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Abstract
We study the existence of compact almost automorphic solutions for a class of
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1 Introduction
The existence of periodic and almost periodic solutions of differential equations has an
important theoretical and practical significance and is a problem of great interest. The
existence of such solutions for ordinary as well as abstract differential equations has been
intensively studied [–]. Such dynamics can be found in celestial mechanics, electronic
circuits, problems of ecology and many other physical and biological systems. The pa-
rameters of such nonautonomous models are usually assumed to be periodic with respect
to time due to periodic time-fluctuating environment. For example in epidemiology, the
periodic aspect comes from the periodic seasonal effects. Even if the parameters of the
system are periodic in time, the overall time dependence may not be periodic; i.e., if the
quotient of periods of these functions is not rational, the overall time dependence will not
be periodic but almost periodic in the sense of Bohr.

In reality the parameters of a system may be outputs of other almost periodic dynamical
systems. However, it is well known in general that almost periodic systems do not carry
necessarily almost periodic dynamics [, , ]. Although these systems may have bounded
oscillating solutions, these oscillations belong to a class larger than the class of almost pe-
riodic functions, we are talking about almost automorphic functions. Bochner introduced
the concept of almost automorphy in the literature in [] as a generalization of almost
periodicity. This concept was then deeply investigated by Veech [] and many other au-
thors. That is why it is natural to assume that the parameters of such systems are almost
automorphic. Since most of such systems give rise to differential equations with solutions
having bounded derivatives, a stronger concept of almost automorphy comes into play,
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that is, the notion of uniformly continuous almost automorphic functions. It turns out
that this notion coincides with the notion of compact almost automorphy (see Lemma ).

This paper is inspired by a work of Ding and Zou [] where the authors investigated the
existence and uniqueness of almost periodic and pseudo almost periodic solutions of the
integral equation given by

x(t) = α(t)x
(
t – σ (t)

)
+

∫ t

–∞
β(t, t – s)f

(
s, x(s), x′(s)

)
ds, t ∈R. ()

The authors in [] assumed that σ (t) is almost periodic (resp. pseudo almost periodic).
In this work, we consider two variants of Eq. (), a variant where the delay σ (t) is compact
almost automorphic in time and another variant where the delay is state-dependent. More
specifically, we aim to study the existence and uniqueness of compact almost automorphic
solutions for the following nonlinear time-dependent delay integral equation:

x(t) = α(t)x
(
t – σ (t)

)
+

∫ t

–∞
β(t, t – s)f (s, xs) ds, t ∈R, ()

and the following state-dependent delay one:

x(t) = α(t)x
(
t – γ (xt)

)
+

∫ t

–∞
β(t, t – s)f (s, xs) ds, t ∈R, ()

where α, σ , γ , β and f are some continuous functions, and the history xt defined by xt(θ ) :=
x(t + θ ) for each θ ∈ [–r, ] belongs to the phase space C := C([–r, ],R) endowed with
the norm |ϕ|C := sup–r≤θ≤ |ϕ(θ )|. The case where σ (t) is almost automorphic instead of
compact almost automorphic remains an open problem. In fact if the functions σ (t) and
x(t) are only almost automorphic, one cannot say anything about the almost automorphy
of the function t �→ x(t – σ (t)).

Equations similar to () and () arise in the study of heat flow in materials of fading
memory type, or are in connection with epidemic problems. Motivated by a model given
by Cooke and Kaplan [], Torrejón [] considered a nonlinear integral equation with im-
plicit delay and investigated the existence of positive almost periodic solutions. For the
same purpose, a similar class of equations was studied by Ait Dads and Ezzinbi in []
then performed in [] by the same authors who considered the situation where the delay
is neutral and time-dependent with the following equation:

x(t) – cx
(
t – σ (t)

)
=

∫ t

t–rσ (t)
f
(
s, x(s)

)
ds, t ∈ R.

Afterwards, Ait Dads et al. [] discussed the existence of positive pseudo almost periodic
solutions in the case of infinite delay for the equation

x(t) =
∫ t

–∞
a(t, t – s)f

(
s, x(s)

)
ds, t ∈R.

Further by , Ding et al. [] extended the above results to the following integral equation
with neutral delay:

x(t) = α(t)x(t – β) +
∫ t

–∞
a(t, t – s)f

(
s, x(s)

)
ds + h

(
t, x(t)

)
, t ∈R.
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For the case of state-dependent delay, we are inspired by the work [] concerning the
existence of bounded, periodic, and almost periodic solutions of a state-dependent delay
differential equation of the form

x′(t) = F
(
t, x(t), x

(
t – ρ(xt)

))
, t ≥ .

The paper is organized as follows. In Section  we recall some notations and definitions on
almost periodic and almost automorphic functions. In Section , we give some preliminary
lemmas about compact almost automorphic functions. In Section , we state the main
results on the existence of compact almost automorphic solutions for Eq. () and Eq. ().
We treat also the case when the kernel in Eq. () is separated. In this case we prove that to
obtain a compact almost automorphic solution, one only needs f to be pointwise almost
automorphic. At the end, in Section , two practical interesting examples are considered
to illustrate the theoretical results.

2 Almost periodic and almost automorphic functions
Let (X,‖·‖) be a Banach space and BC(R, X) be the space of bounded continuous functions
from R to X equipped with the supremum norm

|f |∞ := sup
t∈R

∥∥f (t)
∥∥. ()

When there is no confusion, we shall write |f | instead of |f |∞.

Definition  ([]) A continuous function f : R → X is said to be Bohr almost periodic
(or simply almost periodic) if, for every ε > , there exists a positive number l such that
every interval of length l contains a number τ such that

∥∥f (t + τ ) – f (t)
∥∥ < ε for t ∈R.

Theorem  ([]) Each almost periodic function is uniformly continuous.

A useful characterization of almost periodic functions was given by Bochner.

Theorem  ([]) A continuous function f : R → X is almost periodic if and only if for every
sequence of real numbers (sn)n there exist a subsequence (s′

n)n ⊂ (sn)n and a function f̃ such
that

f
(
t + s′

n
) → f̃ (t)

uniformly on R as n → ∞.

In [], Bochner introduced the concept of almost automorphy which is a generalization
of the almost periodicity.

Definition  ([]) A continuous function f : R �→ X is said to be almost automorphic
if for every sequence of real numbers (sn)n there exist a subsequence (s′

n)n ⊂ (sn)n and a
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function f̃ such that for each t ∈R

f
(
t + s′

n
) → f̃ (t)

and

f̃
(
t – s′

n
) → f (t)

as n → ∞. If the above limits hold uniformly in compact subsets of R, then f is said to be
compact almost automorphic.

Let AA(R, X) and KAA(R, X) denote respectively the space of almost automorphic and
compact almost automorphic X-valued functions.

Remark By the pointwise convergence, the function f̃ in Definition  is only measurable
and not necessarily continuous. If one of the two convergences in Definition  is uniform
on R, then f becomes almost periodic. For more details about this topic, we refer the
reader to the books [, ].

Definition  A continuous function f : R×X → X is said to be almost automorphic (resp.
compact almost automorphic) in t uniformly with respect to x in X if the following two
conditions hold:

(i) for all x ∈ X , f (·, x) ∈ AA(R, X) (resp. f (·, x) ∈ KAA(R, X));
(ii) f is uniformly continuous on each compact set K in X with respect to the second

variable x, namely, for each compact set K in X , for all ε > , there exists δ >  such
that for all x, x ∈ K one has

sup
t∈R

∥∥f (t, x) – f (t, x)
∥∥ ≤ ε

whenever |x – x| ≤ δ.

Denote by AAU(R× X, X) (resp. KAAU(R× X, X)) the set of all such functions.

3 Some preliminary lemmas
In this section we introduce some results concerning compact almost automorphic func-
tions which will be used to establish the main results.

The following lemma is essential for the rest of this work. It gives a characterization of
compact almost automorphic functions.

Lemma  ([], Lemma .) A function f is compact almost automorphic if and only if it
is almost automorphic and uniformly continuous.

Example Let f : R →R be such that

f (t) = sin

(


 + cos(t) + cos(
√

t)

)
.
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The function f is almost automorphic, but it is not uniformly continuous on R. There-
fore, it is not almost periodic nor compact almost automorphic. For more details, see [],
Example ..

Lemma  Let y(·) ∈ KAA(R,R) and σ (·) ∈ KAA(R,R). Then t �→ y(t –σ (t)) ∈ KAA(R,R).

Proof Let (sn)n be a sequence of real numbers. Then there exist a subsequence (s′
n)n ⊂

(sn)n, a function ỹ : R →R, and a function σ̃ : R→ R such that

y
(
t + s′

n
) → ỹ(t),

ỹ
(
t – s′

n
) → y(t),

σ
(
t + s′

n
) → σ̃ (t),

and

σ̃
(
t – s′

n
) → σ (t),

as n → ∞, where all the above convergences hold uniformly on compact subsets of R. Let
I be a compact subset of R. Then there exists a compact subset Ĩ of R such that, for all
t ∈ I and n ∈N, t – σ (t + s′

n) ∈ Ĩ and

∣
∣y

((
t + s′

n
)

– σ
(
t + s′

n
))

– ỹ
(
t – σ̃ (t)

)∣∣

≤ ∣∣y
(
t – σ

(
t + s′

n
)

+ s′
n
)

– ỹ
(
t – σ

(
t + s′

n
))∣∣

+
∣
∣̃y

(
t – σ

(
t + s′

n
))

– ỹ
(
t – σ̃ (t)

)∣∣

≤ sup
s∈̃I

∣∣y
(
s + s′

n
)

– ỹ(s)
∣∣ +

∣∣̃y
(
t – σ

(
t + s′

n
))

– ỹ
(
t – σ̃ (t)

)∣∣ → 

as n → ∞ for each t ∈ I . Using the same argument, we have

∣∣̃y
((

t – s′
n
)

– σ̃
(
t – s′

n
))

– y
(
t – σ (t)

)∣∣ → 

as n → ∞ for each t ∈ I . We conclude that t �→ y(t – σ (t)) ∈ AA(R,R). We claim that
t �→ y(t – σ (t)) is uniformly continuous. In fact, if (tn)n and (sn)n are two sequences such
that |tn – sn| → , then from the uniform continuity of σ (·) (Lemma ) we have

∣∣(tn – σ (tn)
)

–
(
sn – σ (sn)

)∣∣ ≤ |tn – sn| +
∣∣σ (tn) – σ (sn)

∣∣ → 

as n → ∞. Now from the uniform continuity of y(·) we deduce that

∣∣y
(
tn – σ (tn)

)
– y

(
sn – σ (sn)

)∣∣ → 

as n → ∞. Therefore t �→ y(t –σ (t)) is uniformly continuous. It follows again by Lemma 
that t �→ y(t – σ (t)) ∈ KAA(R,R). �

Lemma  Let f and g be both in KAA(R,R), then the product f .g is also in KAA(R,R).
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Proof Let (sn)n be a sequence of real numbers. Then there exist a subsequence (s′
n)n ⊂

(sn)n, a function f̃ : R →R, and a function g̃ : R →R such that

f
(
t + s′

n
) → f̃ (t),

f̃
(
t – s′

n
) → f (t),

g
(
t + s′

n
) → g̃(t),

and

g̃
(
t – s′

n
) → g(t),

as n → ∞, where all the above convergences hold uniformly on compact subsets of R. Let
I be a compact subset of R. Then, for t ∈ I , we have for each t ∈R

∣∣f
((

t + s′
n
)
g
(
t + s′

n
))

– f̃ (t)̃g(t)
∣∣

≤ ∣∣f
(
t + s′

n
)
g
(
t + s′

n
)

– f̃ (t)g
(
t + s′

n
)∣∣ +

∣∣̃f (t)g
(
t + s′

n
)

– f̃ (t)̃g(t)
∣∣

≤ |g|∞
∣∣f

(
t + s′

n
)

– f̃ (t)
∣∣ + |̃f |∞

∣∣g
(
t + s′

n
)

– g̃(t)
∣∣.

It follows that f (t + tn)g(t + tn) → f̃ (t)̃g(t) uniformly on I . Similarly, we can prove that
f̃ (t – tn )̃g(t – tn) → f (t)g(t) uniformly on [a, b]. We conclude that t �→ (g.f )(t) = f (t)g(t) ∈
KAA(R,R). �

Lemma  Let f ∈ KAA(R,R) and β : R×R
+ →R such that t �→ β(t, ·) ∈ KAA(R, L(R+)).

Then the function defined by

F(t) =
∫ t

–∞
β(t, t – s)f (s) ds

is also in KAA(R,R).

Proof Let (sn)n be a sequence of real numbers. Then there exist a subsequence (s′
n)n ⊂

(sn)n, a function f̃ : R →R, and a function β̃ : R×R
+ →R such that

f
(
t + s′

n
) → f̃ (t),

f̃
(
t – s′

n
) → f (t),

β
(
t + s′

n, ·) → β̃(t, ·),

and

β̃
(
t – s′

n, ·) → β(t, ·),

where all the above convergences hold uniformly for t in compact subsets of R as n → ∞.
Remark that

F(t) =
∫ +∞


β(t, s)f (t – s) ds.
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Set for t ∈R the function F̃ defined by

F̃(t) :=
∫ +∞


β̃(t, s)̃f (t – s) ds.

Then, for each t ∈ R,

∣∣F
(
t + s′

n
)

– F̃(t)
∣∣

≤
∫ +∞



∣
∣β

(
t + s′

n, s
)
f
(
t + s′

n – s
)

– β̃(t, s)̃f (t – s)
∣
∣ds

≤
∫ +∞



∣∣β
(
t + s′

n, s
)
f
(
t + s′

n – s
)

– β̃(t, s)f
(
t + s′

n – s
)∣∣ds

+
∫ +∞



∣
∣β̃(t, s)f

(
t + s′

n – s
)

– β̃(t, s)̃f (t – s)
∣
∣ds

≤ |f |∣∣β(
t + s′

n, ·) – β̃(t, ·)∣∣L(R+) +
∫ +∞



∣∣β̃(t, s)
∣∣∣∣f

(
(t – s) + s′

n
)

– f̃ (t – s)
∣∣ds.

By Lebesgue’s dominated convergence theorem, we deduce that |F(t + s′
n) – F̃(t)| →  for

each t ∈ R. Similarly, we can show that |̃F(t – s′
n) – F(t)| →  for each t ∈ R. Thus F ∈

AA(R,R). On the other hand, let (tn)n and (sn)n be two real sequences such that |tn – sn| →
 as n → ∞. Then, by the uniform continuity of t �→ β(t, ·) and f (Lemma ), we have

∣
∣F(tn) – F(sn)

∣
∣

≤
∫ +∞



∣
∣β(tn, s)f (tn – s) – β(sn, s)f (sn – s)

∣
∣ds

≤
∫ +∞



∣∣β(tn, s)f (tn – s) – β(sn, s)f (tn – s)
∣∣ds

+
∫ +∞



∣
∣β(sn, s)f (tn – s) – β(sn, s)f (sn – s)

∣
∣ds

≤
∫ +∞



∣∣β(tn, s) – β(sn, s)
∣∣∣∣f (tn – s)

∣∣ds +
∫ +∞



∣∣β(sn, s)
∣∣∣∣f (tn – s) – f (sn – s)

∣∣ds

≤ |f |∣∣β(tn, ·) – β(sn, ·)∣∣L(R+) + sup
s≥

∣∣f (tn – s) – f (sn – s)
∣∣|β| →  as n → ∞,

where |β| := supt∈R |β(t, ·)|L(R+). We conclude that F is uniformly continuous and thus
compact almost automorphic by Lemma . �

The next lemma is a composition result for compact almost automorphic functions.

Lemma  ([], Lemma .) Let f ∈ KAAU(R× X, X) and x ∈ KAA(R, X). Then [t �→
f (t, x(t))] ∈ KAA(R, X).

Lemma  Let y(·) ∈ KAA(R,R). Then t �→ yt ∈ KAA(R, C).

Proof Let (tn)n be a sequence of real numbers. Then there exist a subsequence (t′
n)n ⊂ (tn)n

and a function ỹ : R →R such that

y(t + tn) → ỹ(t)
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and

ỹ(t – tn) → y(t)

uniformly on compact subsets of R as n → ∞. Let I = [a, b] be a compact subset of R.
Then, for t ∈ [a, b], we have

|yt+tn – ỹt| = sup
–r≤θ≤

∣
∣y(t + tn + θ ) – ỹ(t + θ )

∣
∣

= sup
t–r≤u≤t

∣∣y(u + tn) – ỹ(u)
∣∣

≤ sup
a–r≤u≤b

∣
∣y(u + tn) – ỹ(u)

∣
∣.

It follows that yt+tn → ỹt uniformly on [a, b]. Similarly, we can prove that ỹt–tn → yt uni-
formly on [a, b]. We conclude that t �→ yt ∈ KAA(R, C). �

Remark If y ∈ AA(R,R), then t �→ yt does not belong necessarily to AA(R, C).

Proposition  ([], Theorem .) The space AA(R, X) is a Banach space.

Corollary  The space KAA(R, X) is a Banach space.

Proof Let (fn)n be a Cauchy sequence in KAA(R, X), then by Proposition , (fn)n con-
verges uniformly to an almost automorphic function f . Since by Lemma  fn is uni-
formly continuous for each n ∈ N, then f is also uniformly continuous. It follows again
by Lemma  that f ∈ KAA(R, X). �

4 Compact almost automorphic solutions of integral equations
4.1 Time-dependent delay integral equations
Now consider the following integral equation:

x(t) = α(t)x
(
t – σ (t)

)
+

∫ t

–∞
β(t, t – s)f (s, xs) ds. ()

In the following, we assume that

(H) α,σ ∈ KAA(R,R);
(H) β : R×R

+ →R satisfies t �→ β(t, ·) ∈ KAA(R, L(R+));
(H) f ∈ KAAU(R×C,R). Moreover, there exists Lf >  such that for all t ∈ R and φ,ψ ∈ C

∣
∣f (t,φ) – f (t,ψ)

∣
∣ ≤ Lf |φ – ψ |C .

Theorem  Assume that (H)-(H) hold. Then Eq. () has a unique compact almost au-
tomorphic solution provided that

|α| + Lf |β| < .
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Proof Consider the operator P : KAA(R,R) → C(R,R) defined by

(Px)(t) := α(t)x
(
t – σ (t)

)
+

∫ t

–∞
β(t, t – s)f (s, xs) ds for t ∈R.

Using Lemmas , , ,  and , it is clear that P maps KAA(R,R) into itself. For x, y ∈
KAA(R,R), we have

|Px – Py| ≤ |α||x – y| + sup
t∈R

(∫ t

–∞

∣∣β(t, t – s)
∣∣∣∣f (s, xs) – f (s, ys)

∣∣ds
)

≤ |α||x – y| + Lf sup
t∈R

(∫ t

–∞

∣∣β(t, t – s)
∣∣|xs – ys|C ds

)

≤ |α||x – y| + Lf |x – y||β|
≤ (|α| + Lf |β|)|x – y|.

Using the contraction principle on the Banach space KAA(R,R), we deduce that Eq. ()
has a unique solution in KAA(R,R). �

To investigate the existence of non-negative compact almost automorphic solutions of
Eq. (), set the spaces

KAA+(R,R) :=
{

x ∈ KAA(R,R), x(t) ≥  for all t ∈R
}

,

C+ :=
{
ϕ ∈ C,ϕ(θ ) ≥  for all θ ∈ [–r, ]

}
.

Assume that

(H ′
) α,σ ∈ KAA+(R,R).

(H ′
) β : R×R

+ →R
+ satisfies t �→ β(t, ·) ∈ KAA(R, L(R+)).

(H ′
) f ∈ KAAU(R × C,R) and, for all ϕ ∈ C+, t ∈ R, f (t,ϕ) ≥ . Moreover, there exists

Lf >  such that for all t ∈R and φ,ψ ∈ C

∣
∣f (t,φ) – f (t,ψ)

∣
∣ ≤ Lf |φ – ψ |C .

Then we have the following result.

Theorem  Assume that (H ′
)-(H ′

) hold. Then Eq. () has a unique non-negative compact
almost automorphic solution provided that

|α| + Lf |β| < .

Proof Remark just that under (H ′
)-(H ′

) one can establish easily that Lemmas , , , 
and  preserve non-negativity. It follows that P maps KAA+(R,R) into itself. Moreover, as
KAA+(R,R) is a closed subset of KAA(R,R), which is a Banach space, then KAA+(R,R)
is complete. The rest of the proof is similar to that of Theorem . �
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4.2 State-dependent delay integral equations
In what follows, we study the case where the delay depends on the history of the state; in
other words, when our equation takes the form

x(t) = α(t)x
(
t – γ (xt)

)
+

∫ t

–∞
β(t, t – s)f (s, xs) ds, ()

where γ : C → R
+ is a continuous function. We first give the following lemmas.

Lemma  Let y(·) ∈ KAA(R,R). If γ : C → R
+ is uniformly continuous, then [t �→ y(t –

γ (yt))] ∈ KAA(R,R).

Proof Since y(·) ∈ KAA(R,R), then from Lemma , [t �→ yt] ∈ KAA(R, C). The function
σ : t �→ γ (yt) is then almost automorphic and uniformly continuous. It follows by Lemma 
that σ ∈ KAA(R,R). The proof ends by applying Lemma . �

In what follows, we suppose that

(H) (i) α,γ are Lipschitz and are in KAA(R,R).
(ii) β : R×R

+ →R satisfies t �→ β(t, ·) ∈ KAA(R, L(R+)) and β is Lipschitz in the follow-
ing sense:

Lip(β) := sup
t �=s

|β(t, ·) – β(s, ·)|L(R+)

|t – s| < ∞.

(H) f ∈ KAAU(R× C,R). Moreover, there exist Lf > , L̃f >  such that for all t, s ∈R and
φ,ψ ∈ C

∣∣f (t,φ) – f (t,ψ)
∣∣ ≤ Lf |φ – ψ |C .

∣∣f (t,φ) – f (s,φ)
∣∣ ≤ L̃f |t – s|.

For a Lipschitz function h from (a, b) to R, we define

Lip(h) = sup

{∣∣
∣∣
h(s) – h(t)

t – s

∣∣
∣∣ : s, t ∈ (a, b) and s �= t

}
.

Theorem  Assume that (H) and (H) hold. Then Eq. () has a unique Lipschitz compact
almost automorphic solution provided that

� :=
(|α|+ Lf |β|– 

) – |α|Lip(γ )
((∣∣f (·, )

∣∣+ Lf N
)

Lip(β) + |β |̃Lf + N Lip(α)
)

>  ()

and

|α| + Lf |β| +
√

� < , ()

where |f (·, )| := supt∈R |f (t, )| and N = |f (·,)||β|
–(|α|+Lf |β|) with |f (·, )||β| �= .
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Remark Condition () is equivalent to

Lip(γ ) <
(|α| + Lf |β| – )

|α|((|f (·, )| + Lf N) Lip(β) + |β |̃Lf + N Lip(α))
,

which implies that () is guaranteed if Lip(γ ) is small enough (the effect of the delay state-
dependence is small).

Proof Consider the operator P : KAA(R,R) → C(R,R) defined by

(Px)(t) := α(t)x
(
t – γ (xt)

)
+

∫ t

–∞
β(t, t – s)f (s, xs) ds for t ∈R.

Using Lemmas ,  and , it is clear that P maps KAA(R,R) into itself.
Let

⎧
⎪⎪⎨

⎪⎪⎩

a = |α|Lip(γ )

b = |α| + Lf |β| – 

c = (|f (·, )| + Lf N) Lip(β) + |β |̃Lf + N Lip(α).

Then we have

� = b – ac.

From () we have b < , thus

M :=
–b +

√
�

a
> 

and

aM + bM + c = . ()

Let � be the subset of KAA(R, X) defined by

� :=
{

x ∈ KAA(R, X) : x is Lipschitz, Lip(x) ≤ M and |x| ≤ N
}

.

Remark that () implies that

|α| + Lf |β| < ,

and thus N ≥ , hence � is not empty. We claim that the operator P maps � into itself. In
fact, for x ∈ � and t ∈R, we have

∣∣(Px)(t)
∣∣ ≤ |α||x| +

(
Lf |x| +

∣∣f (·, )
∣∣)

∫ t

–∞

∣∣β(t, t – s)
∣∣ds

≤ |α|N +
(
Lf N +

∣
∣f (·, )

∣
∣)

∫ +∞



∣
∣β(t, r)

∣
∣dr

≤ (|α| + Lf |β|)N + |β|∣∣f (·, )
∣∣ = N .
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We now verify that Px is Lipschitz with Lip(Px) ≤ M.

∣∣(Px)(t) – (Px)(s)
∣∣ =

∣
∣∣
∣α(t)x

(
t – γ (xt)

)
+

∫ t

–∞
β(t, t – σ )f (σ , xσ ) dσ

– α(s)x
(
s – γ (xs)

)
–

∫ s

–∞
β(s, s – σ )f (σ , xσ ) dσ

∣
∣∣
∣

≤ ∣∣α(t)x
(
t – γ (xt)

)
– α(s)x

(
s – γ (xs)

)∣∣

+
∣
∣∣
∣

∫ t

–∞
β(t, t – σ )f (σ , xσ ) dσ –

∫ s

–∞
β(s, s – σ )f (σ , xσ ) dσ

∣
∣∣
∣

= I + I.

On the one hand,

I =
∣
∣α(t)x

(
t – γ (xt)

)
– α(s)x

(
s – γ (xs)

)∣∣

≤ ∣∣α(t)x
(
t – γ (xt)

)
– α(s)x

(
t – γ (xt)

)∣∣ +
∣∣α(s)x

(
t – γ (xt)

)
– α(s)x

(
s – γ (xs)

)∣∣

≤ |x|Lip(α)|t – s| + |α|Lip(x)
∣∣(t – γ (xt)

)
–

(
s – γ (xs)

)∣∣

≤ |x|Lip(α)|t – s| + |α|Lip(x)
(|t – s| + Lip(γ )|xt – xs|

)

≤ |x|Lip(α)|t – s| + |α|Lip(x)
(|t – s| + Lip(γ ) Lip(x)|t – s|)

≤ [|x|Lip(α) + |α|Lip(x)
(
 + Lip(γ ) Lip(x)

)]|t – s|.

On the other hand,

I =
∣∣∣
∣

∫ +∞


β(t,σ )f (t + σ , xt+σ ) dσ –

∫ +∞


β(s,σ )f (s + σ , xs+σ ) dσ

∣∣∣
∣

≤
∫ +∞



∣∣β(t,σ )f (t + σ , xt+σ ) – β(t,σ )f (t + σ , xs+σ )
∣∣dσ

+
∫ +∞



∣
∣β(t,σ )f (t + σ , xs+σ ) – β(s,σ )f (t + σ , xs+σ )

∣
∣dσ

+
∫ +∞



∣∣β(s,σ )f (t + σ , xs+σ ) – β(s,σ )f (s + σ , xs+σ )
∣∣dσ

≤
(

sup
t∈R

∫ +∞



∣∣β(t,σ )
∣∣dσ

)
Lf Lip(x)|t – s| +

(∣∣f (t, )
∣∣∞ + Lf |x|)∥∥β(t, ·) – β(s, ·)∥∥L

+ |β |̃Lf |t – s|
≤ [|β|Lf Lip(x) +

(∣∣f (·, )
∣
∣Lf |x|)Lip(β) + |β |̃Lf

]|t – s|.

Thus from () we have

∣
∣(Px)(t) – (Px)(s)

∣
∣

≤ [|x|Lip(α) + |α|Lip(x)( + Lip(γ ) Lip(x) + |β|Lf Lip(x)

+
(∣∣f (·, )

∣∣Lf |x|)Lip(β) + |β |̃Lf
]|t – s|

≤ (|α|Lip(γ )M +
(|α| + |β|Lf

)
M +

(∣∣f (·, )
∣∣ + Lf N

)
Lip(β)
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+ |β |̃Lf + N Lip(α)
)|t – s|

=
(
aM + (b + )M + c

)|t – s|
=

(
aM + bM + c + M

)|t – s| = M|t – s|.

This means that Px ∈ �. Now it suffices to prove that P is a contraction on �. We have

∣∣(Px)(t) – (Py)(t)
∣∣ ≤ |α|[∣∣x(

t – γ (xt)
)

– y
(
t – γ (xt)

)∣∣ +
∣∣y

(
t – γ (xt)

)
– y

(
t – γ (yt)

)∣∣]

+
∫ t

–∞
β(t, t – s)

∣∣f (s, xs) – f (s, ys)
∣∣ds

≤ |α|[|x – y| + Lip(y) Lip(γ )|x – y|] + Lf

∫ t

–∞
β(t, t – s)|xs – ys|ds

≤ |α|[|x – y| + Lip(y) Lip(γ )|x – y|] + Lf |x – y|
∫ +∞


β(t,σ ) dσ

≤ (|α|[ + Lip(y) Lip(γ )
]

+ Lf |β|)|x – y|
≤ (|α|[ + M Lip(γ )

]
+ Lf |β|)|x – y|.

Remark that

|α|[ + M Lip(γ )
]

+ Lf |β| = |α| + Lf |β| + Ma ≤ |α| + Lf |β| +
√

�.

Therefore, by (), P is a contraction on �, and thus Eq. () has a unique compact almost
automorphic solution. �

4.3 Case of a separated kernel
Let us consider the case where the kernel β in Eq. () is separated, that is, it can be written
as β(t, s) = β(t)β(s) such that β ∈ KAA(R,R) and β ∈ L(R+,R). In this special case, we
will show that to obtain a compact almost automorphic solution, one only has to assume
that f ∈ AAU(R×R,R) instead of f ∈ KAAU(R×R,R). Our equation takes the form

x(t) = α(t)x
(
t – σ (t)

)
+ β(t)

∫ t

–∞
β(t – s)f (s, xs) ds. ()

Remark β ∈ KAA(R,R) and β ∈ L(R+,R) is equivalent to the fact that β : R×R
+ →R

satisfies t �→ β(t, ·) ∈ KAA(R, L(R+)).

Assume that:

(H ′′
 ) β : R × R

+ → R satisfies β(t, s) = β(t)β(s) such that β ∈ KAA(R,R) and β ∈
L(R+,R).

(H ′′
 ) f ∈ AAU(R× C,R). Moreover, there exists Lf >  such that for all t ∈R and φ,ψ ∈ C

∣∣f (t,φ) – f (t,ψ)
∣∣ ≤ Lf |φ – ψ |C .

Theorem  Let (H), (H ′′
 ) and (H ′′

 ) hold. Then Eq. () has a unique compact almost
automorphic solution provided that

|α| + Lf |β| < .
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Remark Note here that the function f is just in AAU(R × C,R), whereas the obtained
solution x is more regular, namely, x is in KAA(R,R).

To prove Theorem , we need the following lemma.

Lemma  Let f ∈ AA(R,R) and β : R × R
+ → R such that β(t, s) = β(t)β(s), where

β ∈ KAA(R,R) and β ∈ L(R+,R). Then the function defined by

F(t) =
∫ t

–∞
β(t, t – s)f (s) ds

is in KAA(R,R).

Proof of Lemma  First remark that

F(t) = β(t)
∫ t

–∞
β(t – s)f (s) ds.

Since β ∈ KAA(R,R), then by Lemma  it suffices to prove that the function defined by

G(t) =
∫ t

–∞
β(t – s)f (s) ds

is in KAA(R,R). We will establish that G is almost automorphic, then we prove that G is
uniformly continuous on R. Let (tn)n be a sequence of real numbers. Then there exist a
subsequence (t′

n)n ⊂ (tn)n and a function f̃ : R →R such that for each t ∈R

f (t + tn) → f̃ (t)

and

f̃ (t – tn) → f (t)

as n → ∞. Let I be a compact subset of R. Set

G̃(t) =
∫ t

–∞
β(t – s)̃f (s) ds.

Then, for t ∈ I , we have

∣∣G(t + tn) – G̃(t)
∣∣ =

∣
∣∣
∣

∫ t+tn

–∞
β(t + tn – s)f (s) ds –

∫ t

–∞
β(t – s)̃f (s) ds

∣
∣∣
∣

=
∣
∣∣
∣

∫ t

–∞
β(t – s)f (s + tn) ds –

∫ t

–∞
β(t – s)̃f (s) ds

∣
∣∣
∣

=
∣
∣∣∣

∫ t

–∞
β(t – s)

[
f (s + tn) – f̃ (s)

]
ds

∣
∣∣∣.

By Lebesgue’s dominated convergence theorem, the right-hand side of the above equality
goes to  as n goes to infinity. Using the same argument, we get

∣
∣G̃(t – tn) – G(t)

∣
∣ −→  as n → ∞.

Consequently, G ∈ AA(R,R).
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Let (tn)n and (sn)n be two sequences of real numbers satisfying

|tn – sn| −→  as n → ∞.

We aim to show that

∣
∣G(tn) – G(sn)

∣
∣ −→  as n → ∞.

Without loss of generality, assume that sn ≤ tn. We have

∣
∣G(tn) – G(sn)

∣
∣

=
∣∣
∣∣

∫ tn

–∞
β(tn – s)f (s) ds –

∫ sn

–∞
β(sn – s)f (s) ds

∣∣
∣∣

=
∣∣∣
∣

∫ sn

–∞
β(tn – s)f (s) ds +

∫ tn

sn

β(tn – s)f (s) ds –
∫ sn

–∞
β(sn – s)f (s) ds

∣∣∣
∣

≤
∣∣
∣∣

∫ sn

–∞

[
β(tn – s) – β(sn – s)

]
f (s) ds

∣∣
∣∣ +

∣∣
∣∣

∫ tn

sn

β(tn – s)f (s) ds
∣∣
∣∣

≤
∣∣
∣∣

∫ +∞



[
β

(
θ + (tn – sn)

)
– β(θ )

]
f (sn – θ ) dθ

∣∣
∣∣ +

∣∣
∣∣

∫ tn–sn


β(θ )f (tn – θ ) dθ

∣∣
∣∣

≤ |f |∞
∫ +∞



∣∣β
(
θ + (tn – sn)

)
– β(θ )

∣∣dθ + |f |∞
∫ tn–sn



∣∣β(θ )
∣∣dθ .

Since β ∈ L(R+,R), then |G(tn)–G(sn)| →  as n → ∞. As a consequence, G is uniformly
continuous. By Lemma  we conclude that G ∈ KAA(R,R). �

Proof of Theorem  Consider the operator P : KAA(R,R) → C(R,R) defined by

(Px)(t) := α(t)x
(
t – σ (t)

)
+ β(t)

∫ t

–∞
β(t – s)f (s, xs) ds for t ∈R.

Using Lemmas , , ,  and , it is clear that P maps KAA(R,R) into itself. For x, y ∈
KAA(R,R), we have

|Px – Py| ≤ |α||x – y| + |β|
∫ t

–∞

∣
∣β(t – s)

∣
∣
∣
∣f (s, xs) – f (s, ys)

∣
∣ds

≤ |α||x – y| + |β|Lf

∫ t

–∞

∣∣β(t – s)
∣∣|xs – ys|C ds

≤ |α||x – y| + |β|Lf |x – y||β|L(R)

≤ (|α| + Lf |β||β|L(R)|
)|x – y|.

Using the contraction principle on the Banach space KAA(R,R), we deduce that Eq. ()
has a unique solution in KAA(R,R). �

5 Applications
5.1 A neutral Nicholson’s blowflies model with time-dependent delay
In the s, Nicholson carried out a series of experiments to study a sheep pest, the
blowfly. The flies were kept in several cages in laboratory and were observed for several



Ait Dads et al. Advances in Difference Equations  (2017) 2017:307 Page 16 of 21

years (see [, ]). After that revisited Nicholson’s models appeared. Notably Gurney []
proposed the following delayed Nicholson blowflies equation to model the population x(t)
of Australian sheep blowflies:

d
dt

x(t) = –δ(t)x(t) + p(t)x(t – r)e–ax(t–r).

Parameter p is the maximum per capita daily egg production rate, 
a is the size at which the

blowfly population reproduces at its maximum rate, δ is the per capita daily adult death
rate, and r is the generation time. Recently, assuming that the biological and environmen-
tal parameters are periodic with a common period, Chen [] considered the same equa-
tion but with periodic parameters. Now, in order to give a more generalized model, we
consider a neutral equation with time-dependent delay and compact almost automorphic
parameters given by

ẋ(t) = –δ(t)x(t) + p(t)x
(
t – r(t)

)
e–a(t)x(t–r(t)) + η(t)ẋ

(
t – r(t)

)
+ g(t). ()

The neutral term shall mean that not only the population x(t), but also the rate ẋ(t) has a
memory effect. Assume that

(i) a, g, δ,η, p, r, ṙ ∈ KAA+(R,R),
(ii) δ = inft∈R δ(t) > , inft∈R( – ṙ(t)) > , and g(t) >  for all t ∈ R,

(iii) the following condition holds:

p(t)
(
 – a(t)

)
e–a(t) ≥ δ(t)α(t) + α̇(t), ()

where

α(t) =
η(t)

( – ṙ(t))
.

The previous assumptions (i) and (ii) ensure that α ∈ KAA(R,R).
We have η(t) = α(t)( – ṙ(t)). Replacing η in the main Eq. (), we get

ẋ(t) = –δ(t)x(t) + p(t)x
(
t – r(t)

)
e–a(t)x(t–r(t)) + α(t)

(
 – ṙ(t)

)
ẋ
(
t – r(t)

)
+ g(t)

= –δ(t)x(t) + p(t)x
(
t – r(t)

)
e–a(t)x(t–r(t)) + α(t)

d
dt

[
x
(
t – r(t)

)]
+ g(t)

= –δ(t)x(t) + p(t)x
(
t – r(t)

)
e–a(t)x(t–r(t)) + α(t)

d
dt

[
x
(
t – r(t)

)]

+ α̇(t)x
(
t – r(t)

)
– α̇(t)x

(
t – r(t)

)
+ g(t)

= –δ(t)x(t) + p(t)x
(
t – r(t)

)
e–a(t)x(t–r(t)) +

d
dt

[
α(t)x

(
t – r(t)

)]

– α̇(t)x
(
t – r(t)

)
+ g(t).

Then

d
dt

[
x(t) – α(t)x

(
t – r(t)

)]
= –δ(t)x(t) + p(t)x

(
t – r(t)

)
e–a(t)x(t–r(t)) – α̇(t)x

(
t – r(t)

)
+ g(t).
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We obtain the following neutral equation:

d
dt

[
x(t) – α(t)x

(
t – r(t)

)]
= –δ(t)x(t) + f (t, xt), ()

where f (t;ϕ) := p(t)ϕ(–r(t))e–a(t)ϕ(–r(t)) – α̇(t)ϕ(–r(t)) + g(t) for ϕ ∈ C := C([–r, ];R). In
other words,

d
dt

[
x(t) – α(t)x

(
t – r(t)

)]
= –δ(t)

[
x(t) – α(t)x

(
t – r(t)

)]
+ F(t, xt), ()

where F(t,ϕ) := –δ(t)α(t)ϕ(–r(t)) + f (t,ϕ) for ϕ ∈ C := C([–r, ];R).
Then, for t ≥ σ ,

[
x(t) – α(t)x

(
t – r(t)

)]
= e–

∫ t
σ δ(θ ) dθ

[
x(σ ) – α(σ )x

(
σ – r(σ )

)]
+

∫ t

σ

e–
∫ t

s δ(θ ) dθ F(s, xs) ds.

If x is a bounded solution of Eq. () on R, then by letting σ → –∞ we obtain

x(t) = α(t)x
(
t – r(t)

)
+

∫ t

–∞
e–

∫ t
s δ(θ ) dθ F(s, xs) ds. ()

Set

β(t, s) = e–
∫ t

t–sδ(θ ) dθ .

Lemma  t �→ β(t, ·) ∈ KAA(R, L(R+)).

Proof Let (t′
n)n be a sequence of real numbers. Then there exist a subsequence (tn)n ⊂ (t′

n)n

and a function δ̃ : R →R such that

δ(t + tn) → δ̃(t)

and

δ̃(t – tn) → δ(t)

uniformly on compact subsets of R as n → ∞. Let I be a compact subset of R. First remark
that

β(t + tn, s) = e–
∫ t+tn

t+tn–sδ(θ ) dθ = e–
∫ t

t–sδ(θ+tn) dθ .

Let

β̃(t, ·) := e–
∫ t

t–· δ̃(θ ) dθ .

Then, for t ∈ I , we have

∣
∣β(t + tn, ·) – β̃(t, ·)∣∣L(R+) =

∫ +∞



∣
∣e–

∫ t
t–sδ(θ+tn) dθ – e–

∫ t
t–s δ̃(θ ) dθ

∣
∣ds.



Ait Dads et al. Advances in Difference Equations  (2017) 2017:307 Page 18 of 21

As the function x �→ e–x satisfies |e–x – e–y| ≤ |x – y| for x, y ∈R
+, we have

∣
∣e–

∫ t
t–s δ(θ+tn) dθ – e–

∫ t
t–s δ̃(θ ) dθ

∣
∣ ≤

∫ t

t–s

∣
∣δ(θ + tn) – δ̃(θ )

∣
∣dθ →  as n → ∞.

Since

∣
∣e–

∫ t
t–s δ(θ+tn) dθ – e–

∫ t
t–s δ̃(θ ) dθ

∣
∣ ≤ e–δs.

It follows by Lebesgue’s dominated convergence theorem that

∣∣β(t + tn, ·) – β̃(t, ·)∣∣L(R+) →  for each t ∈R.

Similarly, we can show that |β̃(t – tn, ·) –β(t, ·)|L(R+) →  for each t ∈R. Thus t �→ β(t, ·) ∈
AA(R, L(R+)). Let us prove that t �→ β(t, ·) is uniformly continuous. In fact, let (tn)n and
(sn)n be two real sequences such that |tn – sn| → . We have

∣
∣β(tn, ·) – β(sn, ·)∣∣L(R+) =

∫ +∞



∣
∣e–

∫ tn
tn–sδ(θ ) dθ – e–

∫ sn
sn–sδ(θ ) dθ

∣
∣ds.

Since for each s ≥ 

∣
∣e–

∫ tn
tn–sδ(θ ) dθ – e–

∫ sn
sn–sδ(θ ) dθ

∣
∣ ≤

∫ 

–s

∣
∣δ(θ + tn) – δ(θ + sn)

∣
∣dθ →  as n → ∞,

we obtain |β(tn, ·) – β(sn, ·)|L(R+) → . Consequently, t �→ β(t, ·) is uniformly continuous
and thus compact almost automorphic by Lemma . �

For ϕ ∈ C := C([–r, ];R),

F(t,ϕ) = –δ(t)α(t)ϕ
(
–r(t)

)
+ p(t)ϕ

(
–r(t)

)
e–a(t)ϕ(–r(t)) – α̇(t)ϕ

(
–r(t)

)
+ g(t)

= ϕ
(
–r(t)

)[
p(t)e–a(t)ϕ(–r(t)) – δ(t)α(t) – α̇(t)

]
+ g(t).

Then as g(t) > , for all t ∈ R, and according to (), F(t,ϕ) ≥  for all ϕ ∈ C+, t ∈ R.
Moreover, F is Lipschitz continuous on C+ with respect to the second variable with
Lip(F) = |δ||α| + |p||a| + |α̇|. As a consequence, hypotheses (H ′

)-(H ′
) of Theorem  are

fulfilled. Then Eq. () has a unique non-negative compact almost automorphic solution
provided that

|α| +
(|δ||α| + |p||a| + |α̇|) 

δ
< .

Remark The obtained solution is not trivial since g(t) is positive.

5.2 A lossless transmission lines model
Actually, neutral functional differential equations are frequently used for the study of dis-
tributed networks containing lossless transmission lines. Let us consider in detail one ex-
ample of this type taken from Kolmanovskii and Nosov []. Let the system consist of a
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Figure 1 System with lossless transmission line [27].

long electrical line (cable) of length l, one end of which is switched on a power source E
with resistance RE , while the other end is switched on an oscillating circuit formed by a
condenser C and a nonlinear element, the volt-ampere characteristic of which is i = g(v)
(Figure ).

Assume that the resistance R is affected by local environment conditions (principally
temperature which depends on time in an oscillating way), then it can be given as a time-
dependent function R(t) having an oscillating behavior. Let L and C denote the inductance
and capacitance of a long line, respectively, and assume that the line is lossless.

The processes in such a system are described by the hyperbolic partial differential equa-
tions

⎧
⎪⎪⎨

⎪⎪⎩

L ∂
∂t i(x, t) = – ∂

∂x v(x, t),

C ∂
∂t v(x, t) = – ∂

∂x i(x, t),

 < x < l,  < t,

()

with boundary conditions

E – v(, t) – R(t)i(, t) = , Cvt(l, t) = i(l, t) – g
(
v(l, t)

)
. ()

Let s := √
LC , and let Z :=

√
L
C denote the wave impedance of the long line. Let

K(t) :=
Z – R(t)
Z + R(t)

, ‖K‖ < , λ(t) :=
E

Z + R(t)
, τ :=

l
s

.

Designating x(t) = v(l, t), then from [] we get the following neutral differential equation:

d
dt

[
x(t) – K(t)x(t – τ )

]

= Cλ(t) –
C

Z
x(t) –

CK(t)
Z

x(t – τ ) – Cg
(
x(t)

)
+ K(t)g

(
x(t – τ )

)
, t ∈ R. ()

We suppose now that
(i) g and R are in KAA(R,R),

(ii) R = inft∈R R(t) > , K = inft∈R K(t) > ,
(iii) g is Lipschitz continuous on C := C([–τ , ];R).
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We can see that x is a bounded solution of Eq. () if and only if it satisfies

x(t) = K(t)x(t – τ ) +
∫ t

–∞
e– C

Z (t–s)f (s, xs) ds ()

with

f (t,ϕ) := –
C

Z
K(t)ϕ(–τ ) + Cλ(t) – Cg

(
ϕ()

)
– CK(t)g

(
ϕ(–τ )

)
, ϕ ∈ C.

We have

∣
∣f (t,ϕ) – f (t,ψ)

∣
∣ ≤

(

Z

+ Lip(g)
)

|K |C
∣
∣ϕ(–τ ) – ψ(–τ )

∣
∣ + C Lip(g)

∣
∣ϕ() – ψ()

∣
∣

≤
(


Z

|K | + Lip(g)
(
 + |K |)

)
C|ϕ – ψ |C .

From (i)-(iii) we get that K(t) ∈ KAA(R), f ∈ KAAU(R × C,R) and f is Lipschitz contin-
uous with Lip(f ) = ( 

Z |K | + Lip(g)( + |K |))C. Then hypotheses (H)-(H) of Theorem 
are satisfied. Consequently, Eq. () admits a unique compact almost automorphic solu-
tion provided that

|K | + Z
(


Z

|K | + Lip(g)
(
 + |K |)

)
< .
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