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Abstract
In this paper, we consider two types of singular fractional Sturm-Liouville operators.
One comprises the composition of left-sided Caputo and left-sided Riemann-Liouville
derivatives of order α ∈ (0, 1). The other one is the composition of left-sided
Riemann-Liouville and right-sided Caputo derivatives. The reality of the
corresponding eigenvalues and the orthogonality of the eigenfunctions are proved.
Furthermore, we formulate the fractional Laguerre Strum-Liouville problems and
derive the explicit eigenfunctions as the non-polynomial functions related to
Laguerre polynomials. Finally, we introduce the generalized Laguerre transform and
employ it to solve the unbounded space-fractional diffusion equations.
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1 Introduction
The Sturm-Liouville problem (SLP) is a famous boundary value problem which is widely
studied in pure and applied mathematics, physics, and other branches of science and en-
gineering. However, many physical phenomena can be accurately described by differen-
tial equations with non-integer derivatives (for more details, see [–]). Consequently,
researchers have become more interested in formulating the notion of a fractional Sturm-
Liouville Problem (FSLP).

In [–], the authors defined fractional Sturm-Liouville operators (FSLOs) in different
types of fractional operators. Klimek and Agrawal [] introduced two types of FSLOs, in-
cluding the composition of right-sided Caputo and left-sided Riemann-Liouville deriva-
tives and the composition of right-sided Caputo and left-sided Riemann-Liouville deriva-
tives. In addition, in the subsequent article [], they presented not only eigenproperties of
the FSLOs, but they also derived the explicit eigenfunctions and the corresponding eigen-
values. Concurrently, Zayernouri and Karniadakis [] considered different FSLOs, one
involving the composition of right-sided Riemann-Liouville and left-sided Caputo deriva-
tives and the other one involving the composition of left-sided Riemann-Liouville and
right-sided Caputo derivatives. In particular, they also obtained the analytical eigensolu-
tions to the FSLPs and demonstrated the orthogonal completeness of the corresponding
system of eigenfunctions. From a complementary point of view, it is known that a certain
boundary value problem can be solved using a particular type of integral transform hav-
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ing an appropriate kernel. Recently, Ansari [] introduced the fractional Sturm-Liouville
transforms in which the kernels are the normalized eigenfunctions of the associated FSLPs
on finite intervals. Bas and Metin [] introduced the FSLO which has Coulomb potential.
In [], Bas presented the singular SLP related to the Bessel operator and investigated
the properties of the eigenvalue and eigenfunctions. Also, Bas et al. [] introduced frac-
tional solutions of the non-homogeneous and homogeneous Bessel equation by using an
N-fractional calculus operator. Zhang and Yi [] presented eigensolutions to the time-
fractional sub-diffusion equations on fractals.

In most studies, the authors considered FSLPs on a bounded domain and the corre-
sponding FSLOs which do not include the classical Sturm-Liouville Operators (SLOs)
with integer order. Rivero et al. [] proposed new classes of FSLOs in which the clas-
sical SLOs with integer order are included. Recently, Khosravian-Arab et al. [] intro-
duced FSLOs comprising infinite right-sided Riemann-Liouville and left-sided Riemann-
Liouville derivatives and formulated two classes of FSLPs on the half-line. Analogous to
the studies of Klimek and Agrawal [] and Zayernouri and Karniadakis [], they derive
an explicit form for the eigenfunctions as the generalized associated Laguerre functions
and analyze some properties of the eigensolutions. In order to develop the spectral the-
ory or the numerical approximation for the FSLP, a self-adjoint operator plays a crucial
role. However, the FSLOs comprising infinite right-sided Riemann-Liouville and left-sided
Riemann-Liouville derivatives in [] are not self-adjoint.

In this study, we propose four types of FSLOs, which include the composition of Ca-
puto and Riemann-Liouville derivatives and are self-adjoint. In particular, the purpose of
this paper is threefold. The first purpose is to consider FSLPs on the unbounded inter-
val [,∞). We establish four classes of FSLPs and investigate the eigenfunctions and the
eigenvalues associated to those fractional operators. Also, we show that the correspond-
ing eigenfunctions form an orthogonal basis for the weighted Hilbert space of square-
integrable functions. The second one is to analyze the approximation properties by the
generalized Laguerre function. With the objective of applying the FSLPs to fractional par-
tial differential equations, in the third part, we introduce the generalized Laguerre trans-
form and demonstrate its basic properties. Finally, we show that the generalized Laguerre
transform can be effectively used to solve the semi-infinite space-fractional heat equation.

2 Preliminary
We start with some definitions of fractional integrals and derivatives and present an aux-
iliary lemma.

Definition . The left-sided Riemann-Liouville fractional integral with order α >  of
the function f is given by

aIα
x f (x) =


�(α)

∫ x

a
(x – y)α–f (y) dy, x > a. ()

The right-sided Riemann-Liouville fractional integral with order α >  of the function f is
given by

xIα
b f (x) =


�(α)

∫ b

x
(y – x)α–f (y) dy, x < b. ()
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Definition . For a given real number α ∈ (n – , n) with n ∈N, the left- and right-sided
Riemann-Liouville fractional derivatives with order α >  of the function f are given by

R
aD

α
x f (x) = Dn

aIn–α
x f (x), x > a, ()

R
xD

α
b f (x) = (–)nDn

xIn–α
b f (x), x < b, ()

where Dn = dn

dxn .

Analogously, by commuting the derivative and fractional integral operators in () and
(), we define the left- and right-sided Caputo fractional derivatives in the following.

Definition . For a given real number α ∈ (n – , n) with n ∈N, the left- and right-sided
Caputo derivatives with order α >  of the function f are given by

C
aDα

x f (x) = aIn–α
x Dnf (x), x > a, ()

C
xDα

b f (x) = xIn–α
b Dnf (x), x < b. ()

Definition . The infinite right-sided Riemann-Liouville fractional integral of order α >
 of the function f on the half-line is defined by

xIα
∞f (x) =


�(α)

∫ ∞

x
(y – x)α–f (y) dy. ()

Definition . Let α ∈ (n–, n) with n ∈ N. Then the infinite left-sided Riemann-Liouville
and Caputo fractional derivatives of order α of the function f on the half-line are defined
by

R
xD

α
∞f (x) = (–)nDn

xIn–α
∞ f (x), ()

C
xDα

∞f (x) = xIn–α
∞ Dnf (x). ()

We have the following relationship between the Riemann-Liouville fractional derivative
and the Caputo fractional derivative, which will be used later:

R
aD

α
x f (x) = C

aDα
x f (x) +

n–∑
k=

xk–α

�(k – α + )
f (k)(), ()

for x >  and α ∈ (n – , n).
The following lemma exhibits the equations which are similar to the equations of inte-

gration by parts.

Lemma . For α ∈ (, ), the operators R
xDα∞, C

Dα
x , C

xDα∞, and R
Dα

x satisfy the following
integration by parts equations:

∫ ∞


f (x) R

xD
α
∞g(x) dx =

∫ ∞


g(x) C

Dα
x f (x) dx – f (x)xI–α

∞ g(x)
∣∣∞
x=, ()

∫ ∞


f (x) C

xDα
∞g(x) dx = g(x)I–α

x f (x)
∣∣∞
x= –

∫ ∞


g(x) R

D
α
x f (x) dx. ()
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Proof By definition,

∫ ∞


f (x) R

xD
α
∞g(x) dx = –

∫ ∞


f (x)

d
dx

(
xI–α

∞ g(x)
)

dx.

Using the integration by parts equation gives

∫ ∞


f (x) R

xD
α
∞g(x) dx = –f (x)xI–α

∞ g(x)
∣∣∞
x= +

∫ ∞


f ′(x)xI–α

∞ g(x) dx

= –f (x)xI–α
∞ g(x)

∣∣∞
x= +


�( – α)

∫ ∞


f ′(x)

∫ ∞

x
(y – x)–αg(y) dy dx.

By reversing the order of integration, we get

∫ ∞


f (x) R

xD
α
∞g(x) dx = –f (x)xI–α

∞ g(x)
∣∣∞
x= +


�( – α)

∫ ∞


g(y)

∫ y


f ′(x)(y – x)–α dx dy

= –f (x)xI–α
∞ g(x)

∣∣∞
x= +


�( – α)

∫ ∞


g(y)I–α

y f ′(y) dy

= –f (x)xI–α
∞ g(x)

∣∣∞
x= +

∫ ∞


g(y)C

Dα
y f (y) dy,

which proves ().
Equality () can be proved similarly. Again, by definition,

∫ ∞


g(x) R

D
α
x f (x) dx =

∫ x


g(x)

d
dx

(
I–α

x f (x)
)

dx.

Applying the integration by parts equation and reversing the order of integration yields

∫ ∞


g(x) R

D
α
x f (x) dx = g(x)I–α

x f (x)
∣∣x
 –

∫ ∞


g ′(x)I–α

x f (x) dx

= g(x)I–α
x g(x)

∣∣x
 –


�( – α)

∫ x


g ′(x)

∫ x


(x – y)–αf (y) dy dx

= g(x)I–α
x g(x)

∣∣x
 –


�( – α)

∫ ∞


f (y)

∫ ∞

x
g ′(x)(x – y)–α dx dy

= g(x)I–α
x g(x)

∣∣x
 –

∫ x


f (y)C

xDα
∞g(y) dy. �

3 Singular fractional Sturm-Liouville problems
In this section, we introduce four types of non-local differential operators comprising the
μth-order Caputo fractional derivative and the μth-order Riemann-Liouville fractional
derivatives for μ ∈ (, ). Lμ

i : Di →Di is defined by

Lμ
 = C

xDμ
∞

[
p(x) R

D
μ
x (·)] + λω()

μ (x)f (x),  ≤ x < ∞, ()

Lμ
 = C

Dμ
x
[
p(x) R

xD
μ
∞(·)] + λω()

μ (x)f (x),  ≤ x < ∞, ()

Lμ
 = R

xD
μ
∞

[
p(x) C

Dμ
x (·)] + λω()

μ (x)f (x),  ≤ x < ∞, ()

Lμ
 = R

D
μ
x
[
p(x) C

xDμ
∞(·)] + λω()

μ (x)f (x),  ≤ x < ∞, ()
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where pi, ω(μ)
i , i = , . . . ,  are real valued continuous functions on [,∞), and

D =
{

u : u(x) = xα+μ–v(x), v ∈ L
ω

()
μ

(,∞), u satisfies the below condition ()
}

,

D =
{

u : u(x) = e–xv(x), v ∈ L
ω

()
μ

(,∞), u satisfies the below condition ()
}

,

D =
{

u : u(x) = xα+μ–v(x), v ∈ L
ω

()
μ

(,∞), u satisfies the below condition ()
}

,

D =
{

u : u(x) = e–xv(x), v ∈ L
ω

()
μ

(,∞), u satisfies the below condition ()
}

.

In this study, we consider four classes of singular fractional SLPs (SFSLPs):

SFSLP: C
xDμ

∞
[
p(x) R

D
μ
x f (x)

]
+ λω()

μ (x)f (x) = ,  ≤ x < ∞, ()

subject to

p(x)I–μ
x f (x)

∣∣
x= = ,

lim
x→∞ p(x)I–μ

x f (x) = ,
()

SFSLP: C
Dμ

x
[
p(x) R

xD
μ
∞f (x)

]
+ λω()

μ (x)f (x) = ,  ≤ x < ∞, ()

subject to

p(x)xI–μ
∞ f (x)

∣∣
x= = ,

lim
x→∞

C
xDμ

∞f (x) = ,
()

SFSLP: R
xD

μ
∞

[
p(x) C

Dμ
x f (x)

]
+ λω()

μ (x)f (x) = ,  ≤ x < ∞, ()

subject to

f () = ,

lim
x→∞ xI–μ

∞
[
p(x) C

Dμ
x f (x)

]
= ,

()

SFSLP: R
D

μ
x
[
p(x) C

xDμ
∞f (x)

]
+ λω()

μ (x)f (x) = ,  ≤ x < ∞, ()

subject to

I–μ
x

[
p(x) C

xDμ
∞ f (x)

]∣∣
x= = ,

lim
x→∞ f (x) = .

()

In the following theorem, we present the self-adjointness of FSLOs defined in (), (),
(), and ().

Theorem . The FSLOs Lμ
i defined in (), (), (), and () are self-adjoint on Di,

i = , . . . , .

Proof First, let f and g be arbitrary real valued functions satisfying boundary conditions
(). Then we have

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

=
∫ ∞



C
xDμ

∞
[
p(x) R

D
μ
x f (x)

]
g(x) dx –

∫ ∞


f (x)C

xDμ
∞

[
p(x) R

D
μ
x g(x)

]
dx.
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Using the integration by parts () and applying the boundary conditions (), we get

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

= p(x)R
D

μ
x f (x)I–μ

x g(x)
∣∣∞
 –

∫ ∞


p(x)R

D
μ
x f (x)R

D
μ
x g(x) dx

–
[

p(x)R
D

μ
x g(x)I–μ

x f (x)
∣∣∞
 –

∫ ∞


p(x)R

D
μ
x g(x)R

D
μ
x f (x) dx

]

= .

Second, let f and g be arbitrary real valued functions satisfying boundary conditions ().
Then we have

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

=
∫ ∞



C
Dμ

x
[
p(x) R

xD
μ
∞f (x)

]
g(x) dx –

∫ ∞


f (x)C

Dμ
x
[
p(x) R

xD
μ
∞g(x)

]
dx.

Using the integration by parts () and applying the boundary conditions (), we get

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

=
∫ ∞


p(x)R

xD
μ
∞f (x)R

xD
μ
∞g(x) dx + p(x)R

xD
μ
∞f (x)xI–μ

∞ g(x)
∣∣∞


–
[∫ ∞


p(x)R

xD
μ
∞g(x)R

xD
μ
∞f (x) dx + p(x)R

xD
μ
∞g(x)xI–μ

∞ f (x)
∣∣∞


]

= .

Third, let f and g be arbitrary real valued functions satisfying boundary conditions ().
Then we have

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

=
∫ ∞



R
xD

μ
∞

[
p(x) C

Dμ
x f (x)

]
g(x) dx –

∫ ∞


f (x)R

xD
μ
∞

[
p(x) C

Dμ
x g(x)

]
dx.

Using the integration by parts () and applying the boundary conditions (), we get

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

=
∫ ∞


p(x)C

Dμ
x f (x)C

Dμ
x g(x) dx – g(x)xI–μ

∞
[
p(x)C

Dμ
x f (x))

]∣∣∞


–
[∫ ∞


p(x)C

Dμ
x g(x)C

Dμ
x f (x) dx – f (x)xI–μ

∞
[
p(x)C

Dμ
x g(x)

]∣∣∞


]

= .

Finally, let f and g be arbitrary real valued functions satisfying boundary conditions ().
Then we have

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

=
∫ ∞



R
D

μ
x
[
p(x) C

xDμ
∞f (x)

]
g(x) dx –

∫ ∞


f (x)R

D
μ
x
[
p(x) C

xDμ
∞g(x)

]
dx.

Using the integration by parts () and applying the boundary conditions (), we get

〈
Lμ

 f , g
〉
–

〈
f , Lμ

 g
〉

= g(x)I–μ
x

[
p(x)C

xDμ
∞f (x))

]∣∣∞
 –

∫ ∞


p(x)C

xDμ
∞f (x)C

xDμ
∞g(x) dx

–
[

f (x)I–μ
x

[
p(x)C

xDμ
∞g(x))

]∣∣∞
 –

∫ ∞


p(x)C

xDμ
∞g(x)C

xDμ
∞f (x) dx

]

= . �
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Theorem . The eigenvalues of SFSLP ()-() are real and the corresponding eigen-
functions of the distinct eigenvalues of SFSLP ()-() are orthogonal with respect to the
weight function ω()

μ .

Proof In the first part, we prove that the eigenvalues of SFSLP ()-() are real-valued.
Assume that an eigenfunction f (x) and its complex conjugate f̄ (x) correspond to eigen-
value λ and its complex conjugate eigenvalue λ, respectively. Then

Lμ
 f (x) + λω()

μ (x)f (x) = , ()

subject to the boundary conditions

p(x)I–μ
x f (x)

∣∣
x= = ,

lim
x→∞ p(x)I–μ

x f (x) = ,
()

and

Lμ
 f̄ (x) + λω()

μ (x)f̄ (x) = , ()

subject to the boundary conditions

p(x)I–μ
x f̄ (x)

∣∣
x= = ,

lim
x→∞ p(x)I–μ

x f̄ (x) = .
()

By multiplying () by f̄ and () by f and then subtracting both equations, we obtain

(λ – λ)ω()
μ (x)f (x)f̄ (x) = f (x)Lμ

 f̄ (x) – f̄ (x)Lμ
 f (x).

Integrating over [,∞) and using the integration by parts equation (), we get

(λ – λ)
∫ ∞


ω()

μ (x)
∣∣f (x)

∣∣ dx

=
∫ ∞


f (x)Lμ

 f̄ (x) dx –
∫ ∞


f̄ (x)Lμ

 f (x) dx

=
∫ ∞


p(x) R

D
μ
x f̄ (x)R

D
μ
x f (x) dx + p(x)R

D
μ
x f̄ (x)I–μ

x f (x)
∣∣∞
x=

–
∫ ∞


p(x) R

D
μ
x f (x)R

D
μ
x f̄ (x) dx – p(x)R

D
μ
x f (x)I–μ

x f̄ (x)
∣∣∞
x=.

Using the boundary conditions () and (), we have

(λ – λ)
∫ ∞


ω()

μ (x)
∣∣f (x)

∣∣ dx = .

Since ω()
μ and the eigenfunction f are non-zero, we conclude that λ = λ.
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Next, we prove the orthogonality of two eigenfunctions corresponding to distinct eigen-
values. Suppose λ and λ are distinct eigenvalues of SFSLP ()-() and the correspond-
ing eigenfunctions are f and f, respectively. Similar to the first part, we write equation
() for functions f and f, multiply the equation for f by f and vice versa, and subtract
one equation from another to obtain

f(x)Lμ
 f(x) – f(x)Lμ

 f(x) = (λ – λ)ω()
μ (x)f(x)f(x).

Integrating the above equation in [,∞) and applying the boundary conditions () yields

(λ – λ)
∫ ∞


ω()

μ (x)f(x)f(x) dx = .

Since λ �= λ, the orthogonality is proved. �

We further study the eigenproperties of SFSLP-SFSLP in the following theorem. The
proof is straightforward and similar to Theorem . and thus omitted.

Theorem . The eigenvalues of SFSLP-SFSLP are real and the corresponding eigen-
functions of the distinct eigenvalues of SFSLP-SFSLP are orthogonal with respect to the
weight function ω(i)

μ , i = , , .

4 The fractional Laguerre equation
In this section, we consider the special singular fractional Sturm-Liouville equation, show
the discreteness of the corresponding eigenvalues, and we find the explicit eigenfunctions.
Before that, we recall the Laguerre equation, Laguerre polynomials, and some useful prop-
erties.

For α < , the equation

xy′′ + ( – α – x)y′ + λy = ,  ≤ x < ∞

is known as the Laguerre equation, which can be converted to a singular Sturm-Liouville
form as follows:

D
(
x–αe–xD

(
y(x)

))
+ λx–αe–xy(x) = . ()

In particular, the Laguerre polynomials, L(α)
n (x), defined by

L(α)
n (x) =

n∑
k=

(–)k
(

n + α

n – k

)
xk

k!
, n = , , , . . .

are eigenfunctions of the Laguerre equation () and the corresponding eigenvalues are
λn = –λ = –n.

A useful representation of the Laguerre polynomials is the following:

L(α)
n (x) =

(
n + α

n

)
F(–n,α + ; x), ()
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where F(–n,α + ; x) =
∑n

k=(–)k n(n+)···(n+k–)
(α+)(α+)···(α+k+)

xk

k! is the confluent hypergeometric
function. The Laguerre polynomials L(α)

n (x) are orthogonal with respect to the weight
function ωα = xαe–x. We have

∫ ∞


L(α)

n (x)L(α)
m (x)xαe–x dx =

�(n + α + )
�(n + )

δmn. ()

In addition, the generating function for the Laguerre polynomials is

e– t
–t x

( – t)α+ =
∞∑

n=

tnL(α)
n (x), |t| < . ()

In the following, we prove several equations of fractional integrals and derivatives of the
Laguerre polynomial which will be used later.

Lemma . For n –  < μ < n and for all x ∈ [,∞), we have

Iμ
x
(
xαL(α)

n (x)
)

=
�(n + α + )

�(n + α + μ + )
xα+μL(α+μ)

n (x), α > –, ()

R
D

μ
x
(
xαL(α)

n (x)
)

=
�(n + α + )

�(n + α – μ + )
xα–μL(α–μ)

n (x), α > μ – , ()

C
Dμ

x
(
xαL(α)

n (x)
)

=
�(n + α + )

�(n + α – μ + )
xα–μL(α–μ)

n (x), α > μ – . ()

Proof We use the identity of the fractional integral of the Laguerre polynomials exhibited
in [], p.. For real numbers a, b, and μ with b,μ ≥ ,

xb+μ–
F(a, b + μ; x) =

�(b + μ)
�(b)�(μ)

∫ x


(x – t)μ–tb–

F(a, b; t) dt.

Taking a = –n, b = α + , () implies that

xα+μ

(
n + α

n

)
L(α+μ)

n (x) =
�(α +  + μ)
�(α + )�(μ)

∫ x


(x – t)μ–tα

(
n + α + μ

n

)
L(α)

n (x) dt,

xα+μL(α+μ)
n (x) =

�(n + α +  + μ)
�(n + α + )�(μ)

∫ x


(x – t)μ–tαL(α)

n (x) dt.

The following equation holds:

Iμ
x
[
xαL(α)

n (x)
]

=
�(n + α + )

�(n + α + μ + )
xα+μL(α+μ)

n (x).

Since R
D

μ
x Iμ

x f (x) = f (x), we derive () by performing R
D

μ
x on both sides of the last equa-

tion and taking α + μ by α. We have, for α > μ – ,

R
D

μ
x
(
xαL(α)

n (x)
)

=
�(n + α + )

�(n + α – μ + )
xα–μL(α–μ)

n (x), α > μ – .

Since xαL(α)
n (x)|x= = , by () we replace C

Dμ
x by R

D
μ
x and complete the proof of (). �
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Lemma . For n –  < μ < n and for all x ∈ [,∞), we have

xIμ
∞

(
e–xL(α)

n (x)
)

= e–xL(α–μ)
n (x), α > μ – , ()

R
xD

μ
∞

(
e–xL(α)

n (x)
)

= (–)ne–xL(α+μ)
n (x), α > –, ()

C
xDμ

∞
(
e–xL(α)

n (x)
)

= (–)ne–xL(α+μ)
n (x), α > –. ()

Proof Once again, we use the equation in [], p.:

e–xL(α)
n (x) =


�(β – α)

∫ ∞

x
(t – x)β–α–e–tL(β)

n (t) dt, β > α > –.

Taking β = α + μ, we get

e–xL(α)
n (x) = xIμ

∞
(
e–xL(α+μ)

n (x)
)
, α + μ > μ – .

By choosing α + μ by α, we prove equation () when α > μ – .
Using the fact that R

xD
μ∞ xIμ∞f (x) = (–)nf (x), we derive equation ().

By definition, using () and (), we have

C
xDμ

∞
(
e–xL(α)

n (x)
)

= xI–μ
∞

[
d

dx
(
e–xL(α)

n (x)
)]

= (–)n
xI–μ

∞
[
e–xL(α)

n (x)
]

= (–)ne–xL(α)
n (x),

which proves (). �

Now, we consider SFSLP ()-() with p(x) = x–αe–x and the weight function ω
(μ)
 (x) =

x–α–μe–x. For the parameters α,μ ∈ (, ), we obtain

C
xDμ

∞
(
x–αe–x R

D
μ
x �(x)

)
+ λx–α–μe–x�(x) = ,  ≤ x < ∞, ()

subject to

x–αe–x
I–μ

x �(x)
∣∣
x= = ,

lim
x→∞ x–αe–x

I–μ
x �(x) = .

()

We derive the eigenfunctions of SFSLP ()-() and the corresponding eigenvalues,
which agree well with Theorem ..

Theorem . The eigenvalues of SFSLP ()-() are given by

λ(α,μ)
n = –

�(n + α + μ)
�(n + α)

, n = , , , . . . .

The corresponding eigenfunctions to different eigenvalues are orthogonal with respect to the
weighted functions, ω(α,μ)

 (x) = x–α–μe–x, and are given by

�(α,μ)
n (x) = xα+μ–L(α+μ–)

n (x), n = , , , . . . . ()
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Proof First we prove that the generalized Laguerre polynomials () obey the boundary
conditions (). Using (), we have

x–αe–x
I–μ

x
[
xα+μ–L(α+μ–)

n (x)
]

= x–αe–xxα+μ–+(–μ)L(α+μ–+(–μ))
n (x)

=
�(n + α + μ)
�(n + α + )

xe–xL(α)
n (x).

Hence,

x–αe–x
I–μ

x
[
xα+μ–L(α+μ–)

n (x)
]∣∣

x= = 

and

lim
x→∞ x–αe–x

I–μ
x

[
xα+μ–L(α+μ–)

n (x)
]

= .

Next, substituting the function �
(α,μ)
n in () in equation () yields

C
xDμ

∞
[
x–αe–x R

D
μ
x
(
xα+μ–L(α+μ–)

n (x)
)]

= –λe–xL(α+μ–)
n (x). ()

Thanks to (), (), and (), we have

C
xDμ

∞
[
x–αe–x R

D
μ
x
(
xα+μ–L(α+μ–)

n (x)
)]

=
�(n + α + μ)

�(n + α)
C
xDμ

∞
[
e–xL(α–)

n (x)
] (

by ()
)

= –
�(n + α + μ)

�(n + α)
e–xL(α+μ–)

n (x)
(
by ()

)

= –λ(α,μ)
n ω

(α,μ)
 (x)�(α,μ)

n (x),

where the corresponding eigenvalues are given by

λ(α,μ)
n =

�(n + α + μ)
�(n + α)

.

Finally, we show that the eigenfunctions () are orthogonal with respect to ω
(α,μ)
 (x) =

x–α–μe–x as follows:
∫ ∞


�(α,μ)

m (x)�(α,μ)
n (x)ωα,μ(x) dx =

∫ ∞


x(α+μ–)L(α+μ–)

n (x)L(α+μ–)
m (x)x–α–μe–x dx

=
∫ ∞


L(α+μ–)

n (x)L(α+μ–)
m (x)xα+μ–e–x dx

=
�(n + α + μ)

�(n + )
δmn. �

We now turn to SFSLP ()-() with p(x) = xα+μ–ex and the weight function ω
(α)
 (x) =

xα–ex. For the parameter α,μ ∈ (, ), we obtain

C
Dμ

x
(
xα+μ–ex R

xD
μ
∞	(x)

)
+ λxα–ex	(x) = ,  ≤ x < ∞, ()
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subject to

xα+μ–ex
xI–μ

∞ 	(x)
∣∣
x= = ,

lim
x→∞

C
xDμ

∞	(x) = .
()

Theorem . The eigenvalues of SFSLP ()-() are given by

λ(α,μ)
n = –

�(n + α + μ)
�(n + α)

, n = , , , . . . .

The corresponding eigenfunctions to different eigenvalues are orthogonal with respect to the
weighted functions, ω(α)

 (x) = xα–ex, and are given by

	 (α)
n (x) = e–xL(α–)

n (x), n = , , , . . . . ()

Proof First we prove that the generalized Laguerre functions 	
(α)
n in () obey the bound-

ary conditions (). Using () and (), we have

xα+μ–ex
xI–μ

∞
[
e–xL(α–)

n (x)
]∣∣

x= = xα+μ–ex[e–xL(α+μ)
n (x)

]∣∣
x=

= xα+μ–L(α+μ)
n (x)

∣∣
x= = 

and

lim
x→∞

C
xDμ

∞
[
e–xL(α–)

n (x)
]

= lim
x→∞ –e–xL(α+μ–)

n (x) = .

Next, substituting the function 	
(α)
n in () in equation () yields

C
Dμ

x
[
xα+μ–ex R

xD
μ
∞

(
e–xL(α–)

n (x)
)]

= C
Dμ

x
[
xα+μ–exe–xL(α+μ–)

n (x)
]

= C
Dμ

x
[
xα+μ–L(α+μ–)

n (x)
]

=
�(n + α + μ)

�(n + α)
xα–L(α–)

n (x)

= –λ(α,μ)
n ω

(α,μ)
 (x)	 (α)

n (x),

where the corresponding eigenvalues are given by

λ(α,μ)
n = –

�(n + α + μ)
�(n + α)

.
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Finally, we show that the eigenfunctions () are orthogonal with respect to ω
(α)
 (x) = xα–ex

as follows:

∫ ∞


	 (α)

m (x)	 (α,μ)
n (x)ω(α)

 (x) dx =
∫ ∞


e–xL(α–)

n (x)L(α–)
m (x)xα–ex dx

=
∫ ∞


L(α–)

n (x)L(α–)
m (x)xα–e–x dx

=
�(n + α)
�(n + )

δmn,

which completes the proof. �

Analogously, we derive in the following theorem the eigenvalues and eigenfunctions of
SFSLP ()-() with p(x) = x–αe–x and ω

(α)
 (x) = xα–ex.

R
xD

μ
∞

(
x–αe–x C

Dμ
x f (x)

)
+ λxα–e–xf (x) = ,  ≤ x < ∞, ()

subject to

f () = ,

lim
x→∞ xI–μ

∞
[
x–αe–xC

Dμ
x f (x)

]
= .

()

For SFSLP ()-() with p(x) = xα+μ–ex and ω
(α)
 (x) = x–α–μex, the proofs are straight-

forward and similar to Theorem . and Theorem . and we omit them. Now, we consider

R
D

μ
x
(
xα+μ–ex C

xDμ
∞f (x)

)
+ λx–α–μexf (x) = ,  ≤ x < ∞, ()

subject to

I–μ
x

[
xα+μ–exC

xDμ
∞f (x)

]∣∣
x= = ,

lim
x→∞ f (x) = .

()

Theorem . . The eigenvalues of SFSLP ()-() are given by

λ(α,μ)
n = –

�(n + α + μ)
�(n + α)

, n = , , , . . . .

The corresponding eigenfunctions to different eigenvalues are orthogonal with respect to the
weighted functions, ω(α)

 (x) = xα–e–x, and are given by

f (x) = �(α,μ)
n (x) = xα+μ–L(α+μ–)

n (x), n = , , , . . . . ()

The eigenvalues of SFSLP ()-() are given by

λ(α,μ)
n = –

�(n + α + μ)
�(n + α)

, n = , , , . . . .



Kittipoom Advances in Difference Equations  (2017) 2017:310 Page 14 of 22

The corresponding eigenfunctions to different eigenvalues are orthogonal with respect to the
weighted functions, ω(α,μ)

 (x) = x–α–μex, and are given by

f (x) = 	 (α)
n (x) = e–xL(α–)

n (x), n = , , , . . . . ()

Remark  We obtain two types of eigenfunctions for four classes of SFSLPs. The first
one is given by �

(α,μ)
n (x) = xα+μ–L(α+μ–)

n (x), which we call the generalized Laguerre poly-
nomials (GLPs), and the second one is given by 	

(α)
n (x) = e–xL(α–)

n (x), which we call the
generalized Laguerre functions (GLFs). In contrast to the GLPs, the GLFs are well behaved
at infinity, due to the exponential decay term. Moreover, thanks to the self-adjointness of
SFSLOs, we have real and discrete eigenvalues.

We turn to the orthogonal basis for the weighted Hilbert space L
ω(α,μ) (,∞), where

ω(α,μ) = x–α–μe–x belongs to the most important properties of our eigenfunctions. In or-
der to prove that the obtained eigenfunctions �

(α,μ)
n (x) in () form an orthogonal basis

for L
ω

(α,μ)
i

(,∞), the orthogonality of eigenfunctions is proved in Theorem .. Hence, we

only need to prove the completeness of the eigenfunctions �
(α,μ)
n (x).

The completeness of a system of functions on a compact interval can be straightfor-
wardly proved, while the difficult cases are dealing with the system of functions on un-
bounded intervals. However, there is a nice trick by von Neumann that uses the generating
function () of the Laguerre polynomial to permit the reduction to a bounded interval
(for relevant results, see [], p.).

We present below the completeness of the GLFs �
(α,μ)
n (x) in () and also the complete-

ness of the GLF 	
(α)
n (x) in () on the half-line.

Theorem . For α,μ ∈ (, ), we have the following:
. The GLPs

�(α,μ)
n (x) = xα+μ–L(α+μ–)

n (x), n = , , , . . . ()

form a complete subspace of L
ω(α,μ) (,∞), ω(α,μ)(x) = x–α–μe–x.

. The GLFs

	 (α)
n (x) = e–xL(α–)

n (x), n = , , , . . . ()

form a complete subspace of L
ω(α) (,∞), ω(α)(x) = xα–ex.

Proof Proving that �
(α,μ)
n (x) is complete in L

ωα,μ (,∞) is equivalent to proving that
�̃

(α,μ)
n (x) := x

–α–μ
 e– x

 �
(α,μ)
n (x) is complete in L(,∞). Now, by setting y = e–x, we will

prove instead that

�̃(α,μ)
n (x) =

(
ln


y

) α+μ–
 √

y,L(α+μ–)
n

(
ln


y

)
= �̃(α,μ)

n (y)

are complete in L(, ).
Since the polynomials are dense in L(, ) and (ln 

y )
α+μ–


√y ∈ L(, ) for α + μ > ,

we deduce that the functions Q(α,μ)
m (y) = (ln 

y )
α+μ–


√yym span a dense subspace of L(, ).
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Hence, it is sufficient to prove that the closed linear space, determined by �̃
(α,μ)
n (y), in-

cludes the functions Q(α,μ)
m (y). If cn is the nth generalized Laguerre coefficient of Q(α,μ)

m (y),
we have to prove that

∫ 



[
Q(α,μ)

m (y) –
N∑

n=

�̃(α,μ)
n (y)

]

dy

=
∫ 



[(
ln


y

) α+μ–
 √

y

(
ym –

N∑
n=

cnL(α+μ–)
n

(
ln


y

))]

dy → ,

as N → ∞. By transforming back to (,∞), this reduces the task to showing that

∫ ∞


xα+μ–e–x

[
e–mx –

N∑
n=

cnL(α+μ–)
n (x)

]

dx −→ , ()

as N → ∞. Thanks to the generating function in (),

e– t
–t x

( – t)α+μ
=

∞∑
n=

tnL(α+μ–)
n (x), |t| < .

By taking t = m
m+ , we obtain e– t

–t x = e–mx. Now choosing cn = ( – t)α+μtn and substituting
it into () yields

∫ ∞


xα+μ–e–x

[
e–mx –

N∑
n=

cnL(α+μ–)
n (x)

]

dx

=
∫ ∞


xα+μ–e–x

[
( – t)α+μ

∞∑
n=N+

tnL(α+μ–)
n (x)

]

dx.

Since the summation is convergent, the last expression becomes arbitrarily small when N
is sufficiently large. Therefore, the system �̃

(α,μ)
n (x) is complete in L(,∞), and we com-

plete the proof of ().
The second part () can be obtained in a similar manner. �

5 Approximation results by the generalized Laguerre functions
In this section, we present some approximation properties of the GLFs. Let us first define
the finite dimensional approximation space

Fμ
N
(
R

+)
=

{
xμψ ,ψ ∈ PN ,μ ∈ (, )

}
,

where PN is the set of all polynomials of degree at most N .
Consider the orthogonal projection π

μ
N : L

ω(α,μ) (R+) → Fμ
N (R+) defined by

〈
π

μ
N u – u, v

〉
ω(α,μ) = , ∀v ∈ Fμ

N
(
R

+)
,

where 〈f , g〉ω(α,μ) =
∫ ∞

 f (x)g(x)ω(α,μ) dx.
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Thanks to the orthogonality, we can write

(
π

μ
N u

)
(x) =

N∑
n=

û(α,μ)
n �(α,μ)

n (x), ()

where û(α,μ)
n =

〈u,�(α,μ)
n 〉

ω(α,μ)

γ
(α,μ)
n

, γ (α,μ)
n = �(n+α+μ)

�(n+) .

In order to describe the L
ω(α,μ) -projection error, we introduce a weighted Sobolev space

involving fractional derivatives. We have

Bm,
α,μ

(
R

+)
=

{
u : C

Dμ+k
x u ∈ L

ω(α,–k)

(
R

+)
,  ≤ μ + k ≤ m,  ≤ μ ≤ 

}
, m ∈N,

Bm,
α,μ

(
R

+)
=

{
u : C

xDμ+k
∞ u ∈ L

ω(α,k)

(
R

+)
,  ≤ μ + k ≤ m,  ≤ μ ≤ 

}
, m ∈ N,

equipped with the norm and semi-norm

‖u‖Bm,
α,μ

=

[ m∑
k=

∥∥C
Dμ+k

x u
∥∥

ω(α,–k)

] 


, |u|Bm,
α,μ

=
∥∥C

Dμ+k
x u

∥∥
ω(α,–k) ,

and

‖u‖Bm,
α,μ

=

[ m∑
k=

∥∥C
xDμ+k

∞ u
∥∥

ω(α,k)

] 


, |u|Bm,
α,μ

=
∥∥C

xDμ+k
∞ u

∥∥
ω(α,k) .

We deduce from () and () that

C
Dμ+k

x �(α,μ)
n (x) = C

Dμ+k
x xα+μ–L(α+μ–)

n (x), with k ≤ μ + k ≤ k + 

=
�(n + α + μ)

�(n + α – μ – k – )
xα–k–L(α–k–)

n (x).

By using the above result, C
Dμ+k

x , �
(α,μ)
n (x) are orthogonal with respect to the weight

ω(α,–k) = x–α+ke–x, i.e.,

∫ ∞



C
Dμ+k

x �(α,μ)
m (x)C

Dμ+k
x �(α,μ)

n (x)ω(α,–k) dx

=
[

�(n + α + μ)
�(n + α – μ – k – )

]
�(n + α – k)

�(n + )
δmn. ()

By summing () over  ≤ k ≤ m, we obtain

m∑
k=

〈C
Dμ+k

x �(α,μ)
m , C

Dμ+k
x �(α,μ)

n
〉
ω(α,–k) = , ∀m �= n, ()

which implies that �
(α,μ)
n are also orthogonal in Bm,

α,μ(R+).
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Theorem . Let u ∈ Bm,
α,μ(R+) and m ∈N. Then we have

. for  ≤ k ≤ m ≤ N ,

∥∥C
Dμ+k

x
(
π

μ
N u – u

)∥∥
ω(α,–k) ≤ N

k–m


∥∥C
Dμ+m

x u
∥∥

ω(α,–m) , ()

. for  ≤ m ≤ N ,

∥∥π
μ
N u – u

∥∥
ω(α,μ) ≤ N– m+μ+


∥∥C

Dμ+m
x u

∥∥
ω(α,–m) . ()

Proof By (), we have

C
Dμ+k

x
(
π

μ
N u – u

)
= –

∞∑
n=N+

û(α,μ)
n

C
Dμ+k

x �(α,μ)
n (x).

Hence, by the orthogonality (), we get

∥∥C
Dμ+k

x
(
π

μ
N u – u

)∥∥
ω(α,–k) =

∞∑
n=N+

[
�(n + α + μ)

�(n + α – k – )

]
�(n + α – k)

�(n + )
∣∣û(α,μ)

n
∣∣.

In particular, we have

∥∥C
Dμ+k

x u
∥∥

ω(α,–k) =
∞∑

n=

[
�(n + α + μ)

�(n + α – k – )

]
�(n + α – k)

�(n + )
∣∣û(α,μ)

n
∣∣.

Now, we obtain

∥∥C
Dμ+k

x
(
π

μ
N u – u

)∥∥
ω(α,–k)

≤ max
n>N

{[
�(n + α + μ)

�(n + α – k – )

]
�(n + α – k)

�(n + )

[
�(n + α – m – )

�(n + α + μ)

]
�(n + )

�(n + α – m)

}

·
∞∑

n=N+

[
�(n + α + μ)

�(n + α – m – )

]
�(n + α – m)

�(n + )
∣∣û(α,μ)

n
∣∣

≤ max
n>N

{[
�(n + α – m – )
�(n + α – k – )

]
�(n + α – k)
�(n + α – m)

}∥∥C
Dμ+m

x u
∥∥

ω(α,–m) .

By the Stirling equation,

�(x + ) ∼ √
πxx+ 

 e–x, x � ,

we have

�(n + α – m – )
�(n + α – k – )

∼ nk–m and
�(n + α – k)
�(n + α – m)

∼ nm–k for n � .

Hence,

∥∥C
Dμ+k

x
(
π

μ
N u – u

)∥∥
ω(α,–k) � Nk–m∥∥C

Dμ+m
x u

∥∥
ω(α,–m) ,

which proves ().
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The L
ω(α,μ) -projection error () can be obtained by using the same argument. We have

∥∥π
μ
N u – u

∥∥
ω(α,μ) =

∞∑
n=N+

∣∣û(α,μ)
n

∣∣ �(n + α + μ)
�(n + )

=
∞∑

n=N+

∣∣û(α,μ)
n

∣∣
[

�(n + α + μ)
�(n + α – m – )

]
�(n + α – μ)

�(n + )

·
[

�(n + α – m – )
�(n + α + μ)

]
�(n + α + μ)
�(n + α – m)

≤ N–(m+μ+)∥∥C
Dμ+m

x u
∥∥

ω(α,–m) ,

which implies (). �

Theorem . Let u ∈ Bm,
α,μ(R+) and m ∈N. Then we have

. for  ≤ k ≤ m ≤ N ,

∥∥C
xDμ+k

∞
(
π

μ
N u – u

)∥∥
ω(α,k) ≤ N

k–m


∥∥C
xDμ+m

∞ u
∥∥

ω(α,m) , ()

. for  ≤ m ≤ N ,

∥∥π
μ
N u – u

∥∥
ω(α) ≤ N– m+μ+


∥∥C

xDμ+m
∞ u

∥∥
ω(α,m) . ()

Proof The proof is similar to that of Theorem . and thus omitted. �

6 The generalized Laguerre transform
This section is based on the classical Laguerre transform by McCully []. We introduce
the generalized Laguerre transform and use this transform to solve the fractional heat
(diffusion) equation.

Definition . The generalized Laguerre transform of a function F is defined by

T
{

F(x)
}

= f (α,μ)(n) =
∫ ∞


e–xL(α+μ–)

n (x)F(x) dx.

The inverse transform T–{f (α,μ)(n)} of T{F(x)} is given by

F(x) = T–{f (α,μ)(n)
}

= xα+μ–
∞∑

n=

n!
�(n + α + μ)

f (α,μ)(n)L(α+μ–)
n (x).

Example  For  < α + μ < , we have the following:

. T{} =
�(n + α + μ – )
n!�(α + μ – )

(
Equation (..) in []

)
,

. T
{

xα+μ–} = 
(
Equation () in []

)
,

. T
{

e–sx} =


s + 

n∑
k=

(
n + α + μ

n – k

)
(–)k

(s + )k , s > 
(
Equation () in []

)
,
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. T
{

xα+μ–e–sx} =
�(n + α + μ)sn

n!(s + )n+α+μ
, s > –

(
Equation (..) in []

)
,

. T
{

xα+μ+β–} = �(α + μ + β)
∞∑

k=

(–)k

k!
�(k + β)

�(β)
, β > 

(
Equation (..) in []

)
.

Theorem . If T{F(x)} = f (α,μ)(n) exists and
. F satisfies the boundary conditions (), then

T
{

xα+μ–ex C
xDμ

∞
[
x–αe–x R

D
μ
x F(x)

]}
= –λ(α,μ)

n f (α,μ)(n), ()

. F satisfies the boundary conditions (), then

T
{

xα+μ–ex R
xD

μ
∞

[
x–αe–x C

Dμ
x F(x)

]}
= –λ(α,μ)

n f (α,μ)(n), ()

where λ
(α,μ)
n = �(n+α+μ)

�(n+μ) .

Proof First, by using the integration by parts equation (), we obtain

T
{

xα+μ–ex C
xDμ

∞
[
x–αe–x R

D
μ
x F(x)

]}

=
∫ ∞


xα+μ–L(α+μ–)

n (x) C
xDμ

∞
(
x–αe–x R

D
μ
x F(x)

)
dx

=
∫ ∞


x–αe–x R

D
μ
x F(x) R

D
μ
x
(
xα+μ–L(α+μ–)

n (x)
)

dx

+ x–αe–xR
D

μ
x F(x) xI–μ

∞
(
xα+μ–L(α+μ–)

n (x)
)∣∣∞

x=

=
�(n + α + μ)

�(n + α)

∫ ∞


e–xR

D
μ
x F(x)L(α–)

n (x) dx.

Applying the integration by parts equation () and using () and (), we get

T
{

xα+μ–ex C
xDμ

∞
[
x–αe–x R

D
μ
x F(x)

]}

=
�(n + α + μ)

�(n + α)

∫ ∞


F(x)C

xDμ
∞

(
e–xL(α–)

n (x)
)

dx

– e–xL(α–)
n (x)xI–μ

∞ F(x)
∣∣∞
x=

=
�(n + α + μ)

�(n + α)

∫ ∞


F(x)xI–μ

∞
(
–e–xL(α–)

n (x)
)

dx

= –
�(n + α + μ)

�(n + α)

∫ ∞


F(x)e–xL(α+μ–)

n (x) dx

= –λ(α,μ)
n f (α,μ)(n).
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The second part can be proved similarly, by using the integration by parts equation ().
We have

T
{

xα+μ–ex R
xD

μ
∞

[
x–αe–x C

Dμ
x F(x)

]}

=
∫ ∞


xα+μ–L(α+μ–)

n (x) R
xD

μ
∞

[
x–αe–x C

Dμ
x F(x)

]
dx

=
∫ ∞


x–αe–x C

Dμ
x F(x) C

Dμ
x
[
xα+μ–L(α+μ–)

n (x)
]

dx

– xα+μ–L(α+μ–)
n (x) xI–μ

∞
[
x–αe–x C

Dμ
x F(x)

]∣∣∞
x=

= –
�(n + α + μ)

�(n + α)

∫ ∞


e–x C

Dμ
x F(x)L(α–)

n (x) dx.

The last expression is obtained by replacing C
Dμ

x by R
D

μ
x and using (). Applying the in-

tegration by parts equation () again and using (), we get

T
{

xα+μ–ex R
xD

μ
∞

[
x–αe–x C

Dμ
x F(x)

]}

= –λ(α,μ)
n

[∫ ∞


F(x) R

xD
μ
∞

(
e–x L(α–)

n (x)
)

dx

+ F(x)xI–μ
∞

(
e–xL(α–)

n (x)
)∣∣∞

x=

]

= –λ(α,μ)
n f (α,μ)(n). �

Example  (The space-fractional heat transfer problem of type ) We consider the one
dimension heat transfer in a semi-infinite medium, which is described by the following
fractional partial differential equation with order μ ∈ (, ):

cρUt(x, t) = C
xDμ

∞
[
κ R

D
μ
x U(x, t)

]
+ Q(x, t),  ≤ x < ∞, t > ,

where c = x–α–μ, ρ = e–x, and κ = x–αe–x are the thermal coefficients. The source Q(x, t) =
e–xF(t). Therefore, SFSLP describing this semi-infinite fractional heat transfer is

Ut(x, t) = xα+μ–ex C
xDμ

∞
[
x–αe–x R

D
μ
x
(
U(x, t)

)]
+ xα+μ–F(t). ()

If the medium is insulated laterally, the corresponding boundary conditions and initial
condition are

x–αe–x
I–μ

x U(x, t)
∣∣
x= = , lim

x→∞ x–αe–x
I–μ

x U(x, t) = , t > ,

U(x, ) = G(x),  ≤ x < ∞.

Applying the generalized Laguerre transform with respect to x to () and using (), we
obtain

d
dt

u(α,μ)(n, t) = –λ(α,μ)
n u(α,μ)(n, t), n = , , . . . .
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When n = , we get

d
dt

u(α,μ)(, t) = –λ
(α,μ)
 u(α,μ)(, t) + �(α + μ)F(t),

with the initial condition u(α,μ)(n, ) = T{G(x)} := g(α,μ)(n). We have

u(α,μ)(n, t) = g(α,μ)(n)e–λ
(α,μ)
n t , n = , , . . . ,

u(α,μ)(, t) = e–λ
(α,μ)
 t

[
g(α,μ)() + �(α + μ)

∫ t


F(τ )eλ

(α,μ)
 τ dτ

]
.

The inverse generalized Laguerre transform leads to the solution

U(x, t) = e–λ
(α,μ)
 t

[
g(α,μ)() + �(α + μ)

∫ t


F(τ )eλ

(α,μ)
 τ dτ

]
xα+μ–

�(α + μ)

+ xα+μ–
∞∑

n=

n!
�(n + α + μ)

g(α,μ)(n)e–λ
(α,μ)
n tLα+μ–

n (x).

We note that the solution of the fractional heat transfer problem coincides with the so-
lution obtained from the integer-order heat transfer problem (see []) with α =  and
μ = .

Example  (The space fractional heat conduction problem of type ) Analogous to the
previous example, we consider the one dimension heat transfer in a semi-infinite medium,
which is described by SFSLP. We have

Ut(x, t) = xα+μ–ex R
xD

μ
∞

[
x–αe–x C

Dμ
x
(
U(x, t)

)]
+ xα+μ–F(t), ()

with the corresponding boundary conditions and initial condition

U(, t) = , lim
x→∞ xI–μ

∞
[
x–αe–x C

Dμ
x U(x, t)

]
= , t > ,

U(x, ) = G(x),  ≤ x < ∞.

Applying the generalized Laguerre transform with respect to x to (), we obtain the so-
lution, which coincides with the solution of the space fractional heat conduction problem
of type .

Acknowledgements
The author would to thank the reviewers as well as the editor for their helpful comments and suggestions, which
significantly improve the quality of this article.

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
The author wrote this paper. The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 May 2017 Accepted: 20 September 2017



Kittipoom Advances in Difference Equations  (2017) 2017:310 Page 22 of 22

References
1. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
2. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
3. Carpinteri, A, Mainardi, F: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin (1998)
4. Klimek, M, Agrawal, OP: On a regular fractional Sturm-Liouville problem with derivatives of order in (0, 1). In:

Proceedings of 13th International Carpathian Control Conference, ICCC (2012)
5. Klimek, M, Agrawal, OP: Fractional Sturm-Liouville problem. Comput. Math. Appl. 66, 795-812 (2013)
6. Zayernouri, M, Karniadakis, GE: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J.

Comput. Phys. 252, 495-517 (2013)
7. Rivero, M, Trujillo, JJ, Velasco, MP: A fractional approach to the Sturm-Liouville problem. Cent. Eur. J. Phys. 11,

1246-1254 (2013)
8. Ansari, A: On finite fractional Sturm-Liouville transforms. Integral Transforms Spec. Funct. 26, 51-64 (2015)
9. Bas, E, Metin, F: Fractional singular Sturm-Liouville operator for Coulomb potential. Adv. Differ. Equ., 2013, 300 (2013)
10. Bas, E, Yilmazer, R, Panakhov, E: Fractional solution of Bessel equation with N-method. Sci. World J. 2013, 685695

(2013)
11. Bas, E: Fundamental spectral theory of fractional singular Sturm-Liouville operator. J. Funct. Spaces Appl. 2013

915830 (2013)
12. Zhang, W, Yi, M: Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals. Adv.

Differ. Equ. 2015, 217 (2015)
13. Khosravian-Arab, H, Dehghan, M, Eslahchi, MR: Fractional Sturm-Liouville boundary value problems in unbounded

domains: theory and applications. J. Comput. Phys. 299, 526-560 (2015)
14. Andrews, GE, Askey, R, Roy, R: Special Functions. Encyclopedia of Mathematics and Its Applications. Cambridge

University Press, Cambridge (1999)
15. Szegö, G: Orthogonal Polynomials. Am. Math. Soc., Providence (1975)
16. McCully, J: The Laguerre transform. SIAM Rev. 2(3), 185-191 (1960)
17. Debnath, L, Bhatta, D: Integral Transforms and Their Applications. CRC Press, Boca Raton (2015)


	Fractional singular Sturm-Liouville problems on the half-line
	Abstract
	Keywords

	Introduction
	Preliminary
	Singular fractional Sturm-Liouville problems
	The fractional Laguerre equation
	Approximation results by the generalized Laguerre functions
	The generalized Laguerre transform
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


