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Abstract
In this paper, using the algebraic structure of the Abelian group, we introduce the
concept of a matched space for time scales, and we construct the algebraic structure
of matched spaces to solve the closedness of time scales under non-translational
shifts. Using a matched space for time scales, a new concept of periodic time scales is
introduced. Based on it, new concepts of periodic functions, almost periodic
functions and almost automorphic functions whose concepts were defined on
translations of their arguments are proposed through non-translational shifts. The
results in this paper provide new methods to consider periodic solution, almost
periodic solution and almost automorphic solutions for q-difference equations and
others on irregular time scales via the background of the algebraic structure.
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Keywords: time scales; matched space; periodic functions; almost periodic
functions; almost automorphic functions; solutions for dynamic equations

1 Introduction
Periodic, almost periodic and almost automorphic functions are important classes of func-
tions which arise naturally in differential, difference and integral equations (see [–]). The
theory of time scales is a useful tool for unifying difference and differential equations (see
[–] and the references therein). Using the classical definition of periodic time scales (see
Kaufmann and Raffoul [], Akhmet and Turan []), periodic solutions, almost periodic
solutions and almost automorphic solutions for dynamic equations were considered. In
, the authors studied almost periodic solutions of differential equations on certain
time scales with transition conditions (DETC) through ψ-substitution (see []), while
the next investigation of almost periodic problems on time scales for impulsive dynamic
equations was conducted in  through �-calculus directly (see [–]). As a matter of
fact, the shift closedness of time scales plays a very important role in introducing the well-
defined functions on time scales, it is a prerequisite to introduce the functions which are
defined by shifts, e.g., periodic functions, almost periodic functions and almost automor-
phic functions, etc. We note that classical periodic time scales have a very nice translation
closedness which paves the way for defining functions through translations. We restate
the following definitions and introductory examples which can be found in [, ].
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Definition . A time scale T is said to be periodic if there exists P >  such that t ±P ∈ T

for all t ∈ T. If T �= R, the smallest positive P is called the period of the time scale.

Example . The following time scales are periodic.
() T = hZ has period P = h.
() T = {t = k – qm : k ∈ Z, m ∈ N}, where  < q < , has period P = .

In [], Adıvar proposed a new concept of periodic time scales under shift operators, and
this approach enables one to investigate this periodicity notion on a large class of time
scales. For example, periodic solutions for q-difference equations could be considered
since the time scale

qZ =
{

qn : q >  is a constant and n ∈ Z
} ∪ {} ()

belongs to periodic time scales introduced by Adıvar. Introducing the shift operators δ±
on time scales (Definition , []), the author proposed the following definition.

Definition . Let T be a time scale with the shift operators δ± associated with the initial
point t ∈ T

∗. The time scale T is said to be periodic in shifts δ± if there exists p ∈ (t,∞)T∗

such that (p, t) ∈D∓ for all t ∈ T
∗. Furthermore, if

P := inf
{

p ∈ (t,∞)T∗ : (p, t) ∈D∓ for all t ∈ T
∗} �= t, ()

then P is called the period of the time scale T, where D± = {(s, t) ∈ [t,∞)T ×T
∗ : δ±(s, t) ∈

T
∗}.

Note that () satisfies Definition . by taking t = , T∗ = qZ, P = q > , and one should
note that () must satisfy the requirement that

t �= P := inf
{

p ∈ (t,∞)T∗ : (p, t) ∈D∓ for all t ∈ T
∗} ∈ T,

which indicates that the period P of the time scale is taken from T. Nevertheless, we pro-
vide the following example to demonstrate that not all periodic time scales will satisfy
Definition ..

Example . Consider the following time scale, where a, b > :

Pa,b =
∞⋃

k=–∞

[
(k + )(a + b), (k + )(a + b) + a

]
.

This is a classical periodic time scale with period P = (a + b) /∈ Pa,b and its period set
� = {n(a + b), n ∈ Z} satisfying Pa,b ∩ � = ∅. For a particular case, let a = b = , to obtain
the time scale

T = P, =
∞⋃

k=–∞
[k + , k + ].

Clearly n /∈ P, for n ∈ Z. Since its period set � = {n, n ∈ Z}, P = , we have Pa,b ∩� = ∅.
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Wang and Agarwal proposed Example . in [] and corrected the concept of almost
periodic functions on periodic time scales. Note that Example . satisfies Definition .
but does not satisfy Definition . since P /∈ Pa,b though t ± P ∈ Pa,b. As a result, Defini-
tion . does not include Definition .. In [], the authors introduced some new concepts
of periodic time scales attached with a “translation direction”. In addition, several exam-
ples were provided to show that these new concepts are more general than Definition .,
and the composition theorem of time scales from [, ] will be guaranteed under these
new notions. Moreover, the authors of [, ] proposed and solved the almost periodic
problems for q-dynamic equations on the quantum time scale for the first time, and the
authors introduced the theory of almost periodic functions under shift operators which
can derive and include the almost periodic theory of q-dynamic equations on the quan-
tum time scale. Also, some new almost periodic functions were constructed on irregular
time scales under the stochastic background. Furthermore, in the literature [], the au-
thors made some significant comments and notes on their related works and the recent
development of time scales to contribute to solving the closedness problems on various
types of time scales.

The closedness of time scales under shifts is a key and difficult problem which needs to
be solved since it is closely related to defining and studying functions, investigating de-
lay dynamic equations on time scales and nonlinear periodic or non-periodic phenomena
in the real world. In this paper, we initiate the idea that the shift number set which con-
trols the shifts of a time scale and maintains its shift closedness may be separated from
the time scale (e.g., T∩ � = ∅ in Example .). Using the algebraic structure of an Abelian
group, the concept of a matched space for time scales is introduced and the algebraic struc-
ture of matched spaces is constructed to solve the closedness of time scales under non-
translational shifts. With this algebraic structure, a new concept of periodic time scales
is introduced and based on it, new concepts of periodic functions, almost periodic func-
tions and almost automorphic functions are proposed through non-translational shifts.
Furthermore, these notions attached with shift directions are also introduced and stud-
ied.

2 A matched space for time scales
In this section, we introduce the algebraic structure of matched spaces for time scales. For
details on time scales, we refer the reader to [–].

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ ,ρ : T→ T and the graininess μ: T→ R

+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-
dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t. If T has a left-scattered maxi-
mum M, then T

k = T\{M}; otherwise Tk = T. If T has a right-scattered minimum m, then
Tk = T\{m}; otherwise Tk = T.

A function f : T →R is right-dense continuous provided it is continuous at a right-dense
point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function
on T.
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For y : T → R and t ∈ T
k , we define the delta derivative of y(t), y�(t), to be the number

(if it exists) with the property that for a given ε > , there exists a neighborhood U of t
such that

∣∣[y
(
σ (t)

)
– y(s)

]
– y�(t)

[
σ (t) – s

]∣∣ < ε
∣∣σ (t) – s

∣∣

for all s ∈ U .
Now, we construct the algebraic structure for a pair (�∗, δ̃) by using an Abelian group

property to introduce the definition of a relatively dense set with respect to the group
(�∗, δ̃), where �∗ is a subset of R together with an operation δ̃.

Definition . Let �∗ be a subset of R together with an operation δ̃, and let a pair (�∗, δ̃)
be an Abelian group and δ̃ be increasing with respect to its second argument, i.e., �∗ and
δ̃ satisfy the following conditions:

() �∗ is closed with respect to an operation δ̃, i.e., for any τ, τ ∈ �∗, we have
δ̃(τ, τ) ∈ �∗.

() For any τ ∈ �∗, there exists an identity element e�∗ ∈ �∗ such that δ̃(e�∗ , τ ) = τ .
() For all τ, τ, τ ∈ �∗, δ̃(τ, δ̃(τ, τ)) = δ̃(δ̃(τ, τ), τ) and δ̃(τ, τ) = δ̃(τ, τ).
() For each τ ∈ �∗, there exists an element τ– ∈ �∗ such that

δ̃(τ , τ–) = δ̃(τ–, τ ) = e�∗ , where e�∗ is the identity element in �∗.
() If τ > τ, then δ̃(·, τ) > δ̃(·, τ).

A subset S of R is called relatively dense with respect to the pair (�∗, δ̃) if there exists a
number L ∈ �∗ and L > e�∗ such that [a, δ̃(a, L)]�∗ ∩ S �= ∅ for all a ∈ �∗. The number |L|
is called the inclusion length with respect to the group (�∗, δ̃).

Remark . Note that from Definition ., one can derive some classical concepts of rel-
atively dense set. Here, we present some classical concepts according to it.

(i) If �∗ = R and δ̃(τ, τ) = τ + τ, then e�∗ = . One can obtain the following concept:

Definition . (Definition . from []) A subset S of R is called relatively dense with
respect to the pair (R, +) if there exists a number L >  such that [a, a + L] ∩ S �= ∅ for all
a ∈R. The number L is called the inclusion length with respect to the group (R, +).

(ii) If �∗ = hZ, h >  and δ̃(τ, τ) = τ + τ, then e�∗ = . We can immediately get the
following concept:

Definition . A subset S of R is called relatively dense with respect to the pair (hZ, +) if
there exists a number L ∈ hZ+ such that [a, a + L]hZ ∩ S �= ∅ for all a ∈ hZ. The number L
is called the inclusion length with respect to the group (hZ, +).

(iii) If �∗ = qZ := {qn : q > , n ∈ Z} and δ̃(τ, τ) = τ · τ, then e�∗ = . One can establish
the following concept:

Definition . A subset S of R is called relatively dense with respect to the pair (qZ, ·) if
there exists a number L ∈ (, +∞)qZ such that [a, aL]qZ ∩ S �= ∅ for all a ∈ qZ. The number
L is called the inclusion length with respect to the group (qZ, ·).
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(iv) If �∗ = N


± := {±√

n, n ∈N} and

δ̃(τ, τ) =

⎧
⎨

⎩

√
τ 

 + sgn(τ) · τ 
 , τ > ,

–
√

τ 
 – sgn(τ) · τ 

 , τ < ,
then e�∗ = .

One will have the following concept:

Definition . A subset S of R is called relatively dense with respect to the pair (N

±, δ̃) if

there exists a number L ∈ (, +∞)
N



+

such that [a,
√

a + L]
N



+

∩ S �= ∅ for all a ∈ N



+ and

[a, –
√

a – L]
N


–

∩ S �= ∅ for all a ∈ N

– . The number L is called the inclusion length with

respect to the group (N

±, δ̃).

From Definitions .-., one will see that by employing Definition ., some new con-
cepts of relatively dense sets for various types of time scales can be derived. It is easy to
observe that Definition . is suitable for T = R, Definition . is appropriate for T = hZ,
Definition . is suitable for T = qZ and Definition . is applicable to T = N


±.

Similarly, by using the operator δ̃, one can also establish the concepts of relatively dense
sets for T = –qZ ∪ qZ and (–q)Z, q > , etc. Hence, it is obvious that Definition . is so gen-
eral that it can unify the concepts of relatively dense sets for many irregular time scales,
it will be a useful tool to describe the almost periodicity of functions on a more compre-
hensive scope of time scales.

According to Definition ., one can obtain the following property.

Theorem . Let a pair (�∗, δ̃) be an Abelian group and τ, τ ∈ �∗. Then

δ̃–(τ, τ) = δ̃
(
τ–

 , τ–


)
.

Proof Note the following:

δ̃
(
δ̃(τ, τ), δ̃

(
τ–

 , τ–


))
= δ̃

(
τ, δ̃

(
τ, δ̃

(
τ–

 , τ–


)))

= δ̃
(
τ, δ̃

(
δ̃
(
τ, τ–


)
, τ–


))

= δ̃
(
τ, δ̃

(
e�∗ , τ–


))

= δ̃
(
τ, τ–


)

= e�∗ .

Hence, we can obtain the desired result. This completes the proof. �

Next, we introduce the concept of an adjoint mapping between T and � to lay the foun-
dation for introducing matched spaces.

Definition . Let T and � be time scales, where T =
⋃

i∈I
Ai, � =

⋃
i∈I

Bi. If �∗ is the
largest subset of the time scale �, i.e., �∗ = �, where A denotes the closure of the set A,
and (�∗, δ̃) is an Abelian group, I, I are countable index sets, then we say � is an adjoint
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set of T if there exists a bijective mapping

F : T → �,
A ∈ {Ai, i ∈ I} → B ∈ {Bi, i ∈ I},

i.e., F(A) = B. Now F is called the adjoint mapping between T and �.

Example . In the following, according to Definition ., one can see that � is an adjoint
set of T.

() Consider the following time scale T and the set �:

T =
{

i : i ∈ Z
}

, � =
{

i : i ∈ Z
}

,

and obviously, there exists a bijective map

F : T → �,
A ∈ {

i, i ∈ Z
} → B ∈ {

i, i ∈ Z
}

,
A → Alog  = B,

A =  → B = ,

i.e., F(A) = B. Note that �\{} = �∗ �⊂ T and e�∗ = . Here, δ̃(τ, τ) = τ · τ.
() Consider the following time scale T and the set �:

T =
⋃

i∈Z

[
i(a + b), i(a + b) + b

]
, where a �= –b,� =

{
i(a + b) : i ∈ Z

}
,

and obviously, there exists a bijective mapping

F : T → �,
A ∈ {[

i(a + b), i(a + b) + b
]
, i ∈ Z

} → B ∈ {
i(a + b), i ∈ Z

}
,

A → the left point of the interval A,

i.e., F(A) = B. Note that � = �∗ ⊂ T and e�∗ = . Here, δ̃(τ, τ) = τ + τ.
() Consider the following time scale T and the set �:

T =
⋃

i∈Z

[
i(a + b), i(a + b) + b

]
, where a > –b, � =

{
± i(a + b)√


: i ∈ Z

}
,

and obviously, there exists a bijective mapping

Z : T → �̃,
A ∈ {[

i(a + b), i(a + b) + b
]
, i ∈ Z

} → B ∈ {
i(a + b) : i ∈ Z

}
,

A → the left point of the interval A,

i.e., Z(A) = B. Then

N : �̃ → �,

B ∈ {
i(a + b), i ∈ Z

} → B ∈
{
± i(a+b)√

 : i ∈ Z

}
,

B → sgn(B)B
√

(a+b) = B,
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i.e., F(A) = N ◦ Z(A) = B. Note that � = �∗ �⊂ T and e�∗ = . Here,

δ̃(τ, τ) = sgn
(
sgn(τ)

√|τ| + sgn(τ)
√|τ|

)(
sgn(τ)

√|τ| + sgn(τ)
√|τ|

).

We introduce an operator δ with the following algebraic structure between T and �.

Definition . Let the pair (�∗, δ̃) be an Abelian group and �∗, T∗ be the largest subsets
of the time scales � and T, respectively. Further, let � be the adjoint set of T and F be the
adjoint mapping between T and �. The operator δ : �∗ ×T

∗ → T
∗ satisfies the following

properties:

(P) (Monotonicity) The function δ is strictly increasing with respect to its all arguments,
i.e., if

(T, t), (T, u) ∈Dδ :=
{

(s, t) ∈ �∗ ×T
∗ : δ(s, t) ∈ T

∗},

then t < u implies δ(T, t) < δ(T, u); if (T, u), (T, u) ∈Dδ with T < T, then δ(T, u) <
δ(T, u).

(P) (Existence of inverse elements) The operator δ has the inverse operator δ– : �∗ ×
T

∗ → T
∗ and δ–(τ , t) = δ(τ–, t), where τ– ∈ �∗ is the inverse element of τ .

(P) (Existence of identity element) e�∗ ∈ �∗ and δ(e�∗ , t) = t for any t ∈ T
∗, where e�∗ is

the identity element in �∗.
(P) (Bridge condition) For any τ, τ ∈ �∗ and t ∈ T

∗, δ(δ̃(τ, τ), t) = δ(τ, δ(τ, t)) =
δ(τ, δ(τ, t)).

Then the operator δ(s, t) associated with e�∗ ∈ �∗ is said to be a shift operator on the
set T∗. The variable s ∈ �∗ in δ is called the shift size. The value δ(s, t) in T

∗ indicates s
units shift of the term t ∈ T

∗. The set Dδ is the domain of the shift operator δ.

Example . According to Definition ., we provide a matching among �∗, δ̃ and δ for
the following time scales.

() Let T = –qZ = {–qn : q > , n ∈ Z}. For such a time scale, take e�∗ = , we attach the
shift operators

δ(s, t) =
t
s

,

δ̃(s, s) = s · s

and �∗ = {qn : q > , n ∈ Z}.
() Let T = qZ = {qn : q > , n ∈ Z} ∪ {}. For this time scale, take e�∗ = , we attach the

shift operators

δ(s, t) = st,

δ̃(s, s) = s · s

and �∗ = {qn : q > , n ∈ Z}.
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() Let T = (–q)Z = {(–q)n : q > , n ∈ Z} ∪ {}. For such a time scale and any t ∈ T
∗, take

e�∗ = , we attach the shift operators

δ(s, t) =

⎧
⎨

⎩
st, t > ,
t
s , t < ,

δ̃(s, s) = s · s

and �∗ = {(–q)n : q > , n ∈ Z}.
() Consider T = –qZ ∪ qZ = {qn : q > , n ∈ Z} ∪ {–qn : q > , n ∈ Z} ∪ {}. For this time

scale and any t ∈ T
∗, take e�∗ = , we attach the shift operators

δ(s, t) =

⎧
⎨

⎩
st, t > ,
t
s , t < ,

δ̃(s, s) = s · s

and �∗ = {qn : q > , n ∈ Z}.
() Consider N


± = {±√

n, n ∈N}. For any t ∈ T
∗, take e�∗ = , we attach the shift

operators

δ(s, t) =

⎧
⎨

⎩

√
t + sgn(s) · s, t > ,

–
√

t – sgn(s) · s, t < ,
δ̃(s, s) =

⎧
⎨

⎩

√
s

 + sgn(s) · s
, s > ,

–
√

s
 – sgn(s) · s

, s < ,

and �∗ = N


± = {±√

n : n ∈ N}.

In the next example, one will see that the condition (P) from Definition . may not be
satisfied but the complete closedness for some types of time scales still can be guaranteed
under the shift δ.

Example . Let T = {qn : q > , n ∈ Z+} and T = {qn : q > , n ∈ Z–}. For these two time
scales, � = T, � = T. Denote the adjoint mapping between T and � by F, and the
mapping between T and � by F, then it is easy to obtain F = F = I , where I is an
identity mapping. Take e�∗ =  and �∗ = {qn : q > , n ∈ Z} = �∗

 ∪�∗
, where �∗

 = {qn : q >
, n ∈ Z

+} ∪ {}, �∗
 = {qn : q > , n ∈ Z

–} ∪ {}, δ̃ = δ̃ = ss.
It is clear that for any s ∈ �∗

 , s ∈ �∗
, we obtain δ(s, t) = st ∈ T

∗
 for all t ∈ T

∗
 but

s–
 /∈ �∗

\{}, which implies that δ(s–
 , t) = t

s
/∈ T

∗
 for t = q, s = q.

Similarly, δ(s, t) = st ∈ T
∗
 for all t ∈ T

∗
 but s–

 /∈ �∗
\{}, which implies that

δ(s–
 , t) = t

s
/∈ T

∗
 for t = 

q , s = 
q .

Hence, under the shift operators δ(s, t) = δ(s, t) = st, one can see thatT andT are com-
pletely closed. However, all the elements from �∗

\{} and �∗
\{} have no corresponding

inverse elements in �∗
 and �∗

, respectively, that is, (�∗
 , δ̃) and (�∗

, δ̃) are not Abelian
groups but they can guarantee the complete closedness of time scales T and T.

Remark . From the condition (P) in Definition ., one can easily observe that δ–

exists if and only if (�∗, δ̃) is an Abelian group.

In order to include the cases of the closedness of time scales from Example ., it is sig-
nificant to propose the following concept of shift operator δ attached with shift directions.
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Definition . Let the pair (�∗, δ̃) be closed towards the operation δ̃, and �∗, T∗ be the
largest subsets of the time scales � and T, respectively. Further, let � be the adjoint set of
T and F the adjoint mapping between T and �. The operator δ : �∗ × T

∗ → T
∗ satisfies

the following properties:

(P) (Monotonicity) The function δ is strictly increasing with respect to all its arguments,
i.e., if

(T, t), (T, u) ∈Dδ :=
{

(s, t) ∈ �∗ ×T
∗ : δ(s, t) ∈ T

∗},

then t < u implies δ(T, t) < δ(T, u); if (T, u), (T, u) ∈Dδ with T < T, then δ(T, u) <
δ(T, u).

(P) (Existence of identity element) e�∗ ∈ �∗ and δ(e�∗ , t) = t for any t ∈ T
∗, where e�∗ is

the identity element in �∗.
(P) (Bridge condition) For any τ, τ ∈ �∗ and t ∈ T

∗, δ(δ̃(τ, τ), t) = δ(τ, δ(τ, t)) =
δ(τ, δ(τ, t)).

Then the operator δ associated with e�∗ ∈ �∗ is said to be shift operator on the set T∗.
The variable s ∈ �∗ in δ is called the shift size. The value δ(s, t) in T

∗ indicates s units shift
of the term t ∈ T

∗. The set Dδ is the domain of the shift operator δ.

Remark . Note that the condition (P) from Definition . is not satisfied in Defini-
tion . since (�∗, δ̃) may not be an Abelian group in Definition ., i.e., δ– may not exist.

Definition . Under Definition ., we introduce three types of shift operators:
() We say δ is a positive-direction shift operator if for any p > e�∗ and p ∈ �∗, there

exists a number P > p and P ∈ �∗ such that δ(P, t) ∈ T
∗ for all t ∈ T

∗.
() We say δ is a negative-direction shift operator if for any q < e�∗ and q ∈ �∗, there

exists a number Q < q and Q ∈ �∗ such that δ(Q, t) ∈ T
∗ for all t ∈ T

∗.
() We say δ is a bi-direction shift operator if for any p > e�∗ and q < e�∗ , where

p, q ∈ �∗, there exist two numbers P > p, Q < q and P, Q ∈ �∗ such that
δ(P, t), δ(Q, t) ∈ T

∗ for all t ∈ T
∗.

() We say δ is an oriented-direction shift operator if δ is a positive-direction shift
operator or a negative-direction shift operator.

Remark . Under Definition ., the complete closedness of time scales in Example .
can be well described, that is, δ for T is a positive-direction shift operator, δ for T is a
negative-direction shift operator. In addition, all the operators δ in Example . are bi-
direction shift operators. Also, one can observe that the sets (�∗, δ̃) in Example . are
Abelian groups, but (�∗

 , δ̃) and (�∗
, δ̃) in Example . are not Abelian groups.

Remark . According to Definition ., we can derive the following related concepts,
which indicates that the shifts of time scales under the operator δ include the cases of the
translations of time scales.

(i) If T = R, then δ(s, t) = t + s, where s ∈ �∗ = R and δ̃(s, s) = s + s. It is easy to
observe that (�∗, δ̃) forms an Abelian group, so one can easily obtain that δ is a
bi-direction shift operator.
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(ii) If T = hZ, h > , then δ(s, t) = t + s, where s ∈ �∗ = hZ and δ̃(s, s) = s + s. Also,
one can easily get that δ is a bi-direction shift operator because (�∗, δ̃) forms an
Abelian group.

(iii) If T =
⋃+∞

k=[k, k + ], then δ(s, t) = t + s, where s ∈ �∗ = {n, n ∈N} and
δ̃(s, s) = s + s. Since each element from �∗ has no inverse element in �∗\{}
with respect to the operator δ̃, i.e., (�∗, δ̃) is not an Abelian group. In fact, one can
easily see that δ is a positive-direction shift operator.

In the literature [], the authors proposed the concept of time scales attached with
translation direction to discuss the closedness of time scales under translations. In this
paper, one can observe that the translation of time scales is just a particular case of the
shift of time scales. Hence, it is significant to consider the closedness of time scales under
shifts because not only can it unify the discrete and continuous time scales (i.e., T = hZ or
R) but also the quantum time scale (i.e., T = qZ) and other irregular types of time scales
such as (–q)Z, N


±, etc.

For convenience, we introduce the following concepts of semigroup of �∗ attached with
shift direction.

Definition . Let (�∗, δ) be an Abelian group and

�∗∗
 :=

{
τ ∈ �∗ : s ≤ e�∗

}
, �∗∗

 :=
{
τ ∈ �∗ : s ≥ e�∗

}
.

Then the sets �∗∗
 and �∗∗

 are called the negative-direction semigroup and the positive-
direction semigroup for �∗, respectively.

According to Definition ., the following theorem is obvious.

Theorem . If �∗ is a semigroup with negative-direction (or positive-direction), then δ

is a negative-direction shift operator (or a positive-direction shift operator).

In what follows, we assume that δ is a bi-direction shift operator, i.e., (�∗, δ̃) forms an
Abelian group. From Definition ., we introduce the concept of matched spaces for time
scales and establish some related properties.

Definition . Let the pair (�∗, δ̃) be an Abelian group and �∗, T∗ be the largest sub-
sets of the time scales � and T, respectively. Further, let � be an adjoint set of T and F
be the adjoint mapping between T and �. If there exists the shift operator δ satisfying
Definition ., then we say the group (T,�, F , δ) is a matched space for the time scale T.

Remark . Note that Definition . reflects the algebraic structure of matched spaces,
i.e, a matched space for the time scale is the group (T,�, F , δ).

Definition . If T = �, then we say the group (T,�, F , δ) is a standard matched space.

Remark . It is easy to see that for a standard matched space, the adjoint mapping F
is a unit operator I , for simplicity, (T,�, F , δ) := (T, δ). Under the standard matched space
(T, δ), one can employ the algebraic structure to include all the results from []. In fact, let
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� = T, e�∗ = t, δ(s, t) = δ+(s, t) and δ(s–, t) = δ–(s, t) = δ–(s, t), where s ∈ [t, +∞)T∗ and t

is an initial point, then all the results from [] become a particular case of the established
results in this paper.

Lemma . Let δ be a shift operator under Definition .. Then the following are fulfilled:
() δ–(e�∗ , t) = δ(e�∗ , t) = t for all t ∈ T

∗.
() If (s, u) ∈Dδ– and (s, t) ∈Dδ , then δ(s, t) = u implies δ–(s, u) = t and δ–(s, u) = t

implies δ(s, t) = u.
() If (T, u), (T, u) ∈Dδ– and TT > , T < T, then δ–(T, u) > δ–(T, u).
() δ(τ , δ–(s, t)) = δ–(s, δ(τ , t)) for any t ∈ T

∗.
() δ(δ̃(u, s), δ–(s, v)) = δ(u, v); δ–(δ̃(u, s), δ(s, v)) = δ–(u, v).
() If δ(τ , ·) is �-differentiable in its second variable, then δ�(τ , ·) > .

Proof () Since δ–(e�∗ , t) = δ(e–
�∗ , t) = δ(e�∗ , t) for all t ∈ T

∗, we can obtain the result.
() If (s, u) ∈Dδ– and (s, t) ∈Dδ , then

δ–(s, u) = δ
(
s–, u

)
= δ

(
s–, δ(s, t)

)
= δ

(
δ̃
(
s–, s

)
, t

)
= δ(e�∗ , t) = t,

and

δ(s, t) = δ
(
s, δ–(s, u)

)
= δ

(
s, δ

(
s–, u

))
= δ

(
δ̃
(
s, s–), u

)
= δ(e�∗ , u) = u.

() Since T–
 > T–

 , it follows from (P), (P) in Definition . that

δ–(T, u) = δ
(
T–

 , u
)

> δ
(
T–

 , u
)

= δ–(T, u).

() We can directly calculate that

δ
(
τ , δ

(
s–, t

))
= δ

(
δ̃
(
τ , s–), t

)
= δ

(
δ̃
(
s–, τ

)
, t

)
= δ

(
s–, δ(τ , t)

)
= δ–(s, δ(τ , t)

)
.

() Through calculation, we obtain

δ
(
δ̃(u, s), δ–(s, v)

)
= δ

(
u, δ

(
s, δ

(
s–, v

)))
= δ

(
u, δ

(
δ̃
(
s, s–), v

))

= δ
(
u, δ(e�∗ , v)

)
= δ(u, v)

and

δ–(δ̃(u, s), δ(s, v)
)

= δ
(
δ̃–(u, s), δ(s, v)

)

= δ
(
δ̃
(
u–, s–), δ(s, v)

)
= δ

(
u–, δ

(
s–, δ(s, v)

))

= δ
(
u–, δ(e�∗ , v)

)
= δ

(
u–, v

)
= δ–(u, v).

() Since δ(τ , ·) is strictly increasing in its second variable, we have () by Corollary .
from []. This completes the proof. �

Corollary . Let T∗ be the largest subset of the time scale T. For a standard matched
space (T, δ), δ(τ , t) = δ(t, τ ) holds for all (τ , t) ∈ T

∗ ×T
∗.
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Proof Note that we obtain

δ(τ , t) = δ
(
e�, δ(τ , t)

)
= δ

(
δ̃
(
t, t–), δ(τ , t)

)
= δ

(
t, δ

(
t–, δ(τ , t)

))

= δ
(
t, δ

(
δ̃
(
t–, τ

)
, t

))
= δ

(
t, δ

(
δ̃
(
τ , t–), t

))
= δ

(
t, δ

(
τ , δ

(
t–, t

)))

= δ
(
t, δ(τ , e�∗ )

)
= δ(t, τ ).

This completes the proof. �

Next, we provide several examples to show the algebraic structure of matched spaces
for time scales.

Example .
() T = {±n : n ∈ Z}, � = {τ : τ = n, n ∈ Z}, thus, the shift operator δ can be taken as

follows:

δ(τ , t) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(
√

t + τ ) · (
√

t + τ ), if t > ,

sgn(τ )τ , if t = ,

– sgn(
√

–t – τ ) · (
√

–t – τ ), if t < .

τ = n, ∀n ∈ Z.

Thus, ∀τ, τ ∈ �∗ = �, δ̃(τ, τ) = τ + τ. Obviously, δ̃(τ, τ) ∈ �∗. On the other
hand, there exists a bijective mapping

F : T → �,
A ∈ {±n, n ∈ Z

} → B ∈ {n, n ∈ Z},
A → sgn(A)

√|A| = B,

i.e., F(A) = sgn(A)
√|A|. Hence, we can obtain a matched space (T,�, F , δ) for the

time scale T.
() T = qZ and � = qZ. δ(τ , t) = τ t, τ = qn , ∀n ∈ Z. Thus, ∀τ, τ ∈ �∗ = �\{},

δ̃(τ, τ) = τ · τ. Obviously, δ̃(τ, τ) ∈ �∗. On the other hand, there exists a bijective
mapping

F : T → �,
A ∈ {

qn, n ∈ Z
} → B ∈ {

qn, n ∈ Z
}

,
A → A = B,

i.e., F(A) = A. Hence, we can obtain a matched space (T,�, F , δ) for the time scale T.
() T =

⋃
n∈Z[n, n+] and � = {τ : τ = n, n ∈ Z}. δ(τ , t) = τ t, τ = n , ∀n ∈ Z.

Thus, ∀τ, τ ∈ �∗ = �\{}, δ̃(τ, τ) = τ · τ. Obviously, δ̃(τ, τ) ∈ �∗. On the other
hand, there exists a bijective mapping

F : T → �,
A ∈ ⋃

n∈Z
[
n, n+

] → B ∈ {
τ : τ = n, n ∈ Z

}
,

A → the left point of the interval A
A =  → B = ,

i.e., F(A) = B. Hence, we can obtain a matched space (T,�, F , δ) for T.
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() T = { qn

+qn : q > is a constant and n ∈ Z} ∪ {, } and � = {τ : τ = qn, n ∈ Z}. Thus, the
shift operators can be as follows:

δ(τ , t) =
q


ln q (ln t

–t +ln τ )

 + q


ln q (ln t
–t +ln τ )

, τ = qn ,∀n ∈ Z.

Thus, we can obtain δ̃(τ, τ) = τ · τ. Obviously, δ̃(τ, τ) ∈ �∗ = �\{}. On the
other hand, there exists a bijective mapping

F : T → �,

A ∈
{

qn

+qn :

q >  is a constant and n ∈ Z

}
∪ {, } → B ∈ {

τ : τ = qn, n ∈ Z
}

,

A → A
–A ,

A =  → B = ,
A =  → B = ,

i.e., F(A) = B. Hence, we can obtain a matched space (T,�, F , δ) for T.
() If T =

⋃
k∈Z[k(a + b), k(a + b) + b], where a �= –b and � = {τ : τ = n(a + b), n ∈ Z}.

δ(τ , t) = t + τ , τ = n(a + b), ∀n ∈ Z. Thus, we can obtain δ̃(τ, τ) = τ + τ.
Obviously, δ̃(τ, τ) ∈ �∗ = �. On the other hand, there exists a bijective mapping

F : T → �,
A ∈ ⋃

k∈Z
[
k(a + b), k(a + b) + b

] → B ∈ {
τ : τ = n(a + b), n ∈ Z

}
,

A → the left point of the interval A,

i.e., F(A) = B. Hence, we can obtain a matched space (T,�, F , δ) for T.

Using the algebraic structure of matched spaces, we introduce the following new concept
of periodic time scales.

Definition . A time scale T is called a periodic time scale under a matched space
(T,�, F , δ) if

�̃ :=
{
τ ∈ �∗ :

(
τ±, t

) ∈Dδ ,∀t ∈ T
∗} /∈ {{e�∗},∅}

. ()

Remark . From Definition ., one should note that �̃ ⊆ �∗ ⊆ � and for every τ ∈
�̃, there exists τ– ∈ �̃, i.e., there exists an inverse element for every element in �̃.

Remark . For any t ∈ T
∗, if (τ, t) ∈Dδ , (τ, t) ∈Dδ , then by Definition ., there exists

a function δ̃ : �∗ × �∗ → �∗ such that δ̃(τ, τ) ∈ �∗. Obviously, if T is a periodic time
scale in the sense of Definition ., i.e., e�∗ =  and �̃ = �∗ = � = {τ ∈ R : t ± τ ∈Dδ ,∀t ∈
T} /∈ {{},∅}, we have τ, τ ∈ �̃, then δ̃(τ, τ) = τ + τ ∈ �̃.

Remark . From (), one can see (τ±, t) ∈Dδ implies that δ(τ–, t) = δ–(τ , t) exists.

In the following, we present some periodic time scales in the sense of Definition ..
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Example . In Example ., we can obtain the operators δ as follows:
()

δ(τ , t) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn(
√

t + τ ) · (
√

t + τ ), if t > , τ = ±,

sgn(τ ), if t = , τ = ±,

– sgn(
√

–t – τ ) · (
√

–t – τ ), if t < , τ = ±.

() T = qZ, δ(τ , t) = τ t, τ = q±.
() T =

⋃
n∈Z[n, n+], δ(τ , t) = τ t, τ = ±.

() δ(τ , t) = q


ln q (ln t
–t +ln τ )

+q


ln q (ln t
–t +ln τ )

, τ = q±.

() δ(τ , t) = t + τ , τ = ±(a + b).
From the above and the operators δ, one can obtain that the above numbers τ ∈ �̃. Hence,
()-() are periodic time scales under their matched spaces. Furthermore, it is also easy to
see that ()-() from Example . are not periodic time scales in the sense of Definition ..

Remark . We now show that (), () in Example . are periodic under their matched
spaces. However, they are not periodic in the sense of Definition .. In fact, one can easily
observe that T∩ �∗ = ∅ in (), () in Example ., then Definition . is not satisfied since
Definition . requires �∗ ⊂ T. In fact, we have

(i) for () from Example ., let δ(τ , t) = tlog τ , τ = ± ∈ �∗, and one can obtain
δ(τ , t) ∈ T

∗ under the matched space (T,�, F , δ).
(ii) for () from Example ., let

δ(τ , t) = t + sgn(τ )
√√

(a + b)|τ |, τ = ±a + b√


∈ �∗,

and one can obtain δ(τ , t) ∈ T
∗ under the matched space (T,�, F , δ).

In what follows, denote the shift by δτ (t) := δ(τ , t), and we assume that T is a periodic
time scale under its matched space (T,�, F , δ). We will show that δτ : T∗ → T

∗ are com-
mutative with the forward jump operator σ : T → T given by σ (t) := inf{s ∈ T : s > t}, that
is,

(δτ ◦ σ )(t) = (σ ◦ δτ )(t). ()

Lemma . The operator δτ : T∗ → T
∗ preserves the structure of the points in T

∗. That
is,

σ
(
t∗) = t∗ ⇒ σ

(
δτ

(
t∗)) = δτ

(
t∗),

σ
(
t∗) > t∗ ⇒ σ

(
δτ

(
t∗)) > δτ

(
t∗).

Proof Since σ (t) ≥ t for all t ∈ T
∗, thus, by (P) from Definition ., we obtain δτ (σ (t)) ≥

δτ (t). Since σ (δτ (t)) is the smallest element satisfying σ (δτ (t)) ≥ δτ (t), we obtain

δτ

(
σ (t)

) ≥ σ
(
δτ (t)

)
for all t ∈ T

∗. ()
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If σ (t∗) = t∗, then () implies δτ (t∗) = δτ (σ (t∗)). That is, δτ (t∗) = σ (δτ (t∗)).
If σ (t∗) > t∗, then by the definition of σ we have

(
t∗,σ

(
t∗)) ∩T

∗ = ∅, ()

and by (P) from Definition ., δτ (σ (t∗)) > δτ (t∗). For contradiction, assume that δτ (t∗) is
right-dense, i.e., σ (δτ (t∗)) = δτ (t∗), and it follows from () that we have (δτ (t∗), δτ (σ (t∗))) ∩
T

∗ �= ∅. Pick one element s ∈ (δτ (t∗), δτ (σ (t∗))) ∩ T
∗, and since δτ (t) is strictly increasing

in t, we obtain δ–
τ (s) ∈ (t∗,σ (t∗)) ∩ T

∗, which contradicts (). Therefore, δτ (t∗) must be
right-scattered, i.e., σ (δτ (t∗)) > δτ (t∗). This completes the proof. �

Corollary . For all t ∈ T
∗, the following are fulfilled:

δτ

(
σ (t)

)
= σ

(
δτ (t)

)
; ()

δ–
τ

(
σ (t)

)
= σ

(
δ–
τ (t)

)
. ()

Proof From the proof process of Lemma ., we immediately obtain (). By (), we ob-
tain that δτ (σ (s)) = σ (δτ (s)) for all s ∈ T

∗. Substituting s = δ–
τ (t), we obtain δτ (σ (δ–

τ (t))) =
σ (δτ (δ–

τ (t))), and it follows from () in Lemma . that δ–
τ (σ (t)) = σ (δ–

τ (t)) for all t ∈ T
∗.

This completes the proof. �

Observe that () along with () yields ().

Definition . Let T be a periodic time scale under the matched space (T,�, F , δ) and
X be a Banach space, and we say f : T∗ → X is periodic under (T,�, F , δ) if there exists
τ ∈ �∗ such that

(
τ±, t

) ∈Dδ and f
(
δτ± (t)

)
= f (t) for all t ∈ T

∗. ()

The number τ such that () holds is called the period of f .

Example . Let T = R and � = [, +∞), and we define the following operators:

δτ (t) =

⎧
⎨

⎩
τ t, if t ≥ ,

t/τ , if t < ,
for τ ∈ [, +∞) ∩ �∗, ()

and

δ–
τ (t) =

⎧
⎨

⎩
t/τ , if t ≥ ,

τ t, if t < ,
for τ ∈ [, +∞) ∩ �∗, ()

and one easily observes that (T,�, F , δ) is a matched space for T, where

F(A) =

⎧
⎨

⎩


–A , A ≤ ,

 + A, A > ,
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for all A ∈ T
∗ = R\{}, �∗ = (, +∞). By Definition ., we know that the set of reals R is

periodic under the matched space (T,�, F , δ). The function

fτ (t) = cos

(
ln |t|

ln(/
√

τ )
π

)
, τ > and t ∈ T

∗ = R\{}

is periodic under (T,�, F , δ) with the period τ = P, P >  since

fτ
(
δτ± (t)

)
=

⎧
⎨

⎩
fτ (tP±), if t ≥ ,

fτ (t/P±), if t < ,

= cos

(
ln |t| ±  ln(/P)

ln(/P)
π

)

= cos

(
ln |t|

ln(/P)
π ± π

)
= cos

(
ln |t|

ln(/P)
π

)
= fτ (t).

Example . The time scale qZ = {qn, n ∈ Z and q > } ∪ {} is periodic under the
matched space (T,�, F , δ) with period τ = q. The function defined by

f (t) =
[
θ (t)

] ln t
ln q , θ (t) =

⎧
⎨

⎩
, t > ,

–,  ≤ t < ,
t ∈ qZ ()

is periodic with period τ = q since δτ± (t) = q±t ∈ qZ\{} = qZ and

f
(
δτ± (t)

)
=

[
θ (t)

] ln t
ln q ± =

[
θ (t)

] ln t
ln q = f (t)

for all t ∈ qZ. However, f is not periodic in the sense of Definition . since there is no
positive number τ such that f (t ± τ ) = f (t) holds.

In the following, we introduce the concept of �-periodic function under the matched
space (T,�, F , δ).

Definition . Let T be a periodic time scale under the matched space (T,�, F , δ) and
X be a Banach space, and we say that a function f : T∗ → X is �-periodic if there exists
τ ∈ �∗ such that

(
τ±, t

) ∈Dδ for all t ∈ T
∗,

and the shifts δτ± are �-differentiable with rd-continuous derivatives and

f
(
δτ± (t)

)
δ�
τ± (t) = f (t)

for all t ∈ T
∗. The number τ is called the period of f .

Example . For any a ∈ R\{}, the real-valued function f (t) = a/t defined on Z =
{n, n ∈ Z} is �-periodic under the matched space (T,�, F , δ) with the period τ =  since

f
(
δ± (t)

)
δ�

± (t) =
a

±t
± =

a
t

= f (t).
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Theorem . Let T be a periodic function under the matched space (T,�, F , δ) and f be
a �-periodic function with period τ ∈ �∗. Assume that f ∈ Crd(T). Then

∫ t

t

f (s)�s =
∫ δ

τ± (t)

δ
τ± (t)

f (s)�s. ()

Proof From Theorem . in [], substituting ν(s) = δτ (s) and g(s) = f (δτ (s)), we obtain that

∫ δτ (t)

δτ (t)
f (s)�s =

∫ ν(t)

ν(t)
g
(
ν–(s)

)
�s

=
∫ t

t

g(s)ν�(s)�s

=
∫ t

t

f
(
δτ (s)

)
δ�
τ (s)�s =

∫ t

t

f (s)�s.

The equality

∫ δ–
τ (t)

δ–
τ (t)

f (s)�s =
∫ t

t

f (s)�s, i.e.,
∫ δ

τ– (t)

δ
τ– (t)

f (s)�s =
∫ t

t

f (s)�s

can be obtained similarly. The proof is complete. �

Remark . From Definition ., if the time scale is in the sense of Definition ., then
one can obtain

∫ t±τ

t±τ
f (s)�s =

∫ t
t

f (s)�s by taking δτ± (t) = t ± τ .

In the following, according to Definitions . and ., one can also introduce the concept
of matched spaces for time scales under shift operators attached with the shift directions.

Definition . Let the pair (�∗, δ̃) be closed towards the operation δ̃, and �∗, T∗ be the
largest subsets of the time scales � and T, respectively. Further, let � be an adjoint set
of T and F be the adjoint mapping between T and �. If there exists the shift operator δ

satisfying Definition ., then we say the group (T,�, F , δ) is a matched space attached
with the shift direction for T, i.e., one can describe it as follows:

(i) if δ is a bi-direction shift operator, then we say (T,�, F , δ) is a bi-direction matched
space;

(ii) if δ is a positive-direction shift operator, then we say (T,�, F , δ) is a
positive-direction matched space;

(iii) if δ is a negative-direction shift operator, then we say (T,�, F , δ) is a
negative-direction matched space;

(iv) a positive-direction or negative-direction matched space is called an
oriented-direction matched space.

Remark . Note that the matched space (T,�, F , δ) established in the sense of Defini-
tion . is the bi-direction matched space since δ is the bi-direction shift operator.

Definition . Under Definition ., a time scale T is called the complete closedness
time scale under a matched space (T,�, F , δ) attached with the shift direction if

�̃ :=
{
τ ∈ �∗ : (τ , t) ∈Dδ ,∀t ∈ T

∗} /∈ {{e�∗},∅}
.
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Moreover,
(i) if �̃+ := �̃ ∩ [e�∗ , +∞) /∈ {{e�∗},∅}, then we say T is a positive-direction complete

closedness time scale;
(ii) if �̃– := �̃ ∩ (–∞, e�∗ ] /∈ {{e�∗},∅}, then we say T is a negative-direction complete

closedness time scale;
(iii) if �̃± := �̃+ ∪ �̃– and �̃+, �̃– /∈ {{e�∗},∅}, then we say T is a bi-direction complete

closedness time scale;
(iv) a positive-direction or negative-direction complete closedness time scale is called

an oriented-direction complete closedness time scale.

Remark . For Example ., according to Definition ., one can observe that T is a
positive-direction complete closedness time scale under the matched space (T,�, F, δ),
and T is a negative-direction complete closedness time scale under the matched space
(T,�, F, δ). Moreover, a bi-direction complete closedness time scale is actually equiv-
alent to the periodic time scale under Definition ..

Remark . In Definition ., one will observe that �̃+ is a positive-direction semi-
group and �̃– is a negative-direction semigroup according to Definition ..

3 Applications
In this section, we introduce some new concepts of almost periodic functions and almost
automorphic functions based on the algebraic structure of matched spaces for time scales.
Throughout this section, we assume that X is a Banach space and D ⊆X is an open set.

In the following, we assume that (T,�, F , δ) is a bi-direction matched space, then all the
elements from �∗ have the corresponding inverse elements in �∗.

Definition . Let T be a periodic time scale under the matched space (T,�, F , δ). A func-
tion f ∈ C(T × D,X) is called an almost periodic function with shift operators in t ∈ T

uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f
(
δτ± (t), x

)
– f (t, x)

∥∥ < ε for all t ∈ T
∗ and x ∈ S

}

is a relatively dense set with respect to the pair (�∗, δ̃) for all ε >  and for each compact
subset S of D; that is, for any given ε >  and each compact subset S of D, there exists a
constant l(ε, S) >  such that each interval of length l(ε, S) contains τ (ε, S) ∈ E{ε, f , S} such
that

∥∥f
(
δτ± (t), x

)
– f (t, x)

∥∥ < ε for all t ∈ T
∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

Example . Based on the time scale in Example ., consider the function

F̃(t) = cos

(
ln |√t|
ln(/P)

π

)
+ cos

(
ln |√t|
ln(/P)

π

)
,
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Figure 1 Graph of F̃(t) = cos( ln |√2t|
ln(1/P1) π ) + cos( ln |√3t|

ln(1/P2) π ) with P1 = 2, P2 = 3√2.

where P �= P, P, P >  and t ∈ T
∗ = R\{}. One can observe that F̃(t) is almost periodic

under the matched space (T,�, F , δ). From Example ., let

fP

(
√

t) = cos

(
ln |√t|
ln(/P)

π

)
, fP


(
√

t) = cos

(
ln |√t|
ln(/P)

π

)
,

we obtain that F̃(t) = fP

(
√

t) + fP

(
√

t), and note that fP


and fP


are periodic with dif-
ferent periods P

 , P
, respectively (see Figure ).

Remark . From Definition ., one can easily establish the following classical concepts
of almost periodic functions on R and hZ, h > , etc. Here we present some of them.

(i) Let T =
⋃

k∈Z[k(a+b), k(a+b)+b], where a �= –b. Obviously, if b = , a = , then T = Z.
If b = , a = , then T = R. Let �∗ = {n(a + b) : n ∈ Z}, then �̃ = �∗ and δ̃(τ, τ) = τ + τ,
where τ, τ ∈ �∗. Thus, let δτ± (t) = t ± τ , then we can easily obtain the following concept
of almost periodic functions on this periodic time scale.

Definition . A function f ∈ C(T× D,X) is called an almost periodic function in t ∈ T

uniformly for x ∈ D if for all ε >  and for each compact subset S of D, the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f (t ± τ , x) – f (t, x)
∥∥ < ε for all t ∈ T

∗ and x ∈ S
}

is a relatively dense set with respect to the pair (�∗, +).

(ii) Let T = qZ and �∗ = qZ. Then it is easy to get �̃ = �∗ = qZ, δ̃(τ, τ) = τ · τ, where
τ, τ ∈ �∗. Now, let δτ± (t) = tτ±, then we can easily obtain the following concept of
almost periodic functions on the quantum time scale.

Definition . A function f ∈ C(qZ ×D,X) is called an almost periodic function in t ∈ qZ

uniformly for x ∈ D if for all ε >  and for each compact subset S of D, the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f
(
tτ±, x

)
– f (t, x)

∥∥ < ε for all t ∈ qZ and x ∈ S
}

is a relatively dense set with respect to the pair (�∗, ·).
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(iii) Let T = N


± and �∗ = N


±. Then we can easily obtain that �̃ = �∗ = N


±. Now let

δτ± (t) =

⎧
⎨

⎩

√
t + sgn(±τ ) · τ , t > ,

–
√

t – sgn(±τ ) · τ , t < ,

δ̃(τ, τ) =

⎧
⎨

⎩

√
τ 

 + sgn(τ) · τ 
 , τ > ,

–
√

τ 
 – sgn(τ) · τ 

 , τ < ,

where τ , τ, τ ∈ �∗. Hence, we can state the concept of almost periodic functions on N


±

as follows.

Definition . A function f ∈ C(N

± × D,X) is called an almost periodic function in t ∈

N


± uniformly for x ∈ D if for all ε >  and for each compact subset S of D, the ε-shift set

of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f
(
δτ± (t), x

)
– f (t, x)

∥∥ < ε for all t ∈N


± and x ∈ S

}

is a relatively dense set with respect to the pair (�∗, δ̃).

Note that Definition . is accurately suitable for any periodic time scale in the sense
of Definition ., which implies that the almost periodic functions investigated in [,
, –] are just some particular cases of Definition .. In fact, the almost periodic
phenomenon reflected by Example . would be impossible to be studied in the previous
literature works because there have been no concepts of almost periodic functions under
non-translational shifts until now.

Remark . According to Definition ., if we attach a shift direction to the matched
space, then we can derive some concepts of almost periodic functions attached with shift
directions. We present some of them here, the readers can also establish the similar con-
cepts on other irregular time scales.

(i) Let T = {qn : q > , n ∈ Z+} and �∗ = {qn : q > , n ∈ Z
+} ∪ {}. Then it is easy to get

�̃ = �∗, δ̃(τ, τ) = τ · τ, where τ, τ ∈ �∗. Now, let δτ (t) = tτ , then we can easily obtain
the following concept of positive-direction almost periodic functions on the time scale T.

Definition . A function f ∈ C(T × D,X) is called a positive-direction almost periodic
function in t ∈ T uniformly for x ∈ D if for all ε >  and for each compact subset S of D,
the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f (tτ , x) – f (t, x)
∥∥ < ε for all t ∈ T and x ∈ S

}

is a relatively dense set with respect to the pair (�∗, ·).

(ii) Let T = {qn : q > , n ∈ Z–} and �∗ = {qn : q > , n ∈ Z
–} ∪ {}. Then it is easy to get

�̃ = �∗, δ̃(τ, τ) = τ · τ, where τ, τ ∈ �∗. Now, let δτ (t) = tτ , then we can easily obtain
the following concept of negative-direction almost periodic functions on the time scale T.
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Definition . A function f ∈ C(T× D,X) is called a negative-direction almost periodic
function in t ∈ T uniformly for x ∈ D if for all ε >  and for each compact subset S of D,
the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f (tτ , x) – f (t, x)
∥∥ < ε for all t ∈ T and x ∈ S

}

is a relatively dense set with respect to the pair (�∗, ·).

From Definitions . and ., one can observe that (�∗, δ̃) are not Abelian groups but
are just a semigroup towards the operators δ̃. We can unify them as follows.

Definition . Let T be an oriented-direction complete closedness time scale under the
oriented-direction matched space (T,�, F , δ). A function f ∈ C(T × D,X) is called an al-
most periodic function with shift operators in t ∈ T uniformly for x ∈ D if for all ε >  and
for each compact subset S of D, the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f
(
δτ (t), x

)
– f (t, x)

∥∥ < ε for all t ∈ T
∗ and x ∈ S

}

is a relatively dense set with respect to the pair (�∗, δ̃). Moreover,
(i) if (T,�, F , δ) is a positive-direction matched space (or �∗ is a positive-direction

semigroup), then f is called the positive-direction almost periodic function;
(ii) if (T,�, F , δ) is a negative-direction matched space (or �∗ is a negative-direction

semigroup), then f is called the negative-direction almost periodic function;
(iii) if (T,�, F , δ) is a bi-direction matched space (or �∗ is an Abelian group), then f is

called the bi-direction almost periodic function.

In the sequel, for simplicity and comprehensive statement, we assume that a matched
space is an oriented-direction matched space, we can extend Definition . to the oriented-
direction �-almost periodic functions.

Definition . Let T be an oriented-direction complete closedness time scale under the
matched space (T,�, F , δ), the shift δτ (t) is �-differentiable with rd-continuous bounded
derivatives δ�

τ (t) := δ�(τ , t) for all t ∈ T
∗. A function f ∈ C(T × D,X) is called an almost

periodic function with shift operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ �̃ :

∥∥f
(
δτ (t), x

)
δ�
τ (t) – f (t, x)

∥∥ < ε for all t ∈ T
∗ and x ∈ S

}

is a relatively dense set with respect to the pair (�∗, δ̃) for all ε >  and for each compact
subset S of D; that is, for any given ε >  and each compact subset S of D, there exists a
constant l(ε, S) >  such that each interval of length l(ε, S) contains τ (ε, S) ∈ E{ε, f , S} such
that

∥∥f
(
δτ (t), x

)
δ�
τ (t) – f (t, x)

∥∥ < ε for all t ∈ T
∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.
Moreover,
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(i) if (T,�, F , δ) is a positive-direction matched space (or �∗ is a positive-direction
semigroup), then f is called the positive-direction �-almost periodic function;

(ii) if (T,�, F , δ) is a negative-direction matched space (or �∗ is a negative-direction
semigroup), then f is called the negative-direction �-almost periodic function;

(iii) if (T,�, F , δ) is a bi-direction matched space (or �∗ is an Abelian group), then f is
called the bi-direction �-almost periodic function.

Example . On the time scale Z = {n, n ∈ Z}, let a, b ∈R\{}, a �= b and

g(t) =
a
t

, g(t) =
b

(–)log tt
, G̃(t) = g(t) + g(t) =

a
t

+
b

(–)log tt
,

from Example ., one observes that g(δ± (t))δ�
± (t) = g(t) and we note that

g
(
δ± (t)

)
(δ± )�(t) =

b
(–)log ±t · ±t

· ±

=
b

(–)±+log t · t

=
b

(–)log tt
= g(t).

Hence, G̃(t) is a �-almost periodic function under the matched space (T,�, F , δ).

Remark . The �-almost periodicity from Definition . mainly focuses on the almost
periodic functions on the “quantum-like” time scales such as qZ, (–q)Z and –qZ ∪ qZ, etc.
Note that the almost periodicity and the �-almost periodicity are equivalent on periodic
time scales defined by Definition . since δ�

τ (t) = (t + τ )� ≡ . Hence, the almost period-
icity investigated in [, , –] is actually equivalent to the �-almost periodicity.

Next, we will introduce the concept of almost automorphic functions under bi-direction
matched spaces for time scales.

Definition . Let T be a periodic time scale under the matched space (T,�, F , δ).
(i) Let f : T→X be a bounded continuous function. We say that f is almost

automorphic if from every sequence {sn} ⊂ �̃, we can extract a subsequence {τn}∞n=

such that

g(t) = lim
n→∞ f

(
δτn (t)

)

is well defined for each t ∈ T
∗ and

lim
n→∞ g

(
δτ–

n
(t)

)
= lim

n→∞ g
(
δ–
τn (t)

)
= f (t)

for each t ∈ T
∗. Denote by AAδ(T,X) the set of all such functions.

(ii) A continuous function f : T×X→X is said to be almost automorphic if f (t, x) is
almost automorphic in t ∈ T

∗ uniformly for x ∈ B, where B is any bounded subset
of X. Denote by AAδ(T×X,X) the set of all such functions.
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Figure 2 Graph of F̂(t) = 1

cos( ln |√2t|
ln(1/P1) π )+cos( ln |√3t|

ln(1/P2) π )
with P1 = 2, P2 = 3√2.

Example . Recall Example . and consider the function

F̂(t) = 
/[

cos

(
ln |√t|
ln(/P)

π

)
+ cos

(
ln |√t|
ln(/P)

π

)]
,

where P �= P, P, P >  and t ∈ T
∗ = R\{}. One can observe that F̂(t) is almost au-

tomorphic under the matched space (T,�, F , δ). From Example ., we can obtain that
F̂(t) = 

fP


(
√

t)+fP


(
√

t) (see Figure ).

Remark . Note that Definition . is the concept of bi-direction almost automorphic
functions under a bi-direction matched space. Moreover, the almost automorphy reflected
by Example . has never been considered in any literature until now. This is a completely
new almost automorphic function under non-translational shifts.

Remark . If we attach the shift direction to a matched space, then one can obtain the
following oriented-direction almost automorphic functions.

Definition . Let T be an oriented-direction complete closedness time scale under the
oriented-direction matched space (T,�, F , δ).

(i) Let f : T→X be a bounded continuous function. We say that f is oriented-direction
almost automorphic if from every sequence {sn} ⊂ �̃, we can extract a subsequence
{τn}∞n= such that

g(t) = lim
n→∞ f

(
δτn (t)

)

is well defined for each t ∈ T
∗.

(ii) A continuous function f : T×X→X is said to be oriented-direction almost
automorphic if f (t, x) is oriented-direction almost automorphic in t ∈ T

∗ uniformly
for x ∈ B, where B is any bounded subset of X.

We can extend Definition . to bi-direction �-almost automorphic functions.

Definition . Let T be a periodic time scale under the matched space (T,�, F , δ).
(i) Let f : T→X be a bounded continuous function and the shift δτ (t) is

�-differentiable with rd-continuous bounded derivatives δ�
τ (t) := δ�(τ , t) for all
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t ∈ T
∗. We say that f is �-almost automorphic if from every sequence {sn} ⊂ �̃, we

can extract a subsequence {τn}∞n= such that

g(t) = lim
n→∞ f

(
δτn (t)

)
δ�
τn (t)

is well defined for each t ∈ T
∗ and

lim
n→∞ g

(
δτ–

n
(t)

)
δ�

τ–
n

(t) = f (t)

for each t ∈ T
∗. Denote by AAδ(T,X) the set of all such functions.

(ii) A continuous function f : T×X →X is said to be �-almost automorphic if f (t, x) is
�-almost automorphic in t ∈ T

∗ uniformly for x ∈ B, where B is any bounded
subset of X. Denote by AAδ(T×X,X) the set of all such functions.

Example . Recall Example . and, on the time scale Z = {n, n ∈ Z}, consider the
following function:

Ĝ(t) = 
/[

a
t

+
b

(–)log tt

]
, a, b ∈R\{}, a �= b.

One can observe that Ĝ(t) is almost automorphic under the matched space (T,�, F , δ).
From Example ., we can obtain that Ĝ(t) = 

G̃(t) .

Remark . It is obvious that Definition . is the concept of bi-direction �-almost au-
tomorphic functions under a bi-direction matched space. Note that �-almost automor-
phy of functions mainly focuses on almost automorphic functions on the “quantum-like”
time scales such as qZ, (–q)Z and –qZ ∪ qZ, etc. Moreover, the almost automorphy and �-
almost automorphy are equivalent on periodic time scales defined by Definition . since
δ�
τ (t) = (t + τ )� ≡ .
On the other hand, for ∇-calculus theory is an analogy of �-calculus theory on time

scales, all the results established in this paper can be naturally extended to “∇-cases”. Sim-
ilar to Definition ., one can also adopt the same idea to introduce the concept of ∇-
almost automorphic functions. Furthermore, the almost automorphy and the ∇-almost
automorphy are also equivalent on periodic time scales defined by Definition . since
δ∇
τ (t) = (t + τ )∇ ≡ . Hence, the almost automorphy investigated in [] is actually equiva-

lent to the ∇-almost automorphy.

Remark . Similar to Definition ., one can also introduce the concept of �-almost
automorphic functions attached with shift directions as follows.

Definition . Let T be an oriented-direction complete closedness time scale under the
oriented-direction matched space (T,�, F , δ).

(i) Let f : T→X be a bounded continuous function and the shift δτ (t) is
�-differentiable with rd-continuous bounded derivatives δ�

τ (t) := δ�(τ , t) for all
t ∈ T

∗. We say that f is oriented-direction �-almost automorphic if from every
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sequence {sn} ⊂ �̃, we can extract a subsequence {τn}∞n= such that

g(t) = lim
n→∞ f

(
δτn (t)

)
δ�
τn (t)

is well defined for each t ∈ T
∗.

(ii) A continuous function f : T×X→X is said to be oriented-direction �-almost
automorphic if f (t, x) is oriented-direction �-almost automorphic in t ∈ T

∗

uniformly for x ∈ B, where B is any bounded subset of X.

Remark . Because an oriented-direction matched space is either positive-direction or
negative-direction, then Definitions . and . can be attached with specific shift direc-
tion to describe the concept of almost automorphic functions and �-almost automorphic
functions with specific directions, respectively. It is easy to derive them by substituting a
specific direction for “oriented-direction” in these two definitions, so we omit them here.

4 Conclusion and discussion
This paper is concerned with the problems of complete closedness of time scales un-
der translational and non-translational shifts. By introducing the algebraic structure of
matched spaces attached with shift directions, some basic concepts of complete closed-
ness of time scales with different shift directions are introduced. Based on these, some
new definitions of almost periodic functions and almost automorphic functions includ-
ing their generalizations such as �-almost periodic functions and �-almost automorphic
functions on irregular time scales, are proposed. Moreover, some novel almost periodic-
ity and almost automorphy of some functions under non-translational shift are proposed
and studied, which would be impossible to be investigated on periodic time scales under
translations before. The results established in this paper will mainly contribute to solving
the problems of closedness of time scales under non-translational shifts, which will be sig-
nificant to studying functions on a more comprehensive scope of time scales such as the
“quantum-like” time scales, e.g., qZ, (–q)Z, –qZ ∪ qZ and other irregular time scales, e.g.,
N



+ , N


±, etc.

As an important type of functions defined by translations, almost periodic functions on
time scales have been paid much attention to. In the literature works [, ], the authors
studied almost periodic solutions of differential equations on certain time scales with tran-
sition conditions (DETC) on the basis of reduction to the impulsive differential equations
(ITE). The authors employed the reversible translation transform of time scales to turn the
time scale into the real line, then the differential equations on time scales can be changed
into a traditional impulsive differential equations on R simultaneously. Finally, they estab-
lished an equivalence between DETC and traditional ITE on R. Their results mainly con-
tribute to building a relationship between DETC and ITE, and through investigating the
almost periodic solutions for ITE, the corresponding almost periodic solutions for DETC
can be indirectly studied. However, they did not consider to directly use the �-calculus
theory on time scales to solve the almost periodic problems of differential equations on
time scales since many time scales are not completely closed under translations, which will
lead to the functions defined by translations being not well defined on time scales. There-
fore, it was difficult to consider almost periodic problem on time scales directly through
�-calculus theory then.
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As a matter of fact, although �-calculus theory on time scales has some similarity to Rie-
mann calculus on R, it has actually much more generality in calculus theory and more ap-
plications in the real world. The diversity of time variable form of time scales fully demon-
strates huge essential differences between �-calculus theory and Riemann calculus theory
on R (see [, ]). Moreover, �-calculus theory will play a very important role in studying
some classical problems which are in between the discrete time scale and the real line.
Therefore, it is necessary and significant to employ �-calculus theory to directly establish
some related timescale theory on some classical problems. To some extent, it is insufficient
and circumscribed to solve the problems only through building the relationship between
some time scale and R since this relationship may be difficult to be established, or it does
not exist (because some results established on R are not suitable for time scales), or it is
particular (because if the relationship could be built, it will indicate that some results es-
tablished on R are suitable for the time scale). For instance, if the graininess function μ of
a time scale satisfies μ(t) → +∞ as t → +∞, then the ψ-substitutions from [] and []
are ineffective, which implies that the results from [] and [] cannot be applied to the
following types of time scales:

() T = qZ, it follows that μ(t) → +∞ as t → +∞;
() T = N


 = {n, n ∈N}, it follows that μ(t) → +∞ as t → +∞;

() T = –qZ ∪ qZ ∪N

 ∪N


, it follows that μ(t) → +∞ as t → +∞.

Note that in the literature [], the ψ-substitution is

ψ(t) =

⎧
⎨

⎩
t –

∑
<tk<t δk , t ≥ ,

t +
∑

t≤tk< δk , t < ,
where δk = tk+ – tk .

Obviously, such a ψ-substitution is a linear translation transform essentially, it is unsuit-
able for time scales (), (), () under non-translational shifts because all the points are
isolated and the shifts of time scales (), (), () are not translational when considering
almost periodic problems on them. In fact, there are many time scales which have a sim-
ilar property as the above examples. Therefore, it is better to establish the corresponding
timescale theory on some classical problems directly through �-calculus theory on time
scales. By using the results in this paper, the problem can be considered on more irregular
time scales including some time scales with μ(t) → +∞ as t → +∞.

On the other hand, the occurrence and change of many natural phenomena may di-
rectly depend on time scales, but not depend on the real line. The period of the occur-
rence and change of these phenomena can be directly and accurately described by the
time scale rather than the real line. For this, Wang, Agarwal and O’Regan proposed the
concept of time scales with almost periodicity and studied the double-almost periodic
solutions for dynamic equations (see [–]) since the recurrence of many natural phe-
nomena may take approximative periods of time rather than absolutely equivalent time
intervals. Therefore, it is more practical to consider dynamic equations on almost peri-
odic time scales by using �-calculus theory. To investigate some important problems on
time scales directly, the important and first step is to establish well-defined classical func-
tions on time scales. In the literature [, ], the authors solved the problems of closed-
ness of time scales under translations and introduced some concepts of almost periodic
functions defined by translations, which realized that one is able to solve almost peri-
odic problems through �-calculus theory directly without considering any relationship
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between the time scale and R. Moreover, in the literature [], the authors introduced
the concept of changing-periodic time scales and proposed the decomposition theorem
of time scales to decompose an arbitrary time scale with the bounded graininess func-
tion μ into countable periodic time scales attached with directions, which will guarantee
the local complete closedness of a time scale with the bounded graininess function μ un-
der translations. Then the authors made the important supplements and comments on
changing-periodic time scales and almost periodic functions (see [, ]). In this work,
the authors construct the algebraic structure of matched spaces to solve the closedness of
time scales under non-translational shifts, which lays a foundation for considering almost
periodic problems, almost automorphic problems and other related topics for dynamic
equations on irregular time scales by directly using �-calculus theory in the future.
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