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Abstract
In this paper, a time-delay rumor propagation model with a saturated control
function is established. Regarding time delay as a bifurcation parameter, Hopf
bifurcation is studied. By means of the normal form and the center manifold theorem,
a formula is put forward to determine both Hopf bifurcation direction and bifurcating
periodic solution stability, together with some numerical simulations to illustrate the
relevant theoretical results. Simulation results indicate that an appropriate
government control could make periodic oscillation behaviors of the system become
steady so as to improve the balance of a social system.
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1 Introduction
After an emergency takes place, the government sector serves as the subject of emergency
treatment. As far as the government is concerned, the associated contingency plan should
be initiated promptly, including emergency supplies distribution, rescue and information
release, etc. During emergency processing, a variety of rumors may be spread along with
it to affect government image, course of emergency processing and official contingency
strategies. The ultimate aim for studies on rumor propagation law and influencing fac-
tors is to effectively control and prevent rumors, guide public opinions, and bring down
damages caused by rumor propagation. Research on rumor propagation control strategy
is exhibited qualitatively in most cases. The exploration into controls over rumor propaga-
tion by qualification has become a hot spot in recent years [–]. As for the corresponding
theoretical accomplishments, most of them concentrate on rumor propagation regulation
by the government that takes advantage of media, etc. to carry out external environment
intervention strategy and individual immunity method.

Through media, etc., the government makes use of external environment intervention
strategy to control rumor propagation, and such a method has attracted increasingly more
attention from scholars and managers. Study on rumor propagation control is required to
sufficiently seize rumor propagation laws, psychological features of receivers, and inter-
ventions from the external environment, etc., so as to effectively deal with relevant prob-
lems. In recent years, scholars have achieved certain research accomplishments from dif-
ferent perspectives and focuses. Reinforcement of media coverage and timely information
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release by the government is an effective widely recognized measure for rumor propaga-
tion control at present. According to Huo et al. [], factors such as media coverage and
governmental information transparency during propagation and diffusion are taken into
account to extend the D-K rumor propagation model; moreover, they also utilize the opti-
mal control theory to discuss an optimal control strategy for rumor propagation. Recently,
Zhang and Huang [] have presented an -state ICSAR rumor propagation model with
government regulation and control. In their opinion, both high and low propagation rates
of rumors are able to lead to repeated propagations.

As rumor propagation is similar to infectious disease transmission, the individual immu-
nity method for rumor propagation control is derived from the method of immunization
against infectious diseases. Many scholars have carried out relevant studies on immuniza-
tion strategies of infectious diseases, and rather plentiful research accomplishments have
also been obtained [–]. Without any doubt, theoretical guidance and methods for
references are provided for effective controls over rumor propagation by means of indi-
vidual immunity. In the process of control over infectious diseases, both treatment and
immunization play critical roles. In order to prevent and control transmissions of infec-
tious diseases such as measles, tuberculosis and flu, treatment is an important and valid
approach. As for the classic epidemic model, the cure rate of the infected is deemed to be
in direct proportion to the number of such infected people []. Therefore, dynamic prop-
erties according to which application of treatment affects these diseases should be studied.
The establishment of an appropriate cure function is a problem rather concerned about
by scholars at the time of performing theoretical analysis on epidemicity of diseases. In
literature [–], they adopt diverse cure functions to probe into controls over epidemic
diseases and set up the corresponding epidemic models provided that different medical
resources are limited.

Among studies on rumor propagation, regardless of external intervention strategies that
are adopted to control it, the control capability of government cannot be enhanced un-
limitedly as far as the finiteness of various resources is taken into consideration. Likewise,
beneficial from research accomplishments of infectious disease studies, we can use the
study on a saturated cure rate of infectious diseases with treatment capacity constraints
for references.

Enlightened by research accomplishments above, in this paper, a rumor propagation
model that considers government control limits is constructed, and the relevant dynamic
properties are also analyzed.

The structure of this paper is arranged as follows. In Section , the model is constructed.
In Section , I study the local stability and the existence of Hopf bifurcation through the
study of associated characteristic equations. In Section , I study the direction and stability
of Hopf bifurcation. In Section , some numerical simulations are given to support our
theoretical predictions. Finally, this paper ends with a brief conclusion.

2 The model
This section describes a delayed rumor propagation model. Our goal is trying to create
a realistic model which can provide wide insight into predicting and controlling rumor
prevalence.

Based on the classical SIR epidemic model, in this work, the people can be divided into
three classes depending on their different states: ignorants (those not aware of the rumor),
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Figure 1 Node state transition relationship.

spreaders (those who are spreading it), and stiflers (those who know the rumor but have
ceased communicating it after meeting somebody already informed). For simplicity, we
use S(t), I(t) and R to represent the densities of ignorant users, spreading users and stifle
users, respectively. To model the propagation of rumor, the following assumptions are
imposed:

(i) We consider the recruitment rate of the ignorants is a constant.
(ii) When an ignorant user is infected by spreading users, there is a spreading

incubation period during which the infectious agents develop on networks, and it is
only after that time that the infected user becomes himself infectious. Therefore,
defining a delay for the spreading incubation period is more appropriate.

(iii) Usually, when a rumor is spreading, the government will take effective actions to
control and remove the spreading users.

Our assumption on the dynamical transfer of the nodes is depicted in Figure . As a
result, our model can be represented as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – βSI – μS,
dI
dt = βSI – αIR(t – τ ) – μI – βI

+αI ,
dR
dt = αIR(t – τ ) + βI

+αI – μR,

()

where S is ignorant, I is spreader, and R is stifler. � is the recruitment rate of the ignorants,
β is the contact rate of ignorant and spreader, μ is the death rate of nodes, α is the con-
tact rate of spreader and stifler, τ is a non-negative constant representing the spreading
incubation period. βI

+αI is a government control function which tends to a saturation level
when I gets large.

In the following, we find all possible non-negative equilibria. Clearly, the system has two
feasible non-negative equilibria, namely,

() The boundary equilibrium E( �
μ

, , ) representing the state corresponding to the
extinction of spreaders and stiflers;

() The interior equilibrium E∗(S∗, I∗, R∗).
At the interior equilibrium point, we must have

⎧
⎪⎪⎨

⎪⎪⎩

� – βSI – μS = ,

βSI – αIR – μI – βI
+αI = ,

αIR + βI
+αI – μR = .

()

Solving the first and the third equation of (), we have S = �
βI+μ

and R = βI
(+αI)(μ–αI) .

Substituting S and R into the second equation of (), we have

AI + AI + AI + A = , ()
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where

A = ααβμ,

A = αβμ + ααμ
 – αβμ – �ααβ ,

A = αμ – αμ
 – βμ – �αβ – ββμ + �αβμ,

A = �βμ – μ – βμ
.

()

We make the following assumption:

(H) �β – μ – βμ < .

The following results are obvious.

Lemma . If (H) holds, then system () has at least one positive equilibrium E∗(S∗, I∗, R∗),
where S∗ = �

βI∗+μ
and R∗ = βI∗

(+αI∗)(μ–αI∗) .

3 Local stability and Hopf bifurcation
In this section, we discuss the local stability and Hopf bifurcation of system () by analyzing
the corresponding characteristic equations.

Theorem . If βS∗ – μ + β <  holds, then the equilibrium E is locally asymptotically
stable.

Proof It is easily obtained that the characteristic equation corresponding to the equilib-
rium E is as follows:

(λ + μ)(λ – βS∗ + μ – β
)

= . ()

So, we obtain λ = –μ <  and λ = βS∗ – μ + β. Therefore, if (H) holds, then λ < . It
means that the equilibrium E is locally asymptotically stable. �

In the following, we consider the stability of the positive equilibrium E∗. At the positive
equilibrium E∗, the corresponding characteristic equation is

D(λ) = λ + pλ
 + pλ + p +

(
pλ

 + pλ + p
)
e–λτ , ()

where

p = μ + βI∗ – α,

p = –α
(
μ + βI∗) + μ

(
μ + βI∗ – α

)
+ IβS∗,

p = βS∗I∗μ –
(
μ + βI∗)μα,

p = –αI∗,

p = αI∗R∗ + ααI∗ –
(
μ + βI∗)αI∗ + αI∗α,

p =
(
μ + βI∗)(αI∗R∗ + ααI∗ + I∗αα

)
– βS∗I∗

α,

α =
β

( + αI∗) , α =
βαI∗

( + αI∗) .

()
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When τ = , Eq. () becomes

λ + (p + p)λ + (p + p)λ + p + p = . ()

By the Routh-Hurwitz criteria, we have the following results.

Lemma . If p + p > , p + p > , (p + p)(p + p) – p + p >  hold, then the positive
equilibrium of system () is locally asymptotically stable with τ = .

Now the effect of the delay on the stability of the positive equilibrium of system () will be
discussed. Providing that there is a root of Eq. (), it should satisfy the following equation:

⎧
⎨

⎩

–ω + pω = (–pω
 + p) sinωτ – pω cosωτ ,

ω(p + p + p) = –pω sinωτ – (–pω
 + p) cosωτ .

()

From Eq. (), adding the squared terms for both equations yields

ω +
(
p

 – p – p

)
ω +

(
p

 – pp + pp – p

)
ω + p

 – p
 = . ()

Let z = ω, then Eq. () becomes

z +
(
p

 – p – p

)
z +

(
p

 – pp + pp – p

)
z + p

 – p
 = . ()

Denote

h(z) = z +
(
p

 – p – p

)
z +

(
p

 – pp + pp – p

)
z + p

 – p
 = . ()

Lemma . If the following conditions

αI∗R∗ + βS∗μ – αβS∗I∗ > , βS∗μ + αβS∗I∗ – μα – αI∗R∗ – βαα <  ()

hold, then Eq. () has at least a positive root.

Proof From (), we have

p + p = βS∗I∗μ –
(
μ + βI∗)μα +

(
μ + βI∗)αI∗R∗

+
(
μ + βI∗)ααI∗ – βS∗I∗

α,

p – p = βS∗I∗μ –
(
μ + βI∗)μα –

(
μ + βI∗)αI∗R∗

–
(
μ + βI∗)ααI∗ + βS∗I∗

α.

()

If conditions () hold, then p + p >  and p – p < . Obviously, limz→∞ h(z) = +∞.
Hence, there is at least z ∈ (,∞), so that h(z) = . That is to say, Eq. () has at least a
positive root. �
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According to Lemma ., Eq. () has a unique positive root, denoted by z, and thus
Eq. () has a unique positive root ω = √z. By (), we have

cos(ωτ ) =
(–pω

 + p)(p + p + p)ω + pω(–ω + pω)
(pω – p) + ωp


. ()

Thus, if we denote

τj =

ω

(

arccos
(–pω

 + p)(p + p + p)ω + pω(–ω + pω)
(pω – p) + ωp


+ jπ

)

,

j = , , , . . . , ()

then ±iω is a pair of purely imaginary roots of () with τ = τ j. Clearly, the sequence
{τ j}∞j= is increasing and

lim
j→+∞ τ j = +∞. ()

Thus, we can define

τ = τ  = min
{
τ j}. ()

Lemma . Let λ(τ ) = α(τ ) ± iω(τ ) be the root of () near τ = τ
j
 satisfying α(τ j

) = ,
ω(τ j

) = ω. Suppose that, where is defined by (), the following transversality condition
holds:

d(Reλ(τ ))
dτ

∣
∣
∣
∣
τ=τ

j


�= , ()

and the sign of d(Reλ(τ ))
dτ

|
τ=τ

j


is consistent with that of h′(z).

Proof Denote

R(λ) = λ + pλ
 + pλ + p, ()

Q(λ) = pλ
 + pλ + p. ()

Then Eq. () can be written as

R(λ) + Q(λ)e–λτ = , ()

and () can be transformed into the following form:

R(iω)R̄(iω) + Q(iω)Q̄(iω) = . ()

Thus, together with () and (), we have

h
(
ω) = R(iω)R̄(iω) – Q(iω)Q̄(iω). ()
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Differentiating both sides of Eq. () with respect to ω, we obtain

ωh′(ω) = i
[
R′(iω)R̄(iω) – R(iω)R̄′(iω) – Q′(iω)Q̄(iω) + Q(iω)Q̄′(iω)

]
. ()

If iω is not simple, then ω must satisfy

d
dλ

[
R(λ) + Q(λ)e–λτ

]
∣
∣
∣
∣
λ=iω

= , ()

that is, ω must satisfy

R′(iω) + Q′(iω)e–iωτ – τQ(iω)e–iωτ = . ()

With Eq. (), we have

τ =
Q′(iω)
Q(iω)

–
R′(iω)
R(iω)

.

Thus, by () and () we obtain

Im(τ) = Im

(
Q′(iω)
Q(iω)

–
R′(iω)
R(iω)

)

= Im

(
Q′(iω)Q̄(iω)
Q(iω)Q̄(iω)

–
R′(iω)R̄(iω)
R(iω)R̄(iω)

)

= Im

(
Q′(iω)Q̄(iω) – R′(iω)R̄(iω)

R(iω)R̄(iω)

)

=
–i[Q′(iω)Q̄(iω) – R′(iω)R̄(iω) – Q̄′(iω)Q(iω) + R̄′(iω)R(iω)]

R(iω)R̄(iω)

=
ωh′(ω

)
|R(iω)| .

Since τ is real, i.e., Im(τ) = , we have h′(ω
) = .

We get a contradiction to the condition h′(ω
) �= . This proves the first conclusion.

Differentiating both sides of Eq. () with respect to τ , we obtain

[
R′(λ) + Q′(λ)e–λτ – τQ(λ)e–λτ

]dλ

dτ
– λQ(λ)e–λτ = , ()

which implies

dλ

dτ
=

λQ(λ)
R′(λ)eλτ + Q′(λ) – τQ(λ)

=
λQ(λ)[R̄′(λ)eλτ + Q̄′(λ) – τ Q̄(λ)]

|R′(λ)eλτ + Q′(λ) – τQ(λ)|

=
λ[–R(λ)R̄′(λ)eλτ + Q(λ)Q̄′(λ) – τ |Q(λ)|]

|R′(λ)eλτ + Q′(λ) – τQ(λ)| .

It follows together with () that

d(Reλ(τ ))
dτ

∣
∣
∣
∣
τ=τ,λ=iω

=
Re{λ[–R(λ)R̄′(λ)eλτ + Q(λ)Q̄′(λ) – τ |Q(λ)|]}τ=τ,λ=iω

|R′(λ)eλτ + Q′(λ) – τQ(λ)|
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=
iωn[–R(iωn)R̄′(iωn) + Q(iωn)Q̄′(iωn) + R′(iωn)R̄(iωn) – Q′(iωn)Q̄(iωn)]

|R′(λ)eλτ + Q′(λ) – τQ(λ)|

=
ω

h′(ω
)

|R′(λ)eλτ + Q′(λ) – τQ(λ)| =
ω

h′(z)
|R′(λ)eλτ + Q′(λ) – τQ(λ)| �= .

Clearly, the sign of d(Reλ(τ ))
dτ

|τ=τ is determined by that of h′(z). �

From the above analysis, we have the following theorem.

Theorem . From Lemmas .-., the following statements are true:
(i) When τ ∈ [, τ), the positive equilibrium point of () is asymptotically stable;

(ii) The Hopf bifurcation occurs at τ = τ. That is, system () has a branch of periodic
solutions bifurcating from the positive equilibrium near τ = τ.

4 Direction and stability of Hopf bifurcation
In this section, we derive explicit formulae to determine the properties of the Hopf bi-
furcation at critical value τ j by using the normal form theory and the center manifold
reduction developed by [].

First, we let

f () = � – βSI – μS, f () = βSI – αIR(t – τ ) – μI –
βI

 + αI
,

f () = αIR(t – τ ) +
βI

 + αI
– μR,

f ()
ij =

∂ i+jf ()

∂Si∂Ij , f ()
ijlk =

∂ i+j+l+kf ()

∂Si∂Ij∂Rl∂Rk , f ()
ijl =

∂ i+j+lf ()

∂Ii∂Rj∂Rl .

()

Denote τ j by τ ∗ and introduce the new parameter μ = τ – τ ∗. Normalize the delay τ by
the time-scaling t → t/τ . Denote

U(t) =
(
S(t), I(t), R(t)

)T ,

then system () can be rewritten as an abstract differential equation in the phase space
C = C([–τ , ],Rn) of the form

dU(t)
dt

= L
(
τ ∗)(Ut) + F(Ut ,μ), ()

where

Ut(θ ) = U(t + θ ), –τ ≤ θ ≤ ,

L(γ )(φ) = μ

⎛

⎜
⎝

–(βI∗ + μ)φ() – βS∗φ()
βI∗φ() + αφ() – αI∗φ(–τ )

(αR∗ + α)φ() – μφ() + αI∗φ(–τ )

⎞

⎟
⎠ , ()

F(φ,γ ) = L(γ )φ + q(φ,γ ) ()
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and

q(ϕ,μ) =
(
τ ∗ + μ

)

⎛

⎜
⎝

∑
i+j=


i!j! f

()
ij ϕi

()ϕj
()

∑
i+j+l+k=


i!j!l!k! f

()
ijlk ϕi

()ϕj
()ϕl

()ϕk
(–)

∑
i+j+l=


i!j!l! f

()
ijl ϕi

()ϕj
()ϕl

(–)

⎞

⎟
⎠ + h.o.t., ()

for ϕ = (ϕ,ϕ,ϕ)T ∈ C .
Then the linearized system of () at the positive equilibrium is

dU(t)
dt

= L
(
τ ∗)(Ut). ()

Based on the discussion in Section , we can easily know that for τ = τ ∗, the characteristic
equation of () has a pair of simple purely imaginary eigenvalues � = {iωτ

∗, –iωτ
∗}.

Let C := C([–, ],R), consider the following FDE on C :

ż = L
(
τ ∗)(zt). ()

Obviously, L(τ ∗) is a continuous linear function mapping C([–, ],R) into R
. By the

Riesz representation theorem, there exists a  ×  matrix function η (– ≤ θ ≤ ), whose
elements are of bounded variation such that

L
(
τ ∗)(ϕ) =

∫ 

–

[
dη

(
θ , τ ∗)]ϕ(θ ) for ϕ ∈ C. ()

In fact, we can choose

η
(
θ , τ ∗) = τ ∗

⎛

⎜
⎝

–(βI∗ + μ) –βS∗ 
βI∗ α 
 αR∗ + α –μ

⎞

⎟
⎠ δ(θ )

– τ ∗

⎛

⎜
⎝

  
  –αI∗

  αI∗

⎞

⎟
⎠ δ(θ + ), ()

where δ is the Dirac delta function.
Let A(τ ∗) denote the infinitesimal generator of the semigroup induced by the solutions

of (), and let A∗ be the formal adjoint of A(τ ∗) under the bilinear pairing

(ψ ,φ) =
(
ψ(),φ()

)
–

∫ 

–

∫ θ

ξ=
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ

=
(
ψ(),φ()

)
+ τ ∗

∫ 

–
ψ(θ + )

⎛

⎜
⎝

  
  –αI∗

  αI∗

⎞

⎟
⎠φ(θ ) dθ ()

for φ ∈ C,ψ ∈ C∗ = C([, ], R). Then A(τ ∗) and A∗ are a pair of adjoint operators. From
the discussion in Section , we know that A(τ ∗) has a pair of simple purely imaginary
eigenvalues ±iωτ

∗, and they are also eigenvalues of A∗ since A(τ ∗) and A∗ are a pair of



Li Advances in Difference Equations  (2017) 2017:255 Page 10 of 22

adjoint operators. Let P and P∗ be the center spaces, that is, the generalized eigenspaces
of A(τ ∗) and A∗ associated with �, respectively. Then P∗ is the adjoint space of P and
dim P = dim P∗ = . Direct computations give the following results.

Lemma . Let
⎧
⎨

⎩

σ = – iω+βI∗+μ

βS∗ , σ = iω(iω+βI∗+μ)+βS∗I∗
βS∗(αI∗e–iωτ∗ –α)

,

σ ∗
 = βI∗+μ+iω

βI∗ , σ ∗
 = (iω–α)(iω+βI∗+μ)+βS∗

αR∗+α
.

()

Then

p(θ ) = eiωτ∗θ (,σ,σ)T , p(θ ) = p(θ ), – ≤ θ ≤ , ()

is a basis of P associated with � and

q(s) =
(
,σ ∗

 ,σ ∗

)
e–iωτ∗s, q(s) = q(s),  ≤ s ≤ , ()

is a basis of Q associated with �.

Let � = (�,�) and �∗ = (�∗
 ,�∗

 )T with

�(θ ) =
p(θ ) + p(θ )


=

⎛

⎜
⎝

Re{eiωτ∗θ }
Re{σeiωτ∗θ }
Re{σeiωτ∗θ }

⎞

⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosωτ
∗θ

ω
βS∗ sinωτ ∗θ – (βI∗+μ)

βS∗ cosωτ ∗θ


βS∗((αI∗ cos(ωτ∗)–α)+sin(ωτ∗)) (((–ω + βS∗I∗)(αI∗ cos(ωτ ∗) – α)
– (βI∗ + μ)ω sinωτ ∗) cosωτ ∗θ – (sinωτ ∗(–ω + βS∗I∗)

+ ω(βI∗ + μ)(αI∗ cos(ωτ ∗) – α)) sinωτ ∗θ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

�(θ ) =
p(θ ) – p(θ )

i
=

⎛

⎜
⎝

Im{eiωτ∗θ }
Im{σeiωτ∗θ }
Im{σeiωτ∗θ }

⎞

⎟
⎠ =

⎛

⎜
⎝

sinωτ
∗θ

– β sinωτ∗θ+ω cosωτ∗θ+μ sinωτ∗θ

βS∗
B sinωτ∗θ+B cosωτ∗θ

βS∗((αI∗ cos(ωτ∗)–α)+sin(ωτ∗))

⎞

⎟
⎠ ,

for θ ∈ [–, ], where

B =
(
–ω + βS∗I∗)(αI∗ cos

(
ωτ ∗) – α

)
–

(
βI∗ + μ

)
ω sinωτ ∗,

B = sinωτ ∗(–ω + βS∗I∗) + ω
(
βI∗ + μ

)(
αI∗ cos

(
ωτ ∗) – α

)
,

�∗
 (s) =

q(s) + q(s)


=

⎛

⎜
⎝

Re{e–iωτ∗s}
Re{σ ∗

 e–iωτ∗s}
Re{σ ∗

 e–iωτ∗s}

⎞

⎟
⎠

=

⎛

⎜
⎝

cosωτ
∗s

(βI∗+μ) cosωτ∗s+ω sinωτ∗s
βI∗

(βS∗I∗–ω–α(βI∗+μ)) cosωτ∗s+ω(βI∗+μ–α) sinωτ∗s
βI∗(αR∗+α)

⎞

⎟
⎠ ,
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�∗
 (s) =

q(s) – q(s)
i

=

⎛

⎜
⎝

Im{e–iωτ∗s}
Im{σ ∗

 e–iωτ∗s}
Im{σ ∗

 e–iωτ∗s}

⎞

⎟
⎠

=

⎛

⎜
⎝

– sinωτ
∗s

ω cosωτ∗s–(βI∗+μ) sinωτ∗s
βI∗

–(βS∗I∗–ω–α(βI∗+μ)) sinωτ∗s+ω(βI∗+μ–α) cosωτ∗s
βI∗(αR∗+α)

⎞

⎟
⎠

for s ∈ [, ]. From (), we can obtain (�∗
 ,�) and (�∗

 ,�). Note that

(q, p) =
(
�∗

 ,�
)

–
(
�∗

 ,�
)

+ i
[(

�∗
 ,�

)
+

(
�∗

 ,�
)]

and

(q, p) =  + σσ
∗ + σσ

∗
 – τ ∗αI∗(σσ

∗
 – σσ

∗

)
e–iωτ∗

:= D∗.

Therefore, we have

(
�∗

 ,�
)

–
(
�∗

 ,�
)

= Re
{

D∗},
(
�∗

 ,�
)

+
(
�∗

 ,�
)

= Im
{

D∗}.

Now, we define (�∗,�) = (�∗
j ,�k) (j, k = , ) and construct a new basis ψ for Q by

� = (�,�)T =
(
�∗,�

)–
�∗.

Obviously, (� ,�) = I×, the second order identity matrix. In addition, define f =
(ξ 

, ξ 
 , ξ 

 ), where

ξ 
 =

⎛

⎜
⎝





⎞

⎟
⎠ , ξ 

 =

⎛

⎜
⎝





⎞

⎟
⎠ , ξ 

 =

⎛

⎜
⎝





⎞

⎟
⎠ .

Let c · f be defined by

c · f = cξ

 + cξ


 + cξ




for c = (c, c, c)T , cj ∈ R (j = , , ).
Then the center space of linear equation () is given by PCNC , where

PCNϕ = �
(
� , 〈ϕ, f〉

) · f, ϕ ∈ c, ()

and C = PCNC ⊕ PSC , here PSC denotes the complementary subspace of PCNC and 〈·, ·〉 is
the Euclidean product.

Let Aτ∗ be defined by

Aτ∗ϕ(θ ) = ϕ̇(θ ) + X(θ )
[
L
(
τ ∗)(ϕ(θ )

)
– ϕ̇()

]
, ϕ ∈ BC, ()
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where X : [–, ] → B(X, X) is given by

X(θ ) =

⎧
⎨

⎩

, – ≤ θ < ,

I, θ = .
()

Then Aτ∗ is the infinitesimal generator induced by the solution of (), and () can be
rewritten as the following operator differential equation:

U̇t = Aτ∗Ut + XF(Ut ,μ). ()

Using the decomposition C = PCNC⊕PSC and (), the solution of () can be rewritten
as

Ut = �

(
x(t)
x(t)

)

· f + h(x, x,μ), ()

where
(

x(t)
x(t)

)

=
(
� , 〈Ut , f〉

)
, ()

and h(x, x,μ) ∈ Psc with h(, , ) = Dh(, , ) = . In particular, the solution of () on
the center manifold is given by

U∗
t = �

(
x(t)
x(t)

)

· f + h(x, x, ). ()

Setting z = x – ix and noticing that p = � + i�, then () can be rewritten as

U∗
t =



�

(
z + z̄

i(z – z̄)

)

· f + w(z, z̄) =



(pz + p̄z̄) · f + W (z, z̄), ()

where W (z, z̄) = h( z+z̄
 , – z–z̄

i , ). Moreover, by [], z satisfies

ż = iωτ
∗z + g(z, z̄), ()

where

g(z, z̄) =
(
�() – i�()

)〈
F
(
U∗

t , 
)
, f

〉
. ()

Let

W (z, z̄) = W
z


+ Wzz̄ + W

z̄


+ · · · ()

and

g(z, z̄) = g
z


+ gzz̄ + g

z̄


+ · · · . ()
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From (), we have

〈
F
(
U∗

t , 
)
, f

〉

=
τ ∗z



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝


 f ()

 + f ()
 σ + 

 f ()
 σ 



 f ()

 + 
 f ()

σ

 + 

 f ()
σ


 + 

 f ()
σ


 e–iωτ∗ + f ()

σ + f ()
σ

+ f ()
σe–iωτ∗ + f ()

σσ + f ()
σσe–iωτ∗ + f ()

σ

 e–iωτ∗


 f ()

σ

 + 

αf ()
σ


 + 

 f ()
σ


 e–iωτ∗ + f ()

σσ + f ()
σσe–iωτ∗

+ f ()
σ


 e–iωτ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
τ ∗zz̄



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄) + f ()

(σ

+ σ̄) + f ()
(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()

(σσ̄ + σ̄σ)
+ f ()

(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ )

f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)
+ f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
τ ∗z̄



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝


 f ()

 + f ()
 σ̄eiωτ∗ + 

 f ()
 σ̄ 



 f ()

 + 
 f ()

σ̄

 + 

 f ()
σ̄


 + 

 f ()
σ̄


 eiωτ∗ + f ()

σ + f ()
σ̄

+ f ()
σ̄eiωτ∗ + f ()

σ̄σ̄ + f ()
σ̄σ̄eiωτ∗ + f ()

σ̄

 eiωτ∗


 f ()

σ̄

 + 

 f ()
σ̄


 + 

 f ()
σ̄


 eiωτ∗ + f ()

 σ̄σ̄ + f ()
 σ̄σ̄eiωτ∗

+ f ()
 σ̄


 eiωτ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
τ ∗



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈f ()
 (w()

() + w()
 ()) + f ()

 (w()
 () + w()

 () + σw()
 ()

+ σ̄w()
()) + f ()

 (σ̄eiωτ∗w()
 (–) + σe–iωτ∗w()

 (–)), 〉
〈f ()

(w()
 () + w()

()) + f ()
(w()

 ()σ̄ + σw()
 ())

+ f ()
(w()

 ()σ̄ + σw()
 ()) + f ()

(w()
 (–)σ̄eiωτ∗

+ σw()
 (–)e–iωτ∗ ) + f ()

(w()
 () + w()

 () + σw()
 () + σ̄w()

())
+ f ()

(w()
 () + w()

 () + σw()
 () + σ̄w()

()) + f ()
(w()

 (–)
+ w()

 (–) + σ̄eiωτ∗w()
() + σe–iωτ∗w()

 ()) + f ()
(σw()

 ()
+ σ̄w()

 () + σw()
 () + σ̄w()

 ()) + f ()
(σ̄w()

(–) + σw()
 (–)

+ σe–iωτ∗w()
 () + σ̄eiωτ∗w()

 ()) + f ()
(σw()

 (–) + σ̄w()
 (–)

+ σw()
 ()e–iωτ∗ + σ̄eiωτ∗w()

 ()), 〉
〈f ()

(σ̄w()
 () + σw()

 ()) + f ()
(σ̄w()

 () + σw()
 ())

+ f ()
(σ̄eiωτ∗w()

 (–) + σe–iωτ∗w()
 (–)) + f ()

 (σw()
 ()

+ σ̄w()
 () + σw()

 () + σ̄w()
 ()) + f ()

 (σ̄w()
 (–) + σ̄w()

 (–)
+ σe–iωτ∗w()

 () + σ̄w()
 ()eiωτ∗ ) + f ()

(σw()
 (–)

+ σ̄w()
 (–) + σw()

 ()e–iωτ∗ + σ̄w()
 ()eiωτ∗ ), 〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× zz̄ + · · · ,

where

〈
W n

ij (θ ), 
〉

=

π

∫ π


W n

ij (θ )(x) dx, i + j = , n ∈N.
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Let (ψ,ψ,ψ) = �()– i�(). Then, by (), () and (), we can obtain the following
quantities:

g =
τ ∗



{[



f ()
 + f ()

 σ +



f ()
 σ 



]

ψ +
[




f ()
 +




f ()
σ


 +




f ()
σ




+



f ()
σ


 e–iωτ∗ + f ()

σ + f ()
σ + f ()

σe–iωτ∗ + f ()
σσ

+ f ()
σσe–iωτ∗

+ f ()
σ


 e–iωτ∗

]

ψ +
[




f ()
σ


 +



αf ()

σ



+



f ()
σ


 e–iωτ∗

+ f ()
σσ + f ()

σσe–iωτ∗
+ f ()

σ

 e–iωτ∗

]

ψ

}

,

g =
τ ∗


{[

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

]
ψ +

[
f ()
 + f ()

σσ̄ + f ()
σσ̄

+ f ()
σσ̄ + f ()

(σ + σ̄) + f ()
(σ + σ̄) + f ()


(
σe–iωτ∗

+ σ̄eiωτ∗)

+ f ()
(σσ̄ + σ̄σ) + f ()


(
σσ̄eiωτ∗

+ σ̄σe–iωτ∗)
+ f ()


(
σσ̄eiωτ∗

+ σ̄σe–iωτ∗)]
ψ +

[
f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)

+ f ()


(
σσ̄eiωτ∗ + σ̄σe–iωτ∗) + f ()


(
σσ̄eiωτ∗ + σσ̄e–iωτ∗)]

ψ
}

,

g =
τ ∗



{[



f ()
 + f ()

 σ̄eiωτ∗
+




f ()
 σ̄ 



]

ψ +
[




f ()
 +




f ()
σ̄


 +




f ()
σ̄




+



f ()
σ̄


 eiωτ∗ + f ()

σ + f ()
σ̄ + f ()

σ̄eiωτ∗ + f ()
σ̄σ̄ + f ()

σ̄σ̄eiωτ∗

+ f ()
σ̄


 eiωτ∗

]

ψ +
[




f ()
σ̄


 +




f ()
σ̄


 +




f ()
σ̄


 eiωτ∗ + f ()

 σ̄σ̄

+ f ()
 σ̄σ̄eiωτ∗

+ f ()
 σ̄


 eiωτ∗

]

ψ

}

,

g =
τ ∗


[〈

f ()


(
w()

() + w()
 ()

)
+ f ()


(
w()

 () + w()
 () + σw()

 () + σ̄w()
()

)

+ f ()


(
σ̄eiωτ∗

w()
 (–) + σe–iωτ∗

w()
 (–)

)
, 

〉
ψ +

〈
f ()


(
w()

 () + w()
()

)

+ f ()


(
w()

 ()σ̄ + σw()
 ()

)
+ f ()


(
w()

 ()σ̄ + σw()
 ()

)

+ f ()


(
w()

 (–)σ̄eiωτ∗ + σw()
 (–)e–iωτ∗) + f ()


(
w()

 () + w()
 ()

+ σw()
 () + σ̄w()

()
)

+ f ()


(
w()

 () + w()
 () + σw()

 () + σ̄w()
()

)

+ f ()


(
w()

 (–) + w()
 (–) + σ̄eiωτ∗

w()
() + σe–iωτ∗

w()
 ()

)

+ f ()


(
σw()

 () + σ̄w()
 () + σw()

 () + σ̄w()
 ()

)
+ f ()


(
σ̄w()

(–)

+ σw()
 (–) + σe–iωτ∗

w()
 () + σ̄eiωτ∗

w()
 ()

)
+ f ()

(σw()
 (–)

+ σ̄w()
 (–) + σw()

 ()e–iωτ∗
+ σ̄eiωτ∗

w()
 ()), 

〉
ψ +

〈
f ()


(
σ̄w()

 ()

+ σw()
 ()

)
+ f ()


(
σ̄w()

 () + σw()
 ()

)
+ f ()


(
σ̄eiωτ∗

w()
 (–)

+ σe–iωτ∗
w()

 (–)
)

+ f ()


(
σw()

 () + σ̄w()
 () + σw()

 () + σ̄w()
 ()

)

+ f ()


(
σ̄w()

 (–) + σ̄w()
 (–) + σe–iωτ∗

w()
 () + σ̄w()

 ()eiωτ∗)

+ f ()


(
σw()

 (–) + σ̄w()
 (–) + σw()

 ()e–iωτ∗
+ σ̄w()

 ()eiωτ∗)
, 

〉
ψ

]
.
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Since W(θ ), W(θ ) for θ ∈ [–, ] appear in g, we still need to compute them. It fol-
lows easily from () that

Ẇ (z, z̄) = Wzż + W(żz + zż) + Wz̄ż + · · · ()

and

Aτ∗W = Aτ∗W
z


+ Aτ∗Wzz̄ + Aτ∗W

z̄


+ · · · . ()

In addition, by [], W (z(t), z̄(t)) satisfy

Ẇ = Aτ∗W + H(z, z̄), ()

where

H(z, z̄) = H
z


+ Hzz̄ + H

z̄


+ · · ·

= XF
(
U∗

t , 
)

– �
(
� ,

〈
XF

(
U∗

t , 
)
, f

〉) · f,
()

with Hij ∈ PSC , i + j = . Thus, from () and ()-(), we can obtain that

⎧
⎨

⎩

(iωτ
∗ – Aτ∗ )W = H,

–Aτ∗W = H.
()

Notice that Aτ∗ has only two eigenvalues ±iωτ
∗ with zero real parts, therefore, () has

a unique solution Wij (i + j = ) in PSC given by

⎧
⎨

⎩

W = (iωτ
∗ – Aτ∗ )–H,

W = –A–
τ∗H.

()

From (), we know that for – ≤ θ < ,

H(z, z̄) = –�(θ )�()
〈
F
(
U∗

t , 
)
, f

〉 · f

= –
(

p(θ ) + p(θ )


,
p(θ ) – p(θ )

i

)
(
�()�()

) × 〈
F
(
U∗

t , 
)
, f

〉 · f

= –


[
p(θ )

(
�() – i�()

)
+ p(θ )

(
�() + i�()

)] × 〈
F
(
U∗

t , 
)
, f

〉 · f

= –



[
gp(θ ) + ḡp(θ )

]
z · f –



[
gp(θ ) + ḡp(θ )

]
zz̄ · f + · · · .

Therefore, for – ≤ θ < ,

H(θ ) = –


[
gp(θ ) + ḡp(θ )

] · f, ()

H(θ ) = –


[
gp(θ ) + ḡp(θ )

] · f ()
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and

H(z, z̄)() = F
(
U∗

t , 
)

– �
(
� ,

〈
F
(
U∗

t , 
)
, f

〉) · f,

H() =
τ ∗



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄)

+ f ()
(σ + σ̄) + f ()

(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()
(σσ̄

+ σ̄σ) + f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()

(σσ̄eiωτ∗

+ σ̄σe–iωτ∗ )f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄

+ f ()
 (σσ̄ + σ̄σ) + f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ )
+ f ()

(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

–


[
gp() + ḡp()

] · f , ()

H() =
τ ∗



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄)

+ f ()
(σ + σ̄) + f ()

(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()
(σσ̄ + σ̄σ)

+ f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()

(σσ̄eiωτ∗ + σ̄σe–iωτ∗ )
f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)
+ f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

–


[
gp() + ḡ


p()

] · f . ()

By the definition of Aτ∗ , we get from () that

Ẇ(θ ) = iωτ
∗W(θ ) +



[
gp(θ ) + ḡp(θ )

] · f, – ≤ θ < .

Note that p(θ ) = p()eiωτ∗ , – ≤ θ ≤ . Hence

W(θ ) =
i


[
g

ωτ ∗ p(θ ) +
ḡ

ωτ ∗ p(θ )
]

· f + Eeiωτ∗θ , ()

and

E = W() –
i


[
g

ωτ ∗ p() +
ḡ

ωτ ∗ p()
]

· f. ()

Using the definition of Aτ∗ and combining () and (), we get

iωτ
∗
[

ig

ωτ ∗ p() · f +
i ḡ

ωτ ∗ p() · f + E
]

– L
(
τ ∗)

[
ig

ωτ ∗ p(θ ) · f +
i ḡ

ωτ ∗ p(θ ) · f + Eeiωτ∗θ

]

=
τ ∗



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄)

+ f ()
(σ + σ̄) + f ()

(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()
(σσ̄ + σ̄σ)

+ f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()

(σσ̄eiωτ∗ + σ̄σe–iωτ∗ )
f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)
+ f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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–


[
gp() + ḡ


p()

] · f .

Notice that

⎧
⎨

⎩

L(τ ∗)[p(θ ) · f] = iωτ
∗p() · f,

L(τ ∗)[p(θ ) · f] = –iωτ
∗p() · f.

Then we have

iωτ
∗E – L

(
τ ∗)(Eeiωτ∗θ

)

=
τ ∗



⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄)

+ f ()
(σ + σ̄) + f ()

(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()
(σσ̄ + σ̄σ)

+ f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()

(σσ̄eiωτ∗ + σ̄σe–iωτ∗ )
f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)
+ f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

From the above expression, we can see easily that

E =



⎛

⎜
⎝

iω + βI∗ + μ βS∗ 
–βI∗ iω – α αI∗e–iωτ∗

 αR∗ + α iω + μ – αI∗e–iωτ∗

⎞

⎟
⎠

–

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄)

+ f ()
(σ + σ̄) + f ()

(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()
(σσ̄ + σ̄σ)

+ f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()

(σσ̄eiωτ∗ + σ̄σe–iωτ∗ )
f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)
+ f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By a similar way, we have

Ẇ(θ ) =


[
gp(θ ) + ḡp(θ )

] · f, – ≤ θ < ,

and

W(θ ) =
i

ωτ ∗
[
–gp(θ ) + ḡp(θ )

] · f + F .

Similar to the above, we can obtain that

F =



⎛

⎜
⎝

βI∗ + μ βS∗ 
–βI∗ –α 

 αR∗ + α iω + μ

⎞

⎟
⎠

–
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×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f ()
 + f ()

 (σ + σ̄) + f ()
 σσ̄

f ()
 + f ()

σσ̄ + f ()
σσ̄ + f ()

σσ̄ + f ()
(σ + σ̄)

+ f ()
(σ + σ̄) + f ()

(σe–iωτ∗ + σ̄eiωτ∗ ) + f ()
(σσ̄ + σ̄σ)

+ f ()
(σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()

(σσ̄eiωτ∗ + σ̄σe–iωτ∗ )
f ()
σσ̄ + f ()

σσ̄ + f ()
σσ̄ + f ()

 (σσ̄ + σ̄σ)
+ f ()

 (σσ̄eiωτ∗ + σ̄σe–iωτ∗ ) + f ()
(σσ̄eiωτ∗ + σσ̄e–iωτ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So far, W(θ ) and W(θ ) have been expressed by the parameters of system (). There-
fore, g can be expressed explicitly.

Theorem . System () has the following Poincaré normal form:

ξ̇ = iωτ
∗ξ + c()ξ |ξ | + o

(|ξ |),

where

c() =
i

ωτ ∗

[

gg – |g| –
|g|



]

+
g


,

so we can compute the following results:

σ = –
Re(c())
Re(λ′(τ ∗))

,

β =  Re
(
c()

)
,

T = –
Im(c()) + σ Im(λ′(τ ∗))

ωτ ∗ ,

which determine the properties of bifurcating periodic solutions at the critical values τ ∗,
i.e., σ determines the directions of the Hopf bifurcation: if σ >  (σ < ), then the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ >
τ ∗; β determines the stability of the bifurcating periodic solutions: the bifurcating periodic
solutions on the center manifold are stable (unstable) if β <  (β > ); and T determines
the period of the bifurcating periodic solutions: the periodic increase (decrease) if T > 
(T < ).

5 Numerical simulation
In this section, numerical simulations of some examples are presented to illustrate the
theoretical results.

5.1 Stability of the boundary equilibrium E1

Let the parameters of system () be � = ., β = ., β = ., α = ., μ = ., and α = ..
Calculation reveals that the boundary equilibrium of system () is (., , ). Obviously,
condition (H) holds. According to Theorem ., system () is locally asymptotically stable
at the boundary equilibrium for all τ ≥ , as shown in Figure . This means that with these
parameter values the rumor will not be propagated.
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Figure 2 Local asymptotic stability diagram for
system (1) for all τ ≥ 0.

Figure 3 The amplitude of the density of
spreaders with delay τ increasing ∈ [0, 2.5].

Figure 4 Local asymptotic stability diagram for
system (1) when τ = 0.5.

5.2 Stability and Hopf bifurcation of system (1)
Let � = ., β = ., β = ., α = ., μ = ., α = .. Calculation reveals that the
positive equilibrium of system () is (., ., .) and the critical value is
τ = .. Figure  gives the maximum and minimum of the density of spreaders for
system () when τ ∈ [, .]. From it we can find that when τ < . the amplitude is
zero, which means system () is locally asymptotically stable at the positive equilibrium
E∗, as observed in Figure . That is, the rumor continuously propagates with a fixed den-
sity of spreaders. When . < τ < ., as τ increases, the amplitude will increase. That
is, system () is unstable and oscillation occurs, see Figure . As Figure  shows, when
τ = , the periodic solutions emerge from the positive equilibrium E∗, which implies that
the rumor explosively spreads in a short period and may destroy network stability and
block regular communications in online social networks, or even cause a panic in the real
society.
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Figure 5 Instability diagram and periodic
solutions for system (1) when τ = 1.

Figure 6 The spreaders vary with β1 increasing.

In addition, when τ = τ = ., we get c() = –. + .i, σ = – –.
Re(λ′(τ∗)) =

. > , β =  Re(c()) < . According to Theorem . in Section , the bifurcated
periodic solutions of system () when τ = . in the whole phase space are orbitally
asymptotically stable, and the Hopf bifurcation is supercritical for σ > .

5.3 Effect of the government adjustment power
Taking the same parameters as in Section ., but β varies in [, ], the corresponding
situations of spreaders are shown in Figure . Numerical evidence shows that with the
increase of the adjustment power β, the adjustment power makes the population of the
spreaders reduced. This is to say, if the government uses TV (the most popular and believ-
able media in China) to announce the truth, the population of the spreaders will reduce
immediately.

In addition, if we let τ =  and β = ., then the positive equilibrium is locally asymp-
totically stable (see Figure ). However, if we let β = ., then the positive equilibrium be-
comes unstable as is shown in Figure . It means that the government adjustment power
has great effect on system ().

6 Conclusions
In this paper, we considered a delayed rumor model with a saturated control function.
Through the theoretical analysis and numerical simulation, we found that government
adjustment power can affect system’s stability. These can be found in Section ..

By using DDE’s stability theory, we take delay τ as a bifurcation parameter to study the
Hopf bifurcation of system (). Theoretical analysis and numerical simulations show that
the discrete delays are responsible for the stability switch of the model, and a Hopf bifur-
cation occurs as the delays increase through a certain threshold (see Section .).
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Figure 7 Local asymptotic stability diagram for
system (1) with τ = 1 and β1 = 0.1.

Figure 8 Instability diagram and periodic
solutions for system (1) when τ = 1 and β1 = 0.8.

In summary, our study contributes to rumor management by offering an interplay model
between rumor spreading and government adjustment. According to the transmission
of the rumor, the government should use TV (the most popular and believable media
in China) to announce the truth, then the population of the spreaders will be reduced
immediately.
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