h
(Fi+ – Fi–) +

τα

hβ

i–∑
j=–M+i+

j 	=

gj ≥ , i = , , . . . , M – . (.)

From Lemma ., it yields

max
≤i≤M–

∣∣εn
i
∣∣ ≤ max

≤i≤M–

|e–λnτ
∑n–

k= l,α
k ε

i –
∑n–

k= e–λkτ l,α
k εn–k

i |
 + τα

h (Fi+ – Fi–) + τα

hβ

∑i–
j=–M+i+ gj

≤ max
≤i≤M–

∣∣∣∣∣e–λnτ

n–∑
k=

l,α
k ε

i –
n–∑
k=

e–λkτ l,α
k εn–k

i

∣∣∣∣∣. (.)

Combining
∑n–

k= l,α
k > ,

∑n–
k= l,α

k < , e–λnτ ∈ (, ] and inequality (.), we obtain

max
≤i≤M–

∣∣εn
i
∣∣ ≤ max

≤i≤M–

∣∣∣∣∣e–λnτ

n–∑
k=

l,α
k ε

i

∣∣∣∣∣ + max
≤i≤M–

∣∣∣∣∣
n–∑
k=

e–λkτ l,α
k εn–k

i

∣∣∣∣∣

≤
n–∑
k=

l,α
k

(
max

≤i≤M–

∣∣ε
i
∣∣) –

n–∑
k=

l,α
k

(
max

≤i≤M–

∣∣εn–k
i

∣∣), (.)

i.e.,

∥∥εn∥∥∞ ≤
n–∑
k=

l,α
k

∥∥ε∥∥∞ –
n–∑
k=

l,α
k

∥∥εn–k∥∥∞. (.)

Next we prove the following estimate by mathematical induction:

∥∥εn∥∥∞ ≤ ∥∥ε∥∥∞. (.)

For n = , from inequality (.), we can see (.) holds obviously. Assuming

∥∥εk∥∥∞ ≤ ∥∥ε∥∥∞, k = , , . . . , n – , (.)

and using inequality (.), we obtain

∥∥εn∥∥∞ ≤
n–∑
k=

l,α
k

∥∥ε∥∥∞ –
n–∑
k=

l,α
k

∥∥εn–k∥∥∞

≤
n–∑
k=

l,α
k

∥∥ε∥∥∞ –
n–∑
k=

l,α
k

∥∥ε∥∥∞ =
∥∥ε∥∥∞. (.)

Hence, ‖εn‖∞ ≤ ‖ε‖∞, i.e., scheme (.) is unconditionally stable. �
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Lemma . ([]) Let R ≥ , ak ≥ , k = , , . . . , N , and satisfy

an ≤ –
n–∑
k=

lq,α
k an–k + R, n ≥ , (.)

(a) when  < α < ,

an ≤
( n–∑

k=

lq,α
k

)–

R ≤ nα�( – α)R, (.)

(b) when α → ,

an ≤ nR. (.)

Theorem . Let F(x) be an increasing function in the interval [a, b] and λ ≥ , then the
numerical scheme (.) is convergent, and the following error estimates hold:

∥∥u(xi, tn) – un
i
∥∥∞ ≤ C�( – α)Tα

(
τ + h), for  < α < , (.)

and

∥∥u(xi, tn) – un
i
∥∥∞ ≤ CT

(
τ + h), for α → , (.)

where the constant C >  is independent of τ and h.

Proof Let u(xi, tn) and un
i be the exact solution and the numerical solution at (xi, tn), re-

spectively, and en = {en
i = u(xi, tn) – un

i | ≤ i ≤ M,  ≤ n ≤ N}. Notice that

e
i = ,  ≤ i ≤ M – , (.)

en
 = , en

M = ,  ≤ n ≤ N . (.)

Subtracting Eq. (.) from Eq. (.), we can get the following error equation:

en
i +

ταFi+

h
en

i+ –
ταFi–

h
en

i– +
τα

hβ

i–∑
j=–M+i+

gjen
i–j = –

n–∑
k=

e–λkτ l,α
k en–k

i + Rn
i ,

i = , , . . . , M – , n ≥ , (.)

where Rn
i is defined by (.). From Lemma ., we derive

max
≤i≤M–

∣∣en
i
∣∣ ≤ max

≤i≤M–

| –
∑n–

k= e–λkτ l,α
k en–k

i + Rn
i |

 + τα

h (Fi+ – Fi–) + τα

hβ

∑i
j=–M+i gj

≤ max
≤i≤M–

∣∣∣∣∣–
n–∑
k=

e–λkτ l,α
k en–k

i + Rn
i

∣∣∣∣∣

≤ –
n–∑
k=

l,α
k

(
max

≤i≤M–

∣∣en–k
i

∣∣) + Rmax. (.)
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Using the definition of discrete L∞ norm leads to

∥∥en∥∥∞ ≤ –
n–∑
k=

l,α
k

∥∥en–k∥∥∞ + Rmax, (.)

where Rmax = max≤i≤M–,n≥ |Rn
i |.

Hence, according to Lemma ., we have

∥∥u(xi, tn) – un
i
∥∥∞ ≤ C�( – α)Tα

(
τ + h),  < α < , (.)

∥∥u(xi, tn) – un
i
∥∥∞ ≤ CT

(
τ + h), α → . (.)

�

5 Numerical examples
In this section, two examples are used to illustrate the effectiveness of the algorithms and
to verify the above theoretical results. The first example is used to testify the efficiency
of the TWSLD operators, the second example is calculated by the presented numerical
schemes (.), and the validity of our developed algorithms is confirmed.

Example . In this example, we consider the following tempered fractional ordinary dif-
ferential initial value problem:

⎧⎨
⎩

Dα,λ
t [u(t) – e–λtu()] = e–λt �(+α)

�() t,  < α < ,

u() = ,
(.)

then the exact solution of this problem is u(t) = e–λtt+α . The numerical results are shown
in Tables -. The errors are measured by the L∞ norm

Err(τ ) =
∥∥u(tn) – un∥∥∞ = max

≤n≤N

∣∣u(tn) – un∣∣,

and the convergent order is approximated by

Rate = log
Err(τ )

Err(τ /)
.

Table 1 Numerical errors and convergent orders with λ = 2, T = 1, when q = 1

τ α = 0.1 α = 0.5 α = 0.9

Err(τ ) Rate Err(τ ) Rate Err(τ ) Rate

1/20 1.042402e–03 * 5.951186e–03 * 1.211901e–02 *
1/40 5.228154e–04 0.9955 2.968097e–03 1.0036 5.998746e–03 1.0145
1/80 2.618102e–04 0.9978 1.482148e–03 1.0018 2.984155e–03 1.0073
1/160 1.310056e–04 0.9989 7.405955e–04 1.0009 1.488269e–03 1.0037
1/320 6.552793e–05 0.9994 3.701777e–04 1.0005 7.431822e–04 1.0018
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Table 2 Numerical errors and convergent orders with λ = 2, T = 1, when q = 2

τ α = 0.1 α = 0.5 α = 0.9

Err(τ ) Rate Err(τ ) Rate Err(τ ) Rate

1/20 8.679529e–05 * 4.906284e–04 * 1.069498e–03 *
1/40 2.252822e–05 1.9459 1.272612e–04 1.9468 2.772513e–04 1.9477
1/80 5.738671e–06 1.9729 3.241215e–05 1.9732 7.060275e–05 1.9734
1/160 1.448182e–06 1.9865 8.179024e–06 1.9865 1.781554e–05 1.9866
1/320 3.637467e–07 1.9932 2.054342e–06 1.9933 4.474725e–06 1.9933

Table 3 Numerical errors and convergent orders with λ = 2, T = 1, when q = 3

τ α = 0.1 α = 0.5 α = 0.9

Err(τ ) Rate Err(τ ) Rate Err(τ ) Rate

1/20 1.285963e–05 * 5.527985e–05 * 1.062574e–04 *
1/40 1.777100e–06 2.8553 7.323031e–06 2.9162 1.410216e–05 2.9136
1/80 2.295725e–07 2.9525 9.432216e–07 2.9568 1.816285e–06 2.9569
1/160 2.888395e–08 2.9906 1.196761e–07 2.9785 2.304527e–07 2.9784
1/320 3.637465e–09 2.9893 1.507136e–08 2.9893 2.902244e–08 2.9892

Table 4 Numerical errors and convergent orders with λ = 2, T = 1, when q = 4

τ α = 0.1 α = 0.5 α = 0.9

Err(τ ) Rate Err(τ ) Rate Err(τ ) Rate

1/20 1.654609e–06 * 6.172450e–06 * 1.076598e–05 *
1/40 1.490310e–07 3.4728 4.637825e–07 3.7343 7.508511e–07 3.8418
1/80 1.286134e–08 3.5345 3.288428e–08 3.8180 4.965133e–08 3.9186
1/160 1.085597e–09 3.5665 2.255987e–09 3.8656 3.194957e–09 3.9580
1/320 9.059726e–11 3.5829 1.517684e–10 3.8938 2.027282e–10 3.9782

Example . Without loss of generality, we add a force term f (x, t) on the right-hand side
of Eq. (.). We consider

Dα,λ
t

[
u(x, t) – e–λtu(x, )

]
=

[
–

∂

∂x
F(x) +

∂β

∂|x|β
]

u(x, t) + f (x, t), (.)

where  < α < ,  < β ≤ , λ ≥ ,  < x < ,  < t ≤ T , with F(x) = x and the homogeneous
initial boundary conditions

u(x, ) = ,  ≤ x ≤ ,

u(, t) = , u(, t) = ,  < t ≤ T ,
(.)

and the force term f (x, t) is

f (x, t) = e–λt �()
�( – α)

t–αx( – x) + e–λttx( – x)( – x)

+
e–λtt

 cos( πβ

 )

[
�()

�( – β)
(
x–β + ( – x)–β

)

– 
�()

�( – β)
(
x–β + ( – x)–β

)
+

�()
�( – β)

(
x–β + ( – x)–β

)]
. (.)
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The exact solution of this problem is

u(x, t) = e–λttx( – x). (.)

Here, the error in the L∞ norm is denoted by

Err(τ , h) =
∥∥u(xi, tn) – un

i
∥∥∞ = max

≤i≤M

∣∣u(xi, tn) – un
i
∣∣u(xi, tn) – un

i |, n ≥ .

For theoretical convergent accuracy O(τ q + hp), the convergent order about step length
h can be approximated by

Rate = log
Err(τ , h)

Err(–p/qτ , h/)
.

Problem (.)-(.) is calculated by the new numerical schemes (.), and the numerical
results with different parameters α, β and λ are given in Tables -. It is obvious that

Table 5 Numerical errors and convergent orders with β = 1.5, λ = 2, T = 1, when q = 1, τ = h2

h α = 0.1 α = 0.5 α = 0.9

Err(h, τ ) Rate Err(h, τ ) Rate Err(h, τ ) Rate

1/10 1.671032e–04 * 1.640323e–04 * 1.629271e–04 *
1/20 3.928033e–05 2.0889 3.880801e–05 2.0796 3.890401e–05 2.0662
1/40 9.352858e–06 2.0703 9.296651e–06 2.0616 9.399219e–06 2.0493
1/80 2.245405e–06 2.0584 2.244103e–06 2.0506 2.286094e–06 2.0397

Table 6 Numerical errors and convergent orders with β = 1.5, λ = 2, T = 1, when q = 4,
τ = h1/2

h α = 0.1 α = 0.5 α = 0.9

Err(h, τ ) Rate Err(h, τ ) Rate Err(h, τ ) Rate

1/10 1.972781e–04 * 1.806785e–04 * 1.523243e–04 *
1/20 4.280811e–05 2.2043 3.874839e–05 2.2212 3.254807e–05 2.2265
1/40 1.011908e–05 2.0808 9.293740e–06 2.0598 8.656409e–06 1.9107
1/80 2.226747e–06 2.1841 2.004849e–06 2.2128 1.715268e–06 2.3353

Table 7 Numerical errors and convergent orders with α = 0.5, λ = 2, T = 1, when q = 1, τ = h2

h β = 1.1 β = 1.5 β = 1.9

Err(h, τ ) Rate Err(h, τ ) Rate Err(h, τ ) Rate

1/10 1.624398e–04 * 1.640323e–04 * 2.552445e–04 *
1/20 5.330786e–05 1.6075 3.880801e–05 2.0796 6.242922e–05 2.0316
1/40 1.371705e–05 1.9584 9.296651e–06 2.0616 1.532306e–05 2.0265
1/80 3.312170e–06 2.0501 2.244103e–06 2.0506 3.765450e–06 2.0248

Table 8 Numerical errors and convergent orders with α = 0.5, β = 1.5, T = 1, when q = 4,
τ = h1/2

h λ = 1 λ = 3 λ = 5

Err(h, τ ) Rate Err(h, τ ) Rate Err(h, τ ) Rate

1/20 1.185249e–04 * 1.266770e–05 * 1.353897e–06 *
1/40 2.811036e–05 2.0760 3.072661e–06 2.0436 3.358635e–07 2.0112
1/80 5.483807e–06 2.3579 7.329619e–07 2.0677 9.796718e–08 1.7775
1/160 1.396193e–06 1.9737 1.787564e–07 2.0357 2.288642e–08 2.0978
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the numerical schemes with high order accuracy and the convergence orders are almost
consistent with the theoretical results O(τ q + h).

6 Numerical simulations
Using the numerical schemes (.), we simulate the probability density distribution u(x, t)
of the diffusion particles on a finite domain [, ]. We consider the Gaussian function
which tends to the δ function when σ →  []

u(x, ) =


σ
√

π
exp

(
–

(x – )

σ 

)

as the initial condition, and u(, t) = u(, t) =  as the boundary conditions. In the calcu-
lation process, let the force term f (x, t) = , h = /, τ = h, σ = ..

Let F(x) = x, the numerical results under different parameters are shown in Figure . It
can be seen that the values of α, β , λ, t have a different effect on the probability density
of the particles, but all of these curves have a cusp. The experimental results are in agree-
ment with the analytic results given in [, ], which indicates the effectiveness of our
numerical schemes again.

Figure 1 The probability density distribution of particles under different values of α, β , λ, t.
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7 Conclusions
It is well known that the time-space fractional Fokker-Planck equations play a key role in
modelling relevant physical processes. The high order numerical algorithms for the differ-
ential equations naturally become an urgent topic. In this work, the high order schemes
have been used to numerically solve the time-space tempered fractional Fokker-Planck
equation with the space Riesz fractional derivative. We have proved theoretically that
the numerical scheme is unconditionally stable and convergent with orders O(τ q + h)
(q = , , , , ), which is higher than some recently studied schemes in terms of temporal
direction. Extensive numerical experiments and simulations are carried out to verify the
theoretical results.
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