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Abstract
In this paper, we study a class of generalized fractional order three-point boundary
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are obtained.
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1 Introduction
Fractional calculus is the subject of studying fractional integrals and fractional deriva-
tives, which means that the orders of integration and differentiation are not integers but
non-integers, and even complex numbers. The history of fractional calculus is more than
three hundreds years. However, only in the recent forty years, it was realized that these
fractional integrals and derivatives may have many potential applications. Fractional dif-
ferential equation is a differential equation which involves fractional derivatives, and it has
been successfully used to model many real-world phenomena such as heat conduction [],
diffusion process [], and quantum mechanics []. More applications can be seen in [],
Chapter .

Fractional boundary value problems (FBVPs) appear in many of these applications. In
recent twenty years, considerable work has been done in the field of FBVPs. To verify the
existence result of a solution and to study the behavior of the solution of FBVPs have be-
come more and more popular. There are several methods to verify the existence of FBVPs,
in which the topological degree method is one of the most effective techniques. By using
the fixed point theorems, FBVPs with different types of boundary conditions have been
studied. More specifically, in [], the existence and multiplicity of positive solutions for
a nonlinear FBVP with two-point boundary condition are studied. In [], the existence
of solutions for a class of three-point FBVPs involving nonlinear impulsive fractional dif-
ferential equations is considered. In [], the existence and uniqueness of solutions for a
four-point nonlocal FBVP are derived. In [], the positive solution of FBVP with integral
boundary condition is obtained. In [], the existence theory of FBVP with anti-periodic
boundary condition is discussed. Furthermore, for the existence results of FBVPs with
some mixed-type boundary conditions, the readers are referred to [–] and the refer-
ences therein.
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The literature above only focuses on the FBVP with classical fractional derivatives, i.e.,
Riemann-Liouville or Caputo derivatives. Fractional derivative also has some limit, since
it can be regarded as a convolution between a function and a fractional power kernel. The
fractional power kernel puts much weight in the present and less weight in the past, which
causes the nice property of fractional derivative called nonlocal property or short mem-
ory property. The short memory property is very effective in modeling some physical pro-
cesses such as diffusion phenomenon in material with memory. However, some real-world
phenomena cannot be modeled by such a fractional power kernel properly. For example,
an old man and a child have different memory ability. The old man may remember things
that happened several decades ago, but forget what happened yesterday. The child has an
opposite ability, i.e., he may have no idea about things that happened in his early years, but
remember almost everything in the recent week. To model this phenomenon, we need dif-
ferent kernels to weight the function differently. Hence in , a new class of generalized
fractional integrals and derivatives defined by using a weight function and a scale function
was introduced in []. The new fractional operators contain many existing fractional in-
tegrals and derivatives as special cases. It is shown that many integral equations can be
written and solved in an elegant way using the new operators. Therefore, using different
weight functions and scale functions, many fractional problems are significantly general-
ized. It is also possible that the new generalized fractional integrals and derivatives will
bring some interest in the near future, although the theoretical study and applications of
them are in the very first stage right now.

Motivated by [], in this present paper, we consider the following three-point FBVP:

⎧
⎨

⎩

∗Dα
+,[z;w]u(t) = f (t, u(t)), t ∈ [, ],  < α < ,

u() = , γ u(p) = u(),
()

where p ∈ (, ), and γ is a positive constant. ∗Dα
+,[z;w]u(t) is the generalized fractional

derivative of function u with respect to t, and its definition is given in the next section. f is
a continuous function satisfying lim|u|→+∞ f (t, u) = , and u ∈ X, f : [, ] × X → X. Here
(X,‖ · ‖) is a Banach space and C = C([, ], X) denotes the Banach space of all continuous
functions from [, ] to X equipped with a topology of uniform convergence with the norm
denoted by ‖ · ‖. Next, we will apply some fixed point theorems to study the existence and
uniqueness results of this generalized fractional boundary value problem.

2 Preliminaries
We introduce the generalized fractional integral and derivative directly, and for more de-
tails about the classical fractional integral and derivative, such as Riemann-Liouville, Ca-
puto, and Riesz operators, we refer to [], Chapter .

Definition  ([]) The left-sided generalized fractional integral of order α >  of a func-
tion u(t), with respect to a scale function z(t) and a weight function w(t), is defined as

(
Iα

a+,[z;w]u
)
(t) =

[w(t)]–

�(α)

∫ t

a

w(s)z′(s)u(s)
[z(t) – z(s)]–α

ds, ()

provided the integral exists.
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Definition  ([]) The left-sided generalized derivative of order  of a function u(t), with
respect to a scale function z(t) and a weight function w(t), is defined as

(D[z,w]u)(t) =
[
w(t)

]–
[(


z′(t)

Dt

)
(
w(t)u(t)

)
]

, ()

provided the right-hand side of equation is finite.

Definition  ([]) The left-sided generalized fractional derivative of order m of a func-
tion u(t), with respect to a scale function z(t) and a weight function w(t), is defined as

(
Dm

[z,w]u
)
(t) =

[
w(t)

]–
[(


z′(t)

Dt

)m(
w(t)u(t)

)
]

, ()

provided the right-hand side of equation is finite, where m is a positive integer.

Definition  ([]) The left-sided Caputo type generalized fractional derivative of order
α >  of a function u(t), with respect to a scale function z(t) and a weight function w(t), is
defined as

(∗Dα
a+,[z;w]u

)
(t) = Im–α

a+,[z;w]
(
Dm

[z,w]u
)
(t), ()

provided the right-hand side of equation is finite, where m –  < α < m, and m is a positive
integer. Specifically, for  < α < ,

(∗Dα
a+,[z;w]u

)
(t) =

[w(t)]–

�( – α)

∫ t

a

[z(t) – z(s)]–α

z′(s)
· d[w(s)u(s)]

ds ds. ()

Moreover, for z(t) = t and w(t) = , the generalized fractional derivative reduces to the
Caputo fractional derivative as

(cDα
a+u

)
(t) =


�( – α)

∫ t

a
(t – s)–αu′′(s) ds.

In the above definitions, we only present the ‘left-sided’ sense of generalized fractional
integrals and derivatives. The ‘right-sided’ sense of generalized fractional integrals and
derivatives and their properties are discussed in []. We will not repeat them here since
the derivative we use in this paper is defined in the left-sided sense. For simplicity, in what
follows, we remove the term ‘[z; w]’ from the subscript in equation ().

Remark  To be more specific, we assume that the weight function is positive and the
scale function z(t) is monotone increasing over [, ]. Moreover, both w(t) and z(t) are
continuously differentiable.

Remark  Indeed, the generalized fractional derivatives have extended the classical Ca-
puto fractional derivative. For example,

f (x) =

⎧
⎨

⎩

–, x ∈ [–, ),

, x ∈ (, ],
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is discontinuous, then f /∈ AC([–, ]), and hence it cannot have Caputo fractional deriva-
tive according to [], Equations (..)-(..), p.. Nevertheless, when we take α ∈
(, ), w(x) = |x|, and z(x) = x in x ∈ [–, ) ∪ (, ], then

(∗Dα
(–)+f

)
(x) =


|x|�( – α)

∫ x

–

s′

[x – s]α
ds

=
(x + )–α

|x|�( – α)
, x 	= .

Let us consider the following generalized fractional boundary value problem:

⎧
⎨

⎩

∗Dα
+u(t) = σ (t), t ∈ [, ],  < α < ,

u() = , γ u(p) = u(),
()

where σ is a sufficiently smooth function, p ∈ (, ).
To solve problem (), we have the following lemma.

Lemma  Assume that z(t) is strictly monotone increasing and w(t) is positive on [, ],
and

L := γ
z(p)
w(p)

–
z()
w()

+
z()
w()

– γ
z()
w(p)

	= , ()

then the solution of problem () is given as

u(t) =
C

w(t)
+

Cz(t)
w(t)

+
[w(t)]–

�(α)

∫ t



w(s)z′(s)σ (s) ds
[z(t) – z(s)]–α

, ()

where

C =
z()

L · �(α)

{
γ

w(p)

∫ p



w(s)z′(s)σ (s) ds
[z(p) – z(s)]–α

–


w()

∫ 



w(s)z′(s)σ (s) ds
[z() – z(s)]–α

}

and

C =


L · �(α)

{


w()

∫ 



w(s)z′(s)σ (s) ds
[z() – z(s)]–α

–
γ

w(p)

∫ p



w(s)z′(s)σ (s) ds
[z(p) – z(s)]–α

}

.

Proof According to equation (), we have

∗Dα
+u(t) =

[w(t)]–

�( – α)

∫ t

a

[z(t) – z(s)]–α

z′(s)
· d[w(s)u(s)]

ds ds

=
[w(t)]–

�( – α)

∫ z(t)

z()

[
z(t) – ξ

]–α d[w(z–(ξ ))u(z–(ξ ))]
dξ 

[
z′(z–(ξ )

)] dξ

=


w(t)
cDα

z()+
[
w

(
z–(φ)

)
u
(
z–(φ)

)]
, ()

where φ = z(t) ∈ [z(), z()] and ξ = z(s) ∈ [z(), z(t)]. We apply the mean value theorem
to move [z′(z–(ξ ))] outside as a constant, i.e., [z′(z–(ξ ∗))], ξ ∗ ∈ [z(), z()], which is ab-
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sorbed by the weight 
w(t) . Hence, problem () is transformed to

⎧
⎨

⎩

cDα
z()+[w(z–(φ))u(z–(φ))] = w(z–(φ))σ (z–(φ)),

u(z–(z())) = , γ u(z–(z(p))) = u(z–(z())).
()

Finally, it suffices to verify that () is solvable under assumptions in Remark .
According to [], Section ., the general solution of equation () is

w
(
z–(φ)

)
u
(
z–(φ)

)
= C + Cz(t) +


�(α)

∫ z(t)

z()

w(z–(ξ ))σ (z–(ξ ))
[z(t) – ξ ]–α

dξ , ()

which implies

u(t) = C


w(t)
+ C

z(t)
w(t)

+
[w(t)]–

�(α)

∫ t



w(s)z′(s)σ (s)
[z(t) – z(s)]–α

ds. ()

Imposing the initial and boundary conditions on equation () gives

C


w()
+ C

z()
w()

= , ()

and

γ

[

C


w(p)
+ C

z(p)
w(p)

+
[w(p)]–

�(α)

∫ p



w(s)z′(s)σ (s)
[z(p) – z(s)]–α

ds
]

= C


w()
+ C

z()
w()

+
[w()]–

�(α)

∫ 



w(s)z′(s)σ (s)
[z() – z(s)]–α

ds. ()

Now we can solve equations () and () to get C and C. Since L := γ
z(p)
w(p) – z()

w() + z()
w() –

γ
z()
w(p) is the determinant of the coefficient matrix of equations () and (), when L 	= ,

equations () and () have a unique nonzero solution. This completes the proof. �

The following theorems play important roles in studying the existence and uniqueness
of fractional boundary value problems.

Theorem  (Contraction mapping principle, see []) Let E be a Banach space, D ⊂ E
be closed, and F : D → D be a strict contraction, i.e., |Fx – Fy| ≤ k|x – y| for some k ∈
(, ) and all x, y ∈ D. Then F has a unique fixed point x∗. Furthermore, the successive
approximations xn+ = Fxn = Fnx, starting at any x ∈ D, converge to x∗ and satisfy |xn –
x∗| ≤ ( – k)–kn|Fx – x|.

Theorem  (Arzelà-Ascoli, see []) If a sequence {xn}∞n= in a compact subset of X is uni-
formly bounded and equicontinuous, then it has a uniformly convergent subsequence.

Theorem  ([]) Let X be a Banach space. Assume that � is an open bounded subset of
X with θ ∈ �, and let T : �̄ → X be a completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂�.

Then T has a fixed point in �̄.
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Theorem  (Krasnosel’skii, see []) Let M be a closed convex and nonempty subset of a
Banach space X. Let A and B be two operators such that:

(H) Ax + By ∈ M, wherever x, y ∈ M;
(H) A is compact and continuous; and
(H) B is a contraction mapping.

Then there exists z∗ ∈ M such that z∗ = Az∗ + Bz∗.

3 Main results
In this section, we present some existence results of boundary value problem (). Let
C = C([, ], R) denote the Banach space of all continuous functions mapping [, ] to R
equipped with the norm defined by ‖u‖ = sup≤t≤{|u(t)|}.

Define the operator T : C → C as

(Tu)(t) =
L–z()

w(t)�(α)

[∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

–
∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

]

+
L–z(t)

w(t)�(α)

[∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

–
∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

]

+
[w(t)]–

�(α)

∫ t



w(s)z′(s)f (s, u(s))
[z(t) – z(s)]–α

ds, ()

where  < p < ,  < t < .
If the operator T : C → C defined by equation () has a fixed point, then the fixed point

coincides with the solution of fractional boundary problem (). In what follows, we prove
the complete continuity property of operator T .

Lemma  The operator T : C → C defined by equation () is completely continuous.

Proof Let � ⊂ C be a bounded set, then for any t ∈ [, ] and u ∈ �, since f (t, u) is con-
tinuous on [, ] ×R, there exists a positive constant L such that |f (t, u)| ≤ L. Thus one
can have

∣
∣(Tu)(t)

∣
∣

≤ |L–|z()
w(t)�(α)

[∫ p



γ w(s)z′(s)|f (s, u(s))|ds
w(p)[z(p) – z(s)]–α

+
∫ 



w(s)z′(s)|f (s, u(s))|ds
w()[z() – z(s)]–α

]

+
|L–|z(t)
w(t)�(α)

[∫ 



w(s)z′(s)|f (s, u(s))|ds
w()[z() – z(s)]–α

+
∫ p



γ w(s)z′(s)|f (s, u(s))|ds
w(p)[z(p) – z(s)]–α

]

+
[w(t)]–

�(α)

∫ t



w(s)z′(s)|f (s, u(s))|
[z(t) – z(s)]–α

ds

≤ z()Lwmax

wmin�(α)|L|
[∫ p



γ z′(s) ds
w(p)[z(p) – z(s)]–α
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+
∫ 



z′(s) ds
w()[z() – z(s)]–α

]

+
z(t)Lwmax

wmin�(α)|L|
[∫ 



z′(s) ds
w()[z() – z(s)]–α

+
∫ p



γ z′(s) ds
w(p)[z(p) – z(s)]–α

]

+
Lwmax

wmin�(α)

∫ t



z′(s)
[z(t) – z(s)]–α

ds

=
z()Lwmax

wmin�(α + )|L|
{

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

}

+
z(t)Lwmax

wmin�(α + )|L|
{


w()

[
z() – z()

]α +
γ

w(p)
[
z(p) – z()

]α

}

+
Lwmax

wmin�(α + )
[
z(t) – z()

]α

≤ z()Lwmax

wmin�(α + )|L|
{

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

}

+
z()Lwmax

wmin�(α + )|L|
{


w()

[
z() – z()

]α

+
γ

w(p)
[
z(p) – z()

]α

}

+
Lwmax

wmin�(α + )
[
z() – z()

]α

:= L, ()

where wmax = max≤t≤{w(t)}, wmin = min≤t≤{w(t)}, and L is a positive constant. Equa-
tion () implies that ‖Tu‖ ≤ L. Moreover, for the derivative of T , we have

∣
∣(Tu)′(t)

∣
∣ =

∣
∣
∣
∣
–L–z()w′(t)

w(t)�(α)
L +

L–[z′(t)w(t) – z(t)w′(t)]
w(t)�(α)

L

–
[w′(t)]–

w(t)�(α)

∫ t



w(s)z′(s)f (s, u(s))
[z(t) – z(s)]–α

ds

+
[w(t)]–

�(α – )

∫ t



w(s)z′(s)z′(t)|f (s, u(s))|
[z(t) – z(s)]–α

ds
∣
∣
∣
∣

≤ |L–|z()w′
max

w
min�(α)

|L| +
|L–|(z′

maxwmax + zmaxw′
max)

w
min�(α)

|L|

+
w′

maxwmaxL

w
min�(α)

[
z() – z()

]α

+
wmaxz′

maxz′
maxL

wmin�(α – )
[
z() – z()

]α–

:= L, ()

where

L =
∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

–
∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

,

L =
∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

–
∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

,

are constants, i.e., L + L = , and w′
max, z′

max indicate the maximum values of the deriva-
tive of functions w(t), z(t) on [, ], respectively.
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Therefore, for all  ≤ t ≤ t ≤ ,

∣
∣(Tu)(t) – (Tu)(t)

∣
∣ ≤

∫ t

t

∣
∣(Tu)′(s)

∣
∣ds ≤ L(t – t), ()

which implies that the operator T is equicontinuous on [, ]. Hence, by the Arzelà-Ascoli
theorem, the operator T : C → C is completely continuous. �

Remark  The absolute value of L (or L) has the following upper-bound estimation:

|L| =
∣
∣
∣
∣

∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

–
∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

∣
∣
∣
∣

≤ γ Lwmax

w(p)

∫ p



z′(s) ds
[z(p) – z(s)]–α

+
Lwmax

w()

∫ 



z′(s) ds
[z() – z(s)]–α

=
Lwmax

α

[
γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]

.

Denote

L = Lwmax

[
γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]

,

we have

α|L| ≤ L.

Theorem  Assume that f : [, ] × R → R and limu→ f (t, u) = . Then the boundary
value problem () has at least one solution.

Proof Since limu→ f (t, u) = , then there exist constants d >  and d >  such that for all
 < |u| < d, we have |f (t, u)| ≤ d|u|, where d is such that

max
t∈[,]

{( |L–|z()
w(t)�(α + )

+
|L–|z(t)

w(t)�(α + )

)[
γ wmax

w(p)
[
z(p) – z()

]α

+
wmax

w()
[
z() – z()

]α

]

+
wmax

w(t)�(α + )
[
z(t) – z()

]α

}

· d ≤ . ()

Define � = {u ∈ C : |u| ≤ d}. Choose u ∈ C such that |u| = d, which means that

u ∈ ∂�.

By Lemma , the operator T is completely continuous, and by equation (), we have

∣
∣(Tu)(t)

∣
∣ ≤ max

t∈[,]

{( |L–|z()
w(t)�(α + )

+
|L–|z(t)

w(t)�(α + )

)

×
[

γ wmax

w(p)
[
z(p) – z()

]α +
wmax

w()
[
z() – z()

]α

]
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+
wmax

w(t)�(α + )
[
z(t) – z()

]α

}

· d|u|

≤ |u|. ()

Therefore, by Theorem , the operator T has at least one fixed point, which implies that
the boundary value problem () has at least one solution. �

Theorem  Let f : [, ] × X → X be a jointly continuous function satisfying the Lipschitz
condition

∥
∥f (t, u) – f (t, u)

∥
∥ ≤ L‖u – u‖, ∀t ∈ [, ], u, u ∈ X.

Then the boundary value problem () has a unique solution provided � < , where

� =
L

μ
· wmax

wmin�(α + )

{
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α

+


w()
[
z() – z()

]α

]

+
[
z() – z()

]α

}

,

and � ≤ μ < .

Proof First of all, we verify that T maps a bounded ball into itself. Denote L =
supt∈[,] |f (t, )|, and select

r ≥ L

 – μ
· wmax

wmin�(α + )

{
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α

+


w()
[
z() – z()

]α

]

+
[
z() – z()

]α

}

, ()

where μ is a real number satisfying � ≤ μ < . We define a closed ball as Br = {u ∈ C :
‖u‖ ≤ r}, then

∥
∥(Tu)(t)

∥
∥

≤ |L–|z()
w(t)�(α)

{∫ p



γ w(s)z′(s)|f (s, u(s))|
w(p)[z(p) – z(s)]–α

ds

+
∫ 



w(s)z′(s)|f (s, u(s))|
w()[z() – z(s)]–α

ds
}

+
|L–|z(t)
w(t)�(α)

{∫ 



w(s)z′(s)|f (s, u(s))|
w()[z() – z(s)]–α

ds

+
∫ p



γ w(s)z′(s)|f (s, u(s))|
w(p)[z(p) – z(s)]–α

ds
}

+


w(t)�(α)

∫ t



w(s)z′(s)|f (s, u(s))|
[z(t) – z(s)]–α

ds

≤ |L–|z()
w(t)�(α)

{∫ p



γ w(s)z′(s){|f (s, u(s)) – f (s, )| + |f (s, )|}
w(p)[z(p) – z(s)]–α

ds

+
∫ 



w(s)z′(s){|f (s, u(s)) – f (s, )| + |f (s, )|}
w()[z() – z(s)]–α

ds
}



Cao et al. Advances in Difference Equations  (2017) 2017:348 Page 10 of 14

+
|L–|z(t)
w(t)�(α)

{∫ 



w(s)z′(s){|f (s, u(s)) – f (s, )| + |f (s, )|}
w()[z() – z(s)]–α

ds

+
∫ p



γ w(s)z′(s){|f (s, u(s)) – f (s, )| + |f (s, )|}
w(p)[z(p) – z(s)]–α

ds
}

+


w(t)�(α)

∫ t



w(s)z′(s){|f (s, u(s)) – f (s, )| + |f (s, )|}
[z(t) – z(s)]–α

ds

≤ (Lr + L)|L–|z()
w(t)�(α + )

{
γ wmax

w(p)
[
z(p) – z()

]α +
wmax

w()
[
z() – z()

]α

}

+
(Lr + L)|L–|z(t)

w(t)�(α + )

{
γ wmax

w(p)
[
z(p) – z()

]α +
wmax

w()
[
z() – z()

]α

}

+
(Lr + L)wmax

wmin�(α + )
[
z(t) – z()

]α

≤ (Lr + L)wmax

wmin�(α + )

{
[
z() – z()

]α

+
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]}

≤ (μ� +  – μ)r

≤ r,

which implies that T(Br) ⊂ Br . Next, for any u, u ∈ C and for each t ∈ [, ], one can
obtain

∥
∥(Tu)(t) – (Tu)(t)

∥
∥

≤ |L–|z()
w(t)�(α)

{∫ p



γ w(s)z′(s)‖f (s, u(s)) – f (s, u(s))‖
w(p)[z(p) – z(s)]–α

ds

+
∫ 



w(s)z′(s)‖f (s, u(s)) – f (s, u(s))‖
w()[z() – z(s)]–α

ds
}

+
|L–|z(t)
w(t)�(α)

{∫ 



w(s)z′(s)‖f (s, u(s)) – f (s, u(s))‖
w()[z() – z(s)]–α

ds

+
∫ p



γ w(s)z′(s)‖f (s, u(s)) – f (s, u(s))‖
w(p)[z(p) – z(s)]–α

ds
}

+


w(t)�(α)

∫ t



w(s)z′(s)‖f (s, u(s)) – f (s, u(s))‖
[z(t) – z(s)]–α

ds

≤ L‖u – u‖wmax

wmin�(α + )

{
[
z() – z()

]α

+
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]}

≤ μ�‖u – u‖
≤ ‖u – u‖,

which implies that T is a contraction as μ� < . Therefore, by the contraction mapping
principle (i.e., Banach fixed point theorem), the boundary value problem () has a unique
solution. �
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Theorem  Assume that f : [, ] × X → X is a jointly continuous function and further:

(H) |f (t, u) – f (t, u)| ≤ L|u – u|, u, u ∈ X ,
(H) |f (t, u)| ≤ λ(t), ∀(t, u) ∈ [, ] × X , and λ ∈ L([, ], R+).

If

wmaxL

wmin�(α + )

{
[
z() – z()

]α

+
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]}

< ,

then the boundary value problem () has at least one solution.

Proof Let

r ≥ ‖λ‖L[,] × wmax

wmin�(α + )

{
[
z() – z()

]α

+
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]}

,

and consider Br = {u ∈ X : ‖u‖ ≤ r}. We define the operators

(u)(t) =
[w(t)]–

�(α)

∫ t



w(s)z′(s)f (s, u(s))
[z(t) – z(s)]–α

ds,

(�u)(t) =
[

L–z()
w(t)�(α)

–
L–z(t)

w(t)�(α)

]

×
[∫ 



w(s)z′(s)f (s, u(s)) ds
w()[z() – z(s)]–α

–
∫ p



γ w(s)z′(s)f (s, u(s)) ds
w(p)[z(p) – z(s)]–α

]

.

For u, u ∈ Br , simple calculation yields

∥
∥(u)(t) + (�u)(t)

∥
∥

≤ ‖λ‖L[,] × wmax

wmin�(α + )

{
[
z() – z()

]α

+
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α +


w()
[
z() – z()

]α

]}

≤ r.

Therefore, (u)(t) + (�u)(t) ∈ Br . Moreover, by (H), it is easy to verify that � is a con-
traction mapping for

wmaxL

wmin�(α + )

{
[
z() – z()

]α +
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α

+


w()
[
z() – z()

]α

]}

< .
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Since the weight function w(t), scale function z(t) and f are continuous,  is also con-
tinuous. Furthermore,  is uniformly bounded in Br since

‖u‖ ≤ ‖λ‖L
[w(t)]–

�(α)

∫ t



w(s)z′(s)
[z(t) – z(s)]–α

ds

≤ ‖λ‖L · wmax

wmin�(α + )
· [z(t) – z()

]α

≤ wmax

wmin�(α + )
· [z() – z()

]α · ‖λ‖L .

Next, we prove the compactness of the operator . Let E = [, ] × Br , and denote fmax =
sup(t,u)∈E |f (t, u)|, then

∣
∣(u)(t) – (�u)(t)

∣
∣ ≤ wmaxfmax

wmin�(α + )
{[

z(t) – z()
]α +

[
z(t) – z()

]α}
,

which is independent of u. Thus,  is equicontinuous. Since  maps bounded subsets
into relatively compact subsets, one can deduce that (Cbs) is relatively compact in X for
every t, where Cbs is a bounded subset of C. Therefore,  is relatively compact on Br , and
hence, by the Arzelà-Ascoli theorem,  is compact on Br and conditions (H) and (H)
are satisfied. Consequently, by Theorem , the boundary value problem () has at least one
solution. �

4 Examples
We present three examples to demonstrate the main results discussed in the last section.

Example  Consider the generalized fractional boundary value problem

⎧
⎨

⎩

∗Dα
+u(t) = f (t, u(t)), t ∈ [, ],  < α < ,

u() = , γ u(p) = u(),
()

where α = ., γ = /, p = /, w(t) = et , z(t) = t, and f (t, u) = u sin(.π t). Since
limu→

f (t,u)
u =  and taking  < |u| < / such that |f (t, u)| ≤ |u| ≤ 

 |u| and

max
t∈[,]

{(
L–z()

w(t)�(α + )
+

L–z(t)
w(t)�(α + )

)[
γ wmax

w(p)
[
z(p) – z()

]α

+
wmax

w()
[
z() – z()

]α

]

+
wmax

w(t)�(α + )
[
z(t) – z()

]α

}

· d

< . × 


< .

Therefore, by Theorem , the boundary value problem () has at least one solution.

Example  Consider the generalized fractional boundary value problem

⎧
⎨

⎩

∗Dα
+u(t) = f (t, u(t)), t ∈ [, ],  < α < ,

u() = , γ u(p) = u(),
()
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where α = ., γ = /, p = /, w(t) = t + , z(t) = t., and f (t, u) = ‖u‖
(‖u‖+)(t+) such that

∥
∥f (t, u) – f (t, u)

∥
∥ ≤ 


‖u – u‖,

and

� =
L

μ
· wmax

wmin�(α + )
×

{
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α

+


w()
[
z() – z()

]α

]

+
[
z() – z()

]α

}

= . < ,

where we take μ = .. Therefore, by Theorem , the boundary value problem () has a
unique solution.

Example  Consider the generalized fractional boundary value problem
⎧
⎨

⎩

∗Dα
+u(t) = f (t, u(t)), t ∈ [, ],  < α < ,

u() = , γ u(p) = u(),
()

where α = ., γ = /, p = /, w(t) = et + , z(t) = t., and f (t, u) = ‖u‖
(‖u‖+)(t+) such that

∥
∥f (t, u) – f (t, u)

∥
∥ ≤ 


‖u – u‖,

and |f (t, u)| ≤ λ(t) = 
(t+) ∈ L([, ], R+), and

wmaxL

wmin�(α + )

{
[
z() – z()

]α +
z() + z()

|L|
[

γ

w(p)
[
z(p) – z()

]α

+


w()
[
z() – z()

]α

]}

= . < .

Therefore, by Theorem , the boundary value problem () has at least one solution.

5 Conclusion remark
The existence results of generalized fractional boundary value problem are discussed in
this paper by using several fixed point theorems. The generalized fractional derivative
is defined upon a weight function and a scale function, which contains many fractional
derivatives in the literature as special cases. Hence, the boundary value problems studied
in this paper are more general, and it is important to develop certain methods for inves-
tigating the existence results of them. In fact, equation () provides us with an effective
transform, under which the generalized FBVP can be regarded as a regular FBVP defined
in a general time scale z(t) and weighted by a weight function w(t). We hope that our work
will bring much attention into this field in the near future.

Acknowledgements
This work was partly supported by the NSFC (No. 11501581, No. 51134003, No. 51174236), the Research Project
(No. 502042032) of Central South University, the Project funded by China Postdoctoral Science Foundation
(No. 2015M570683), the Project supported by the National Basic Research Development Program of China
(No. 2011CB606306), the project supported by the National Key Laboratory Open Program of Porous Metal Material of
China (No. PMM-SKL-4-2012).



Cao et al. Advances in Difference Equations  (2017) 2017:348 Page 14 of 14

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
The authors have made the same contribution. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 June 2017 Accepted: 22 September 2017

References
1. Povstenko, Y: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28, 83-102 (2004)
2. Gorenflo, R, Mainardi, F: Some recent advances in theory and simulation of fractional diffusion processes. J. Comput.

Appl. Math. 229, 400-415 (2009)
3. Laskin, N: Fractional quantum mechanics. Phys. Rev. E 62, 3135-3145 (2008)
4. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
5. Bai, Z, Lv, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal.

Appl. 311, 495-505 (2005)
6. Tian, Y, Bai, Z: Existence results for the three-point impulsive boundary value problem involving fractional differential

equations. Comput. Math. Appl. 59, 2601-2609 (2010)
7. Ahmad, B, Sivasundaram, S: On four-point nonlocal boundary value problems of nonlinear integro-differential

equations of fractional order. Appl. Math. Comput. 217, 480-487 (2010)
8. Cabada, A, Wang, G: Positive solutions of nonlinear fractional differential equations with integral boundary value

conditions. J. Math. Anal. Appl. 389, 403-411 (2012)
9. Agrawal, R, Ahmad, B: Existence theory for anti-periodic boundary value problems of fractional differential equations

and inclusions. Comput. Math. Appl. 62, 1200-1214 (2011)
10. Dong, X, Bai, Z, Zhang, X: Positive solutions to boundary value problems of p-Laplacian with fractional derivative.

Bound. Value Probl. 2017, 5 (2017)
11. Benchohra, M, Hamani, S, Ntouyas, S: Boundary value problems for differential equations with fractional order and

nonlocal conditions. Nonlinear Anal. 71, 2391-2396 (2009)
12. Agrawal, R, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear

fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
13. Qiao, Y, Zhou, Z: Existence of solutions for a class of fractional differential equations with integral and anti-periodic

boundary conditions. Bound. Value Probl. 2017, 11 (2017)
14. Wang, J, Zhou, Y, Lin, Z: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242,

649-657 (2014)
15. Xu, Y: Fractional boundary value problems with integral and anti-periodic boundary conditions. Bull. Malays. Math.

Sci. Soc. 39, 571-587 (2016)
16. Zhang, K: On a sign-changing solution for some fractional differential equations. Bound. Value Probl. 2017, 59 (2017)
17. Agrawal, O: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc.

Appl. Anal. 15, 700-711 (2012)
18. Zima, M: Fixed point theorem of Leggett-Williams type and its application. J. Math. Anal. Appl. 299, 254-260 (2004)
19. Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam

(2006)
20. Lakshmikantham, V, Leela, S, Devi, J: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers,

Cambridge (2009)
21. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)
22. Smart, D: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)


	Existence results for a class of generalized fractional boundary value problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Examples
	Conclusion remark
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


