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Abstract
The present paper deals with the Cauchy problem for the multi-term time-space
fractional diffusion equation in one dimensional space. The time fractional derivatives
are defined as Caputo fractional derivatives and the space fractional derivative is
defined in the Riesz sense. Firstly the domain of the fractional Laplacian is extended to
a Banach space. Then the analytical solutions are established by using the Luchko
theorem and the multivariate Mittag-Leffler function.
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1 Introduction
The fractional calculus has already become a powerful tool which describes many nonlin-
ear complex phenomena arising in fluid mechanics, thermodynamics, plasma dynamics,
continuum mechanics, quantum mechanics, electrodynamics and biological systems [,
]. In particular, the fractional diffusion equations capture well the anomalous diffusion
process with continuous time random walks [, ].

In this paper, we consider the following initial value problem for the multi-term time-
space Caputo-Riesz fractional diffusion equation:

n–∑

j=

ajDαj u(t, x) = –b(–�)βu(t, x), (.)

u(, x) = g(x), (.)

where n ≥ , a = , ai > ,αi > ,αn– < · · · < α ≤ , b > ,  < β ≤ , x ∈ R = (–∞,∞),
t ≥ , the symbol Dα denotes the Caputo-type fractional derivative defined by []

Dαu(t) =


�(�α� – α)

∫ t


(t – s)�α�–α–u(�α�)(s) ds
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and the symbol (–�)β denotes the fractional Laplacian defined by []

(–�)βu(t) = F–{|s|βFu(s)
}

(t), (.)

where F means the Fourier transform.
In fractional calculus the most popular fractional derivatives are Caputo derivative and

Riemann-Liouville derivative. Because of the convenience in handling initial conditions,
the Caputo fractional derivative has been more widely used in practice []. However, the
Caputo fractional derivative is usually defined for the continuously differentiable func-
tions [, ]. In [] the authors gave a new definition of the Caputo fractional derivative
on a bounded interval in the fractional Sobolev space and proved the maximal regularity
of solutions of time fractional diffusion equations. The fractional Laplacian is also a well-
known nonlocal operator which plays an important role in the potential theory []. The
authors of [] considered the relation between fractional Laplacian and fractional Sov-
olev space. The fractional Laplacian operator on a bounded interval is defined in terms of
the eigenvalues and eigenfunctions of the Laplacian operator [, ]. The fractional Lapla-
cian on a unbounded interval is usually defined in the Schwartz space which is too narrow
for many important applications. Thus in [] the solution space of analytical solutions of
fractional time-space Caputo-Riesz diffusion equations on an infinite domain was not il-
lustrated and the authors [] established mild solutions by deriving an equivalent integral
equation.

Since multi-term fractional diffusion equations are more flexible than single-term frac-
tional diffusion equations in modeling the anomalous diffusion phenomena, they have
often appeared in recent publications [, –]. By establishing the maximum princi-
ple for multi-term time fractional diffusion equations with Caputo derivatives and prov-
ing some properties of multivariate Mittag-Leffler functions, the authors [, ] studied
the well-posedness and the long-time asymptotic behavior. In [] the authors proved the
maximum principle for multi-term time-space Caputo-Riesz fractional diffusion equa-
tions and derived the uniqueness and continuous dependence of the solution. The au-
thors of [] used the Luchko theorem to obtain the analytical solutions for multi-term
time-space Caputo-Riesz fractional advection-diffusion equations on a bounded interval.
However, to the best of our knowledge, multi-term time-space Caputo-Riesz fractional
diffusion equations on an infinite domain have not been considered in the literature yet.

In the present paper, by extending the domain of the fractional Laplacian to a Banach
space and using the multivariate Mittag-Leffler function, the analytical solutions of the
multi-term fractional diffusion equation (.)-(.) are obtained. Especially the meaning
of the analytical solutions is found.

2 Extension of domain of fractional Laplacian
In this section the domain of the fractional Laplacian operator (.) is extended to a Banach
space. Firstly we recall the concepts of Lebesgue space and Schwartz space.

Definition . ([], p.) The space L means the set of all measurable functions u : R →
R such that ‖u‖L < ∞, where

‖u‖L =
∫

R

∣∣u(x)
∣∣ dx.
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Definition . ([], p.) The space S means the set of all C∞ functions u : R → R such
that ‖u‖r,q < ∞ for all r, q = , , . . . , where

‖u‖r,q = sup
x∈R

(
 + |x|r)

q∑

m=

∣∣u(m)(x)
∣∣.

Definition . By Mβ we mean the completion of the Schwartz space S over R with the
norm ‖ · ‖Mβ

defined by

‖f ‖Mβ
=

∥∥|t|βFf (t)
∥∥

L , f ∈ S. (.)

For any f ∈ Mβ , there exists a sequence {fm ∈ S} such that ‖f ‖Mβ
= limm→∞ ‖fm‖Mβ

and
‖fm – fr‖Mβ

→  as m, r → ∞.

Theorem . The fractional Laplacian (–�)β is extended to the Banach space Mβ .

Proof By using the extension principle, we can easily prove the result. �

Theorem . Hβ = {f ∈ L : |t|βFf (t) ∈ L} ⊂ Mβ .

Proof Let suppose that f ∈ Hβ and ε > . Then there exists a real number rε >  such that

∫

|t|>rε
|t|β (Ff )(t) dt < ε.

There exists a function gε ∈ C∞
 ([–rε , rε]) such that

∫

|t|<rε
(Ff – gε)(t) dt <

ε

rβ
ε

.

Let

g∗
ε (t) :=

⎧
⎨

⎩
gε for t ∈ [–rε , rε],

 else,

and fε := F–(g∗
ε ). Then fε ∈ S. We have

∥∥|t|β
(
Ff (t) – Ffε(t)

)∥∥
L =

∫

|t|>rε
|t|β (Ff )(t) dt +

∫

|t|<rε
|t|β (Ff – Ffε)(t) dt

≤ ε + rβ
ε

∫

|t|<rε
(Ff – Ffε)(t) dt ≤ ε.

Then ‖f – f 
m
‖Mβ

= ‖|t|β (Ff (t) – Ff 
m

(t))‖L →  as m → ∞, which implies that f ∈ Mβ . �

3 Solution of the multi-term fractional diffusion equation
In this section the analytical solution to the initial value problem (.)-(.) is obtained by
using the Luchko theorem.
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Definition . ([], p.) A real- or complex-valued function f (x), x > , is said to be in the
space Cα ,α ∈ R, if there exists a real number p > α such that f (x) = xpf(x), with a function
f(x) ∈ C[,∞).

Definition . ([], p.) A function f (x), x > , is said to be in the space Cm
α , m ∈ N ∪ {},

if and only if f (m) ∈ Cα .

Lemma . ([], p.) Let u ∈ Cr
–, r ∈ N ∪ {}. Then the Caputo fractional derivative

Dαu,  ≤ α ≤ r, is well defined and the inclusion

Dαu ∈
⎧
⎨

⎩
C–, r –  < α ≤ r,

Cr–[,∞) ⊂ C–, r – k –  < α ≤ r – k, k = , . . . , r – ,

holds true.

The following is the well-known Luchko theorem (Theorem . in []).

Lemma . ([], p.) Let γ > · · · > γp ≥  and ci ∈ R. The initial value problem

Dγ v(t) –
p∑

j=

cjDγj v(t) = G(t),

v(j)() = dj, j = , , . . . , �γ� – ,

(.)

where the function G is assumed to lie in C– if γ ∈ N , in C
– if γ /∈ N , and the unknown

function v(t) is to be determined in the space C�γ�
– , and it has a solution, unique in the

space C�γ�
– , of the form

v(t) = vG(t) +
�γ�–∑

j=

djvj(t), t ≥ .

Here

vG(t) =
∫ t


sγ–E(·),γ (s)G(t – s) ds

is a solution of the problem (.) with zero initial conditions, and the system of functions

vj(t) =
tj

j!
+

p∑

l=lj+

cltj+γ–γl E(·),j++γ–γl (t), j = , . . . , �γ� – ,

fulfills the initial conditions v(l)
j = δjl , j, l = , . . . , �γ� – . The function

E(·),β(t) = E(γ–γ,...,γ–γp),β
(
ctγ–γ , . . . , cptγ–γp

)
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is a particular case of the multivariate Mittag-Leffler function

E(x,...,xp),y(z, . . . , zp) =
∞∑

k=

∑

l+···+lp=k
l≥,...,lp≥

k!
l! · · · lp!

∏p
j= zlj

j

�(y +
∑p

j= xjlj)
. (.)

The natural numbers lj are determined from the condition

⎧
⎨

⎩
�γlj� ≥ j + ,

�γlj+� ≤ j.

In the case �γr� ≤ j for any r = , . . . , p, we set lj =  and, if �γr� ≥ j +  for any r = , . . . , p,
then lj = p.

The Mittag-Leffer type functions are very crucial in the theory of fractional differential
equations [, –]. Now we prove a property of the multivariate Mittag-Leffer function
which appears in the analytical solution of the initial value problem (.)-(.).

Lemma . Let  ≤ xp < · · · < x ≤ , c, . . . , cp > . Then the function

∣∣tx E(x–x,...,x–xp ,x),+x

(
–ctx–x , . . . , –cptx–xp , –ctx

)∣∣

is bounded for all t ≥ .

Proof The multivariate Mittag-Leffer function can be rewritten by using the Hankel inte-
gral representation of /�(z) [],


�(z)

=


π i

∫

Ha(ε+)
ess–z ds,

where r > , Ha(ε+) = {z ∈ C : |z| = ε,  ≤ | arg(z)| ≤ π} ∪ {z ∈ C : |z| > ε, | arg(z)| = π}. For
any t > , there exists a rt >  such that

rt > max

{
t, t

( p∑

i=

|ci|
)/(x–x)}

.

Then we have, for r > rt ,

tx E(x–x,...,x–xp ,x),+x

(
–ctx–x , . . . , –cptx–xp , –ctx

)

=
tx

π i

∫

Ha(r+)

∞∑

k=

∑

l+···+lp=k
l≥,...,lp≥

(–)kk!
l! · · · lp!

p∏

j=

clj
j txl+

∑p
j=(x–xj)lj es

s+x+xl+
∑p

j=(x–xj)lj
ds

=
tx

π i

∫

Ha(r+)

∞∑

k=

(–)k
∑

l+···+lp=k
l≥,...,lp≥

k!
l! · · · lp!

p∏

j=

clj
j

(
t
s

)xl+
∑p

j=(x–xj)lj es

s+x
ds
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=


π i

∫

Ha(r/t+)

∞∑

k=

(–)k
∑

l+···+lp=k
l≥,...,lp≥

k!
l! · · · lp!

p∏

j=

clj
j ξ

–xl–
∑p

j=(x–xj)lj eξ t

ξ +x
dξ

=


π i

∫

Ha(r/t+)

∞∑

k=

(–)k

(
cξ

–x +
p∑

j=

cjξ
xj–x

)k
eξ t

ξ +x
dξ

=


π i

∫

Ha(r/t+)


 + cξ–x +

∑p
j= cjξ

xj–x

eξ t

ξ +x
dξ

=


π i

∫

Ha(r/t+)


ξ x +

∑p
j= cjξ

xj + c

eξ t

ξ
dξ .

Let r > rt be a sufficiently large real number that satisfies the condition: all zeros of
the function ξ x +

∑p
j= cjξ

xj + c are contained in the circle O(r) = {z ∈ C : |s| = r,  ≤
| arg(z)| ≤ π}. Let L(r,φ) = {z ∈ C : |z| > r, | arg(z)| = π}. For simplicity, we denote

h(ξ ) :=


ξ x +
∑p

j= cjξ
xj + c

eξ t

ξ
.

Then we have
∫

Ha(r+)
h(ξ ) dξ =

∫

L(r,φ)+O(r)
h(ξ ) dξ = K + K,

where

K =
∫

L(r,φ)
h(ξ ) dξ , K =

∫

O(r)
h(ξ ) dξ ,

K =
∫ ∞

r

(
ert cosπ eirt sinπ

rx eiπx +
∑p

j= cjrxj eiπxj + c
–

ert cosπ e–irt sinπ

rx e–iπx +
∑p

j= cjrxj e–iπxj + c

)
,

dr
r

≤
∫ ∞

r

e–rt

|rx –
∑p

j= |cj|rxj – |c||
dr
r

→ , r → ∞.

If x, . . . , xp are all rational numbers, then the function ξ (ξ x +
∑p

j= cjξ
xj + c) has finitely

many zeros. Then by Cauchy’s residue theorem, we have

K = π i
k∑

i=

Res(h, zi),

where zi is a zero of the function ξ (ξ x +
∑p

j= cjξ
xj + c) and Res(h, zi) is the residue of h(ξ )

at zi. If zi is a pole of order m, then the residue of h(ξ ) at zi is obtained by the formula

Res(h, zi) =


(m – )!
lim
z→zi

dm–

dzm–

(
(z – zi)mh(z)

)
.

Then there exists a function hi such that

Res(h, zi) = hi(zi)ezit = hi(zi)e|zi|t cos arg(zi)eit sin arg(zi).
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It follows from ci >  for any i that, if | arg(ξ )| ≤ π/, then  < | arg(ξ x +
∑p

j= cjξ
xj + c)| ≤

π/. Therefore | arg(zi)| > π/ and |Res(h, zi)| ≤ |hi(zi)|. Thus we have

|K| ≤ π

k∑

i=

∣∣hi(zi)
∣∣,

which implies that

∣∣∣∣
∫

Ha(r+)
h(ξ ) dξ

∣∣∣∣ ≤ |K| + |K| ≤ π

k∑

i=

∣∣hi(zi)
∣∣.

If x, . . . , xp are all real numbers, then, since the set of rational numbers is everywhere
dense in the set of real numbers and the function

tx E(x–x,...,x–xp ,x),+x

(
–ctx–x , . . . , –cptx–xp , –ctx

)

is continuous with respect to x, . . . , xp, we can obtain the desired result. �

Lemma . Let  < xp < · · · < x ≤ , y > . Let z, z, . . . , zp ∈ C satisfy μ ≤ | arg z| ≤ π

and –l ≤ zj ≤  (j = , . . . , p) for some fixed μ ∈ (xπ/, xπ ) and l > . Then there exists a
K >  depending only on μ, l, xj (j = , . . . , p) and y such that

∣∣E(x–x,...,x–xp ,x),y(z, . . . , zp, z)
∣∣ <

K
 + |z| .

Proof By (.), it is obvious that

E(x–x,...,x–xp ,x),y(z, . . . , zp, z) = E(x,x–x,...,x–xp),y(z, z, . . . , zp).

Then, using Lemma . in [], we can prove the result. �

Theorem . Let g ∈ Hβ . Then the Cauchy problem (.)-(.) has a unique solution in
C

–([,∞), Mβ ). In particular, the solution is in C
–([,∞), Hβ) and is given by

u(t, x) =


π

∫ ∞

–∞
ĝ(ξ )

[
 – |ξ |β tα E(α–α,...,α–αn–,α),+α

(
–atα–α , . . . , –an–tα–αn– , –|ξ |β tα

)]
cos(xξ ) dξ ,

where ĝ means the Fourier transform of g . The solution u(t, x) is bounded for all t ≥  and
x ∈ R.

Proof Applying the Fourier transform to equation (.) with respect to the space variable x,
we have

n–∑

j=

ajDαj û(t, ξ ) + |ξ |β û(t, ξ ) = ,

û(, ξ ) = ĝ(ξ ).
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By Lemma ., we have

û(t, ξ ) = ĝ(ξ )
[
 – |ξ |β tα E(α–α,...,α–αn–,α),+α

(
–atα–α ,

. . . , –an–tα–αn– , –|ξ |β tα
)]

.

By Lemma ., for any t > , there exists a Mt >  such that

∣∣|ξ |β tα E(α–α,...,α–αn–,α),+α

(
–atα–α , . . . , –an–tα–αn– , –|ξ |β tα

)∣∣ < Mt

for any ξ ∈ R and |û(t, ξ )| ≤ (Mt + )|ĝ(ξ )|. Then u(t, ·) ∈ Hβ . Using the inverse Fourier
transform with respect to ξ , we obtain

u(t, x) =


π

∫ ∞

–∞
ĝ(ξ )

[
 – |ξ |β tα E(α–α,...,α–αn–,α),+α

(
–atα–α , . . . , –an–tα–αn– , –|ξ |β tα

)]
cos(xξ ) dξ .

Then we have

∣∣u(t, x)
∣∣ ≤ (Mt + )

π

∫ ∞

–∞

∣∣ĝ(ξ )
∣∣dξ .

Meanwhile, by Lemma ., we obtain

∣∣u(t, x)
∣∣ ≤ 

π

∫ ∞

–∞

∣∣ĝ(ξ )
∣∣( + Kξ |ξ |β

)
dξ ,

where

Kξ = sup
t>

∣∣tα E(α–α,...,α–αn–,α),+α

(
–atα–α , . . . , –an–tα–αn– , –|ξ |β tα

)∣∣.

From Lemma ., there exists a K >  such that Kξ < K for any ξ ∈ R. Then we have

∣∣u(t, x)
∣∣ ≤ 

π

∫ ∞

–∞

∣∣ĝ(ξ )
∣∣( + K |ξ |β

)
dξ ,

which implies that u(t, x) is bounded. �
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