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1 Introduction
In [], the periodic solutions of difference equations, the solutions of boundary value prob-
lems and the steady state solutions of the majority of neural networks can be summed up
in the solutions of the nonlinear algebraic system as follows:

Bu = f (u), ()

where B = (bij)n×n is a real symmetric n by n matrix and f (u) = (f(u), f(u), . . . , fn(un))T

for u = (u, u, . . . , un)T ∈ Rn, where fk : R → R for each k.
A column vector u = (u, u, . . . , un)T ∈ Rn is said to be a solution corresponding to it if

substitution of u into () renders it an identity. A vector u = (u, u, . . . , un)T is said to be
positive if ui >  for i ∈ {, , . . . , n}, negative if ui <  for i ∈ {, , . . . , n}, zero-free if ui �= 
for all i ∈ {, , . . . , n}, respectively.

It has come to our attention that: if B in () is a real positive definite matrix, the exis-
tence of zero-free solutions of () is studied in [–]; if B in () takes the form of a real
symmetric matrix and has a positive eigenvalue, the existence of non-trivial solutions of
() is discussed in [, , ]; if B in () represents a symmetric non-negative matrix, the
existence of positive and negative solutions of () is explored in [].

In case B is a real symmetric matrix with some additional conditions attached to its el-
ements, and by using variational approaches (see []), this paper presents the existence
criteria for the positive and negative solutions of (). Our proofs are elementary. Further-
more, we provide some examples to show that our conditions are new and our results are
sharp.
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2 Preliminaries
In this section, we give some notations and definitions.

Let

�+ =
{

u = (u, u, . . . , un)T ∈ Rn : uk ≥  for k ∈ {, , . . . , n}}

and

�– =
{

v = (v, v, . . . , vn)T ∈ Rn : vk ≤  for k ∈ {, , . . . , n}}.

Consider the function I : �+ → R defined by

I(u) =



uT Bu –
n∑

k=

∫ uk


fk(s) ds. ()

Since

∂I(u)
∂uk

= (Bu)k – fk(uk), k ∈ {, , . . . , n},

a column vector u = (u, u, . . . , un)T is a positive solution of () if and only if u is a critical
point of function I in the interior of �+.

Let B = (bij)n×n be a real symmetric n by n matrix. For convenience, for some {i, i, . . . ,
ik} ⊂ {, , . . . , n}, let

B(i, i, . . . , ik ) =
∑

i,j∈{i,i,...,ik }
bij,

and let λmax be the maximum eigenvalue of B and λmin the minimum eigenvalue of B.

3 Superlinear case
In this section, we are concerned with f, . . . , fn that are ‘superlinear’ near .

Theorem . Let B = (bij)n×n be a real symmetric matrix with bij ≥  for i, j ∈ {, , . . . , n},
while i �= j, max{b, b} > , max{bi+,i, bi+,i+} >  for i ∈ {, , . . . , n – }, and there exists
some {i, i, . . . , ik} ⊂ {, , . . . , n} such that B(i, i, . . . , ik ) > . Assume furthermore that
fk ∈ C([, +∞), R) for each k and

(G) There exist constants a > 
λmax, a >  and M >  such that

∫ z


fk(s) ds ≥ az – a for z ≥ M and k ∈ {, , . . . , n}.

(G) For each k ∈ {, , . . . , n},

lim
z→+

∫ z
 fk(s) ds

z = .

Then system () has at least one positive real solution.
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Proof First, we prove that I is bounded from above in �+. According to (G), if

a = max
≤k≤n

{∣∣∣∣

∫ z


fk(s) ds – az + a

∣∣∣∣ + a :  ≤ z ≤ M
}

,

then for any z ≥  and k ∈ {, , . . . , n},

∫ z


fk(s) ds ≥ az – a.

For any u ∈ �+,

I(u) ≤ 

λmax‖u‖ – a

n∑

k=

u
k + na =

(


λmax – a

)
‖u‖ + na. ()

Since a > 
λmax, for any u ∈ �+,

I(u) ≤ na.

That is, I is bounded from above in �+.

Claim  Let c = supu∈�+ I(u), then c > .

By (G), there exist constants δ >  and β ∈ (, 
k

B(i, i, . . . , ik )) such that for any  ≤
z ≤ δ,

∫ z


fk(s) ds ≤ βz, k = , , . . . , n. ()

Choosing v = (v, v, . . . , vn)T ∈ �+, where vi = δ if i ∈ {i, i, . . . , ik}, vi =  if i /∈ {i, i, . . . ,
ik}. By () and (),

I(v) =


δB(i, i, . . . , ik ) –

n∑

i=

∫ vi


fi(s) ds

=


δB(i, i, . . . , ik ) –

∑

i∈{i,i,...,ik }

∫ δ


fi(s) ds

≥ 

δB(i, i, . . . , ik ) –

∑

i∈{i,i,...,ik }
βδ

≥
(




B(i, i, . . . , ik ) – kβ

)
δ

> .

This shows that c = supu∈�+ I(u) > .
By the definition of c, there is a sequence {u(i)} ⊂ �+ such that limi→∞ I(u(i)) = c. It is

easy to see that there is a positive number p such that for i ≥ ,

–p ≤ I
(
u(i)). ()
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By () and (),

–p ≤ I
(
u(i)) ≤

(


λmax – a

)∥∥u(i)∥∥ + na.

It follows that

∥∥u(i)∥∥ ≤
(

a –


λmax

)–

(na + p).

Thus {u(i)} is a bounded sequence in �+. Consequently, it has a convergent subsequence
{u(ij)}. Let {u(ij)} tend to u() = (u()

 , u()
 , . . . , u()

n )T as j → ∞. Then u() ∈ �+ and I(u()) = c.
Note that I() =  and c > . Clearly, there exists i ∈ {, , . . . , n} such that u()

i > .

Claim  u() is a positive critical point of function I .

Let i ∈ {, , . . . , n – }. First, we prove that u()
i+, u()

i+, . . . , u()
n are greater than zero. As-

sume that u()
i+ = , then

c = I
(
u()) =




∑

i�=i+,j �=i+

biju()
i u()

j –
∑

i�=i+

∫ u()
i


fi(s) ds. ()

For r ≥ , let

I(r) =



bi+,i+r + bi+,i u()
i r + r

∑

j �=i,j �=i+

bi+,ju()
j –

∫ r


fi+(s) ds. ()

We assert that there exists a positive constant r such that I(r) > . Since max{bi+,i ,
bi+,i+} > , the problem can be discussed on two scenarios: if bi+,i > , then

lim r → +

 bi+,i+r + bi+,i u()

i r
r = +∞. ()

By (), () and (G), the assertion holds; if bi+,i+ > , note that bij ≥  for i, j ∈ {, , . . . , n}
while i �= j, then

I(r) ≥ 


bi+,i+r –
∫ r


fi+(s) ds. ()

By () and (G), the assertion holds. In conclusion, there exists a positive constant r such
that I(r) > .

Choosing

u() =
(
u()

 , . . . , u()
i , r, u()

i+, . . . , u()
n

)T ,

then u() ∈ �+ and

I
(
u()) = I

(
u()) + I(r) > I

(
u()) = c,
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which is contrary to the definition of c. Thus u()
i+ > . Similarly, u()

i+, . . . , u()
n are greater

than zero.
It can be deduced that u()

i– >  by changing i +  as i –  in the above mentioned
procedure. Similarly, u()

 , . . . , u()
i– are greater than zero.

Finally, we prove that u()
 > . Assume that u()

 = . Since u()
 > , we see that

c = I
(
u()) =




∑

i�=,j �=

biju()
i u()

j –
∑

i�=

∫ u()
i


fi(s) ds. ()

For r ≥ , let

I(r) =



br + bu()
 r + r

∑

j �=,j �=

b,ju()
j –

∫ r


f(s) ds. ()

We assert that there exists a positive constant r such that I(r) > . Since max{b, b} >
, the problem can be discussed on two scenarios: if b > , then

lim
r→+


 br + bu()

 r
r = +∞. ()

By (), () and (G), the assertion holds; if b > , note that bij ≥  for i, j ∈ {, , . . . , n}
while i �= j, then

I(r) =



br + bu()
 r + r

∑

j �=,j �=

b,ju()
j –

∫ r


f(s) ds

≥ 


br –
∫ r


f(s) ds.

By (G), the assertion holds. In conclusion, there exists a positive constant r such that
I(r) > .

Choosing u() = (r, u()
 , . . . , u()

n )T , we have u() ∈ �+ and

I
(
u()) = I

(
u()) + I(r) > I

(
u()) = c,

which is contrary to the definition of c. Thus u()
 > .

All cases are exhausted, then u() belongs to the interior of �+and I(u()) = supu∈�+ I(u).
It follows that u() is a positive critical point of I , that is, u() = (u()

 , u()
 , . . . , u()

n )T is a
positive solution of ().

The proof is completed. �

Theorem . Let B = (bij)n×n be a real symmetric matrix which satisfies the conditions in
Theorem .. Assume furthermore that fk ∈ C((–∞, ], R) for each k and

(G′
) There exist constants a > 

λmax, a >  and M >  such that

∫ z


fk(s) ds ≥ az – a for z ≤ –M and k ∈ {, , . . . , n}.
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(G′
) For each k ∈ {, , . . . , n},

lim
z→–

∫ z
 fk(s) ds

z = .

Then system () has at least one negative real solution.

Consider the function I : �– → R defined by

I(v) =



vT Bv –
n∑

k=

∫ vk


fk(s) ds. ()

Let u = –v, then finding a critical point of I in the interior of �– is equivalent to finding a
critical point of function () in the interior of �+,

J(u) =



uT Bu –
n∑

k=

∫ –uk


fk(s) ds. ()

Similar to the proof of Theorem ., it can be proved that there exists a negative critical
point of J in the interior of �+, so the conclusion of Theorem . is true.

According to Theorems . and ., the following can be directly obtained.

Corollary . Let B = (bij)n×n be a real symmetric matrix which satisfies conditions in
Theorem .. Assume furthermore that fk ∈ C(R, R) for each k and

(G′′
 ) There exist constants a > 

λmax, a >  and M >  such that

∫ z


fk(s) ds ≥ az – a for |z| ≥ M and k ∈ {, , . . . , n}.

(G′′
) For each k ∈ {, , . . . , n},

lim
z→

∫ z
 fk(s) ds

z = .

Then system () has at least one positive real solution and one negative real solution.

Example . The system

⎛

⎜
⎝

–  
 – 
  –

⎞

⎟
⎠

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ =

⎛

⎜
⎝

xr


xr


xr


⎞

⎟
⎠ , r ∈ (, +∞), ()

is one of the form (), where

B =

⎛

⎜
⎝

–  
 – 
  –

⎞

⎟
⎠ , n = ,
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and fk(s) = sr , k = , , . B is neither a non-negative matrix nor a positive definite matrix
because the main diagonal elements of B are negative, but a real symmetric matrix with
bij >  for i, j = , ,  while i �= j, max{b, b} = max{b, b} = max{b, b} = , and the
sum of all its elements is . The eigenvalues of B are , – and –. Let a = , a =  and
M = (r + ) 

r– , then for any z ≥ M and k ∈ {, , }, we have

∫ z


fk(s) ds =

zr+

r + 

=
zr–

r + 
× z

≥ z

≥ az – a.

For each k ∈ {, , },

lim
z→+

∫ z
 fk(s) ds

z = lim
z→+

zr+

r+
z = .

That is, () satisfies all the conditions of Theorem .. Thus, () has at least one positive
solution.

Indeed, (, , )T is the unique positive solution to (). Let (x, x, x)T be the positive
solution to () such that

⎧
⎪⎨

⎪⎩

–x + x + x = xr
,

x – x + x = xr
,

x + x – x = xr
,

()

we assert that x = x = x. By the first and second equations of () and differential mean
value theorem,

–x + x = xr
 – xr

 = rθ r–
 (x – x), ()

where θ is a certain positive number between x and x. If x �= x, by (), then rθ r–
 = –,

which is contrary to the condition that r and θ are positive. Similarly, by the second and
third equations of () and differential mean value theorem, it is easy to find x = x. In
conclusion, x = x = x. Let x = x = x = t. By (), t = . Thus (, , )T is the unique
positive solution of () and Theorem . is sharp.

Example . Consider the scenario that r =  for the nonlinear algebra system (). It is
easy to verify that () satisfies all the conditions of Corollary .. Thus by Corollary .,
the system has one positive solution and one negative solution. From the discussion in
Example ., (, , )T is the unique positive solution. It is easy to find that (–, –, –)T is
the unique negative solution because r = . This example shows that Corollary . is sharp.
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Example . The system

⎛

⎜⎜⎜
⎝

– 
  


 – 

 
 

 – 


  
 –

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

x

x

x

x

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

x



 x



 x



x


⎞

⎟⎟⎟
⎠

()

is one of the form (), where

B =

⎛

⎜⎜⎜
⎝

– 
  


 – 

 
 

 – 


  
 –

⎞

⎟⎟⎟
⎠

, n = ,

f(s) = f(s) = s, and f(s) = f(s) = 
 s. B is neither a non-negative matrix nor a pos-

itive definite matrix because the main diagonal elements of B are negative, but a real
symmetric matrix with bij >  for i, j = , , ,  while i �= j, max{b, b} = max{b, b} =
max{b, b} = 

 , max{b, b} = 
 , and the sum of all its elements is 

 . The eigenvalues
of B are – 

 + 


√
, – 

 – 


√
, – 

 + 


√
 and – 

 + 


√
. Let a = , a =  and

M = , it is easy to verify that () satisfies all the conditions of Corollary .. Thus, ()
has at least one positive solution and one negative solution. Indeed, all the solutions of
() can be found and given by (, , , )T , (, , , )T and (–, –, –, –)T . This example
shows that Corollary . is sharp.

4 Sublinear case
In this section, we are concerned with f, . . . , fn that are ‘sublinear’ near .

Theorem . Let B = (bij)n×n be a real symmetric matrix with bij ≤  for i, j ∈ {, , . . . , n}
while i �= j. Assume furthermore that fk ∈ C([, +∞), R) for each k and

(G) There exist constants a < 
λmin, a >  and M >  such that

∫ z


fk(s) ds ≤ az + a for z > M and k ∈ {, , . . . , n}.

(G) For each k ∈ {, , . . . , n},

lim
z→+

∫ z
 fk(s) ds

z = +∞.

Then system () has one positive real solution.

Proof Let I be defined by (). First, we prove that I is bounded from below in �+. By (G),
if

a = max
≤k≤n

{∣∣∣∣

∫ z


fk(s) ds – az – a

∣∣∣∣ + a :  ≤ z ≤ M
}

,
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then for any z ≥  and k ∈ {, , . . . , n},

∫ z


fk(s) ds ≤ az + a.

For any u ∈ �+,

I(u) ≥ 

λmin‖u‖ – a

n∑

k=

u
k – na =

(


λmin – a

)
‖u‖ – na. ()

Since a < 
λmin, for any u ∈ �+,

I(u) ≥ –na.

That is, I is bounded from below in �+.

Claim  Let c = infu∈�+ I(u), then c < .

By (G), there exist constants δ >  and β > 
n

∑n
i,j= bij such that for any  ≤ z ≤ δ,

∫ z


fk(s) ds ≥ βz, k = , , . . . , n. ()

Choosing v = (δ, δ, . . . , δ)T ∈ �+, by () and (),

I(v) =


δ

n∑

i,j=

bij –
n∑

i=

∫ δ


fi(s) ds

≤ 

δ

n∑

i,j=

bij –
n∑

i=

βδ

=

(



n∑

i,j=

bij –
n∑

i=

β

)

δ

< .

This shows that c = infu∈�+ I(u) < .
By the definition of c, there is a sequence {u(i)} ⊂ �+ such that limi→∞ I(u(i)) = c. It is

easy to see that there is a positive number p such that for any i ≥ ,

I
(
u(i)) ≤ p. ()

By () and (),

(


λmin – a

)∥∥u(i)∥∥ – na ≤ I
(
u(i)) ≤ p.

It follows that

∥∥u(i)∥∥ ≤
(



λmin – a

)–

(na + p).
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Thus {u(i)} is a bounded sequence in �+. Consequently, it has a convergent subsequence
{u(ij)}. Let {u(ij)} tend to u() = (u()

 , u()
 , . . . , u()

n )T as j → ∞. Then u() ∈ �+ and I(u()) = c.
Note that I() =  and c < , therefore u() �= .

Claim  u() is a zero-free critical point of functional I .

Assume that there exists i ∈ {, , . . . , n} such that u()
i = ,

c = I
(
u()) =




∑

i�=i,j �=i

biju()
i u()

j –
∑

i�=i

∫ u()
i


fi(s) ds. ()

For r ≥ , let

I(r) =



bi,i r + r
∑

j �=i

bi,ju()
j –

∫ r


fi (s) ds.

Since bi,j ≤  for j ∈ {, , . . . , n} while j �= i, by (G),

lim
r→+

I(r)
r = lim

r→+

(



bi,i +
∑

j �=i bi,ju()
j

r
–

∫ r
 fi (s) ds

r

)
= –∞, ()

then there exists a positive constant r such that I(r) < .
Choosing u() = (u()

 , . . . , u()
i–, r, u()

i+, . . . , u()
n )T , we have u() ∈ �+and

I
(
u()) = I

(
u()) + I(r) < I

(
u()) = c,

which is contrary to the definition of c. Thus u() belongs to the interior of �+ and
I(u()) = infu∈�+ I(u). It follows that u()is a positive critical point of I , that is, u() =
(u()

 , u()
 , . . . , u()

n )T is a positive solution of ().
The proof is completed. �

Theorem . Let B = (bij)n×n be a real symmetric matrix with bij ≤  for i, j ∈ {, , . . . , n}
while i �= j. Assume furthermore that fk ∈ C((–∞, ], R) for each k and

(G′
) There exist constants a < 

λmin, a >  and M >  such that

∫ z


fk(s) ds ≤ az + a for z < –M and k ∈ {, , . . . , n}.

(G′
) For each k ∈ {, , . . . , n},

lim
z→–

∫ z
 fk(s) ds

z = +∞.

Then system () has one negative real solution.

Let J be defined by (). Similar to the proof of Theorem ., it can be proved that there
exists a critical point of J in the interior of �+, so the conclusion of Theorem . is true.

According to Theorems . and ., the following can be directly obtained.
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Corollary . Let B = (bij)n×n be a real symmetric matrix with bij ≤  for i, j ∈ {, , . . . , n}
while i �= j. Assume furthermore that fk ∈ C(R, R) for each k and

(G′′
) There exist constants a < 

λmin, a >  and M >  such that

∫ z


fk(s) ds ≤ az + a for |z| > M and k ∈ {, , . . . , n}.

(G′′
) For each k ∈ {, , . . . , n},

lim
z→

∫ z
 fk(s) ds

z = +∞.

Then system () has one positive real solution and one negative real solution.

Example . The system

⎛

⎜
⎝

 – –
–  –
– – 

⎞

⎟
⎠

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ =

⎛

⎜
⎝

f(x)
f(x)
f(x)

⎞

⎟
⎠ , ()

where

fk(s) =

⎧
⎪⎪⎨

⎪⎪⎩

–s – , s ≤ –,

s 
 , |s| < ,

–s + , s ≥ ,

for k = , , .

() is one of the form (), where

B =

⎛

⎜
⎝

 – –
–  –
– – 

⎞

⎟
⎠ , n = .

B is not a positive definite matrix but a positive semidefinite matrix. The eigenvalues of
B are ,  and , therefore λmin = . Let a = – 

 , a =  and M = , it is easy to verify that
() satisfies all conditions of Corollary .. Thus, () has one positive solution and one
negative solution.

Indeed, let (x, x, x)T be a positive solution, we assert min{x, x, x} ≥ .
Let min{x, x, x} = x. If  < min{x, x, x} < , by (),

x – x – x = x


 .

It follows that x > x – x


 = x + x, which is contrary to min{x, x, x} = x. This shows

min{x, x, x} ≥ .
The positive solution of () is obtained by

⎛

⎜
⎝

 – –
–  –
– – 

⎞

⎟
⎠

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ =

⎛

⎜
⎝

–x + 
–x + 
–x + 

⎞

⎟
⎠ . ()
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It follows that

⎛

⎜
⎝

 – –
–  –
– – 

⎞

⎟
⎠

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ =

⎛

⎜
⎝





⎞

⎟
⎠ . ()

The solution of () can be found and given by (, , )T . Thus (, , )T is the unique
positive solution of (). Similarly, (–, –, –)T is the unique negative solution of ().
This example shows that Corollary . is sharp.

Example . The system

⎛

⎜
⎝

– – –
– – –
– – –

⎞

⎟
⎠

⎛

⎜
⎝

x

x

x

⎞

⎟
⎠ =

⎛

⎜
⎝

f(x)
f(x)
f(x)

⎞

⎟
⎠ , ()

where

fk(s) = s

 – s for k = , , .

() is one of the form (), where

B =

⎛

⎜
⎝

– – –
– – –
– – –

⎞

⎟
⎠ , n = .

B is a negative definite matrix. The eigenvalues of B are –, – and –. Let a = – 
 , a > 

and M = , it is easy to verify that system () satisfies all the conditions of Corollary ..
Thus, () has one positive solution and one negative solution. Indeed, all the solutions of
() can be found and given by (, , )T , (, , )T and (–, –, –)T . This example shows
that Corollary . is sharp.
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