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Abstract
In this paper, we propose two generalized non-polynomial cubic spline schemes
using a variable mesh to solve the system of non-linear singular two point boundary
value problems. Theoretical analysis proves that the proposed methods have second-
and third-order convergence. Both methods are applicable to singular boundary
value problems. Numerical results are also provided to show the accuracy and
efficiency of the proposed methods.
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1 Introduction
In this paper, we study two effective numerical techniques using a non-polynomial cubic
spline based on a variable mesh to solve system of M non-linear singular boundary value
problems (BVPs) of the following type:

y(i)
xx = F (i)(x, y(), . . . , y(i), . . . , y(M), y()

x , . . . , y(i)
x , . . . , y(M)

x
)
, a ≤ x ≤ b, ()

subject to boundary conditions

y(i)(a) = Ai, y(i)(b) = Bi, where y(i)
x =

dy(i)

dx
, y(i)

xx =
dy(i)

dx , i = , , , . . . , M. ()

We assume that, for –∞ < a ≤ x ≤ b < ∞ and –∞ < y(i), y(i)
x < ∞, where y(i) = y(i)(x), y(i)

x =
y(i)

x (x), we have

(i) F (i)(x, y(), y(), . . . , y(i), . . . , y(M), y()
x , y()

x , . . . , y(i)
x , . . . , y(M)

x ) is continuous;
(ii) ∂F(i)

∂y(j) and ∂F(i)

∂y(j)
x

exist and are continuous;

(iii) ∂F(i)

∂y(j) >  and | ∂F(i)

∂y(j)
x

| ≤ C, for some positive constant C and i, j = , , , . . . , M.

These conditions as proved by Keller [] ensure us of the existence of a unique solution of
the above system of boundary value problem ()-().
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In the present paper, we have derived generalized non-polynomial cubic spline schemes
of second- and third-order using a variable mesh for solving system of two point boundary
value problems ()-(). Such systems effectively decompose several higher-order problems
into second-order boundary value problems; thus solving them efficiently. These higher-
order problems are used to model various phenomena in the field of astrophysics, as-
tronomy, hydrodynamics, beam and wave theory [–]. For these boundary value prob-
lems, Aftabizadeh [], Zill [], Regan [] and Agarwal [] have obtained the existence and
uniqueness of the solutions.

Many authors have developed efficient numerical schemes to solve boundary value
problems and splines have been rigourously used to approximate the solution of such
problems. To name a few, Mohanty et al. [–] developed AGE, cubic spline TAGE,
Newton-TAGE iteration methods using a finite difference and cubic spline method based
on uniform and non-uniform mesh, respectively, to solve non-linear singular two point
boundary value problems. Even singularly perturbed boundary value problems with or
without first derivative terms are solved. Kadalbajoo et al. [] developed a third-order
variable-mesh cubic spline method; Mohanty et al. used a spline in compression [, ],
a spline in tension [, ], and the cubic spline TAGE method []. Wazwaz [] de-
veloped modified Adomian decomposition method to solve linear and non-linear fourth-
order boundary value problems, Akram and Siddiqi [] used the second-order convergent
non-polynomial spline method to solve sixth-order linear special case boundary value
problems. Talwar and Mohanty [] developed a finite-difference method for the solu-
tion of a fourth-order ordinary differential equation. Twizell and Boutayeb [] devel-
oped finite-difference methods for solving eighth-order boundary value problems. Akram
and Rehman [] solved eighth-order boundary value problems using the kernel space
method. Siddiqi and Akram [, ] solved sixth- and eighth-order boundary value prob-
lems using a non-polynomial and septic spline. Liu and Wu [] used a generalized dif-
ferential quadrature rule to solve a special case of eighth-order boundary value problems.
Also a variable mesh has been extensively used by many authors. Numerical simulations
with high-order compact difference schemes depict more accurate solution values on vari-
able meshes as compared to some high-order compact scheme on a uniform mesh net-
work. This happens because the truncation error in a finite-difference approximation de-
pends upon the derivative of the variable as well as mesh spacing. Therefore, to attain
uniformly distributed truncation errors, it is essential to employ non-uniform meshes,
i.e., finer meshes in the region for largely deviated derivatives and coarse meshes for a
smooth function. In this manner, the error disperses almost uniformly over the domain of
integration and renders an accurate solution to a greater extent []. Such ongoing work
motivated us to develop an efficient non-polynomial cubic spline scheme to solve the sys-
tem of non-linear singular boundary value problems using a variable mesh.

Presently, once the proposed method decomposes the higher-order boundary value
problem into a system of second-order boundary value problems (), the boundary con-
ditions are also accordingly modified. As the boundary conditions are incorporated, we
get a block tri-diagonal Jacobian from the system of discretized second-order boundary
value problems. We implemented the method on non-linear as well as linear problems.
In the case of a linear boundary value problem, we get a linear system of coupled dif-
ference equations, which are solved by a block Gauss elimination method and the non-
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linear system of coupled difference equations are solved by using the block Newton’s
method.

The sections of this paper are organized as follows. In Section , we give details of deriva-
tion of the scheme using a second-order singular linear boundary value problem and, in
Section , we provide a generalization of the scheme. In Section , we present the appli-
cation of the proposed schemes to a fourth- and sixth-order singular BVP. In Section ,
we discuss a convergence analysis and in Section , we provide numerical illustrations
to demonstrate the accuracy of the proposed schemes. Finally in Section , we provide
concluding remarks.

2 Derivation of the schemes
We consider a scalar second-order non-linear boundary value problem of the following
type:

yxx = F(x, y, yx), such that y(a) = A, y(b) = B. ()

Firstly, we discretize the solution region [a, b] such that a = x < x < x < · · · < xN– <
xN = b. Let hj = xj –xj–, j = , , , . . . , N , be the mesh size and the mesh ratio be σ = hj+

hj
> ,

j = , , , . . . , N – . When σ = , the mesh reduces to a uniform mesh, i.e., hj+ = hj = h.
Also, assume yj and Yj to be the approximate and exact solution of () at the grid points xj,
j = , , . . . , N . Then the interpolating non-polynomial cubic spline approximation function
can be defined as

S(x) = aj + bj(x – xj) + cj sin
(
k(x – xj)

)
+ dj cos

(
k(x – xj)

)
,

k > , xj– ≤ x ≤ xj, j = , , , . . . , N , ()

which satisfies the following conditions:

(i) S(x) coincides with a cubic polynomial in [xj–, xj], j = , , , . . . , N .
(ii) S(x) ∈ C[a, b].

(iii) S(xj) = y(xj), Sxxj (xj) = Fj, Sxxj (xj± 


) = Fj± 


for j = , , , . . . , N .

Using the definition of spline () and conditions (i) and (iii) we get the following values for
aj, bj, cj, dj and approximations:

aj = yj +
Fj

k , bj =
yj+ – yj

hj
+

Fj+ – Fj

khj
, ()

cj = –
Fj

k and dj =
Fj cos(khj) – Fj+

k sin(khj)
, ()

Sx(xj+) =
yj+ – yj

hj+
+ hj+(αFj + βFj+), ()

Sx(xj–) =
yj – yj–

hj
– hj(γ Fj + βFj–), ()

Sx(xj) =
yj+β + yj(σ 

j β – β) – yj–σ

j β

hjσj
– hj+(αβFj+ – γβFj–), ()
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where

α =
–
θ

j+

(
 –

θj+

sin θj+

)
, γ =

–
θj



(
 –

θj

sin θj

)
, ()

β =


θ
j+

(
 –

cot θj+

θj+

)
, β =


θ

j

(
 –

cot θj

θj

)
, ()

β =
β

(σjβ + β)
, β =

β

(σjβ + β)
, θj = khj and yj = y(xj). ()

Now, by the continuity conditions of first derivative, i.e., (ii), we get the following scheme:

yj+ – ( + σj)yj + σjyj– = hjhj+
(
σjαFj+ + (σjβ + β)Fj + γ Fj–

)
+ Tj(hj). ()

We observe, as θj → , (α,β,β,γ ) → ( 
 , 

 , 
 , 

 ), scheme () reduces into the standard
variable-mesh cubic spline scheme

yj+ – ( + σj)yj + σjyj– = hjhj+

[
σj


Fj+ +

(σj + )


Fj +



Fj–

]
. ()

Now, we consider the following approximations evaluated at the grid points xj, j =
, , , . . . , N – :

sj = σj(σj + ), ()

ȳxj+ =
( + σj)yj+ – ( + σj)yj + σ 

j yj–

hjsj
, ()

ȳxj– =
–yj+ + ( + σj)yj – σj( + σj)yj–

hjsj
, ()

ȳxj =
yj+ + (σ 

j – )yj – σ 
j yj–

hjsj
, ()

F̄j+ = F(xj+, yj+, ȳxj+ ), ()

F̄j– = F(xj–, yj–, ȳxj– ), ()

F̄j = F(xj, yj, ȳxj ), ()

¯̄yxj+ =
yj+ – yj

hj+
+ hj+(αF̄j + βF̄j+), ()

¯̄yxj– =
yj – yj–

hj
– hj(γ F̄j + βF̄j–), ()

¯̄yxj =
yj+β + yj(σ 

j β – β) – yj–σ

j β

hjσj
– hj+(αβF̄j+ – γβF̄j–), ()

¯̄Fj+ = F(xj+, yj+, ¯̄yxj+ ), ()

¯̄Fj– = F(xj–, yj–, ¯̄yxj– ), ()

¯̄Fj = F(xj, yj, ¯̄yxj ). ()
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Simplifying ()-() and the approximations ()-(), for j = , , , . . . , N we get

α =



+ O
(
h

j
)

= γ , ()

β =



+ O
(
h

j
)

= β, ()

ȳxj = yxj +



σjh
j yxxxj + O

(
h

j
)
, ()

ȳxj+ = yxj+ –



σj( + σj)h
j yxxxj + O

(
h

j
)
, ()

ȳxj– = yxj– –



( + σj)h
j yxxxj + O

(
h

j
)
, ()

F̄j+ = Fj+ –



σj( + σj)h
j yxxxj G + O

(
h

j
)
, ()

F̄j– = Fj– –



( + σj)h
j yxxxj G + O

(
h

j
)
, ()

F̄j = Fj +



σjh
j yxxxG + O

(
h

j
)
, ()

¯̄yxj = yxj + O
(
h

j
)
, ()

¯̄yxj± = yxj± + O
(
h

j
)
, ()

¯̄Fj = Fj + O
(
h

j
)
, ()

¯̄Fj± = Fj± + O
(
h

j
)
, ()

where G =
∂F
∂yxj

. ()

Now, using ()-() we generate a family of variable-mesh non-polynomial cubic spline
schemes of second- and third-order for different values of Pj, Rj and Qj in the following
scheme:

yj+ – ( + σj)yj + σjyj– = hjhj+(PjFj+ + QjFj + RjFj–) + Tj(hj).

(I) Second-order scheme. For Pj = σjα, Qj = (σjβ + β), Rj = γ , the local truncation
error Tj is O(h

j ), thus leading to a second-order method. θj satisfies the consistency
condition tan( khj

 ) + ( khj
 ) = ( 

 ) and this equation has an infinite number of roots.
We can use the smallest positive non-zero root of the equation as the value of θj i.e.,
khj = ..

(II) Third-order scheme. Again, for the following values of Pj , Rj and Qj, we get the
second scheme:

Pj =
(σ 

j + σj – )


, Qj =
(σj + )(σ 

j + σj + )


, Rj =
σj( + σj – σ 

j )


. ()

Also, using ()-() we can easily prove that Tj = O(h
j ) and the local truncation

error in the case of the second discretization scheme with uniform mesh is O(h).
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Note that the coefficients Pj, Qj, Rj are positive if (
√

–)
 < σj < (

√
+)
 , thus satisfying

condition of convergence of the scheme [].

3 Generalization of the schemes
We generalize our method for the solution of the system of M non-linear boundary value
problems (). At the grid point xj, j = , , . . . , N – , we use the following approximations
and schemes:

S(i)(x) = aj + bj(x – xj) + cj sin
(
k(x – xj)

)
+ dj cos

(
k(x – xj)

)
, ()

k > , xj– ≤ x ≤ xj, j = , , , . . . , N .

sj = σj(σj + ), ()

ȳ(i)
xj+

=
( + σj)y(i)

j+ – ( + σj)y(i)
j + σ 

j y(i)
j–

hjsj
, ()

ȳ(i)
xj–

=
–y(i)

j+ + ( + σj)y(i)
j – σj( + σj)y(i)

j–

hjsj
, ()

ȳ(i)
xj

=
y(i)

j+ + (σ 
j – )y(i)

j – σ 
j y(i)

j–

hjsj
, ()

F̄ (i)
r = F (i)(xr , y()

r , y()
r , . . . , y(i)

r , . . . , y(M)
r , ȳ()

xr , ȳ()
xr , . . . , ȳ(i)

xr , . . . , ȳ(M)
xr

)
, ()

¯̄y(i)
xj+

=
y(i)

j+ – y(i)
j

hj+
+ hj+

(
αF̄ (i)

j + βF̄ (i)
j+

)
, ()

¯̄y(i)
xj–

=
y(i)

j – y(i)
j–

hj
– hj

(
γ F̄ (i)

j + βF̄ (i)
j–

)
, ()

¯̄y(i)
xj

=
y(i)

j+β + y(i)
j (σ 

j β – β) – y(i)
j–σ


j β

hjσj
– hj+

(
αβF̄ (i)

j+ – γβF̄ (i)
j–

)
, ()

¯̄F (i)
r = F (i)(xr , y()

r , y()
r , . . . , y(i)

r , . . . , y(M)
r , ¯̄y()

xr , ¯̄y()
xr , . . . , ¯̄y(i)

xr , . . . , ¯̄y(M)
xr

)
, ()

y(i)
j+ – ( + σj)y(i)

j + σjy(i)
j– = hjhj+

(
σjαF̄ (i)

j+ + (σjβ + β)F̄ (i)
j + γ F̄ (i)

j–
)

+ Tj(hj), ()

and also

y(i)
j+ – ( + σj)y(i)

j + σjy(i)
j– = hjhj+

(
Pj

¯̄F (i)
j+ + Qj

¯̄F (i)
j + Rj

¯̄F (i)
j–

)
+ Tj(hj), ()

where

aj = y(i)
j +

F (i)
j

k , bj =
y(i)

j+ – y(i)
j

hj
+

F (i)
j+ – F (i)

j

khj
, ()

cj = –
F (i)

j

k and dj =
F (i)

j cos(khj) – F (i)
j+

k sin(khj)
, ()

α =
–
θ

j+

(
 –

θj+

sin θj+

)
, γ =

–
θ

j

(
 –

θj

sin θj

)
, ()

β =


θ
j+

(
 –

cot θj+

θj+

)
, β =


θ

j

(
 –

cot θj

θj

)
, ()
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β =
β

(σjβ + β)
, β =

β

(σjβ + β)
, θj = khj and r = j, j ± , ()

Pj =
(σ 

j + σj – )


, Qj =
(σj + )(σ 

j + σj + )


, Rj =
σj( + σj – σ 

j )


. ()

4 Application to fourth-order singular boundary value problem
We consider a linear fourth-order singular boundary value problem:

dy
dx = F

(
x, y,

dy
dx

,
dy
dx ,

dy
dx

)
,  < x ≤ b, ()

subject to y() = A, y(b) = B,
d

dx y() = A,
d

dx y(b) = B, ()

where F(x, y, dy
dx , dy

dx , dy
dx ) = a(x) dy

dx + b(x) dy
dx + c(x) dy

dx + d(x)y(x) + g(x); A, A, B, B are real
constants and at least one of the coefficients a(x), b(x), c(x), d(x) or g(x) may be singular at
x = . We may rewrite the problem ()-() as a system of second-order boundary value
problems:

dy
dx = z(x), ()

dz
dx = a(x)

dz
dx

+ b(x)z(x) + c(x)
dy
dx

+ d(x)y(x) + g(x), ()

subject to

y() = A, z() = A, y(b) = B, z(b) = B. ()

Applying the difference scheme () to the coupled second-order boundary value problem
()-(), we obtain the following difference scheme:

σjyj– – ( + σj)yj + yj+ = hjhj+(Pjzj+ + Qjzj + Rjzj–), ()

σjzj– – ( + σj)zj + zj+ = hjhj+
[
Pj(aj+z̄xj+ + bj+zj+ + cj+ȳxj+ + dj+yj+ + gj+)

+ Qj(ajz̄xj + bjzj + cjȳxj + djyj + gj)

+ Rj(aj–z̄xj– + bj–zj– + cj–ȳxj– + dj–yj– + gj–)
]
, ()

where Pj = σjα, Qj = (σjβ + β), Rj = γ and j = , , . . . , N – . The boundary value problem
has a singularity at some x =  and hence, the scheme fails at j = . Therefore, we define
the following approximations around the jth node to evade the singularity:

a∗
j– = aj – hjaxj + O

(
h

j
)
, ()

a∗
j+ = aj + σjhjaxj + O

(
h

j
)
, ()

a∗∗
j– = aj – hjaxj +

(hj)


axxj + O

(
h

j
)
, ()

a∗∗
j+ = aj + σjhjaxj +

(σjhj)


axxj + O

(
h

j
)
. ()
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Similar relations for bj±, cj±, dj±, gj± can also be defined. Now, using equations ()-()
in ()-() we get

σjyj– – ( + σj)yj + yj+ = hjhj+(Pjzj+ + Qjzj + Rjzj–), ()

σjzj– – ( + σj)zj + zj+ = hjhj+
[
Pj

(
a∗

j+z̄xj+ + b∗
j+zj+ + c∗

j+ȳxj+ + d∗
j+yj+ + g∗

j+
)

+ Qj(ajz̄xj + bjzj + cjȳxj + djyj + gj)

+ Rj
(
a∗

j–z̄xj– + b∗
j–zj– + c∗

j–ȳxj– + d∗
j–yj– + g∗

j–
)]

, ()

for j = , . . . , N – .

Finally, substituting ()-() in ()-(), we obtain the vector difference equation of
boundary value problem ()-() as follows:

[
sub

j sub
j

sub
j sub

j

][
yj–

zj–

]

+

[
diag

j diag
j

diag
j diag

j

][
yj

zj

]

+

[
sup

j sup
j

sup
j sup

j

][
yj+

zj+

]

=

[
φ

j

φ
j

]

,

where

sub
j = –σj, sub

j = h
j σjPj,

sub
j =

hjcj

(σj + )
[
(Pj – Qj)σ 

j – Rjσj( + σj)
]

+ h
j

[cxj (Pjσ

j + Rjσj( + σj))
( + σj)

+ Rjσjdj

]

+ h
j (–σjdxj Rj),

sub
j = –σj +

hjaj

(σj + )
[
(Pj – Qj)σ 

j – Rjσj( + σj)
]

+ h
j

[axj (Pjσ

j + Rjσj( + σj))
( + σj)

+ Rjσjbj

]

+ h
j (–σjbxj Rj),

diag
j = ( + σj), diag

j =
h

j σj(σj + )


,

diag
j =

hjcj

(σj + )
[
(–Pj + Rj)( + σj) + Qj

(
σ 

j – 
)]

+ h
j
[
cxj (–Pjσj – Rj)( + σj) + Qjσjdj

]
,

diag
j = ( + σj) +

hjaj

(σj + )
+

[
(–Pj + Rj)( + σj) + Qj

(
σ 

j – 
)]

+ h
j
[
axj (–Pjσj – Rj)( + σj) + Qjσjbj

]
,

sup
j = –, sup

j = h
j Rj,

sup
j =

hjcj

(σj + )
[
Pj(σj + ) – Rj + Qj

]

+ h
j

[cxj (Pj( + σj)σj + Rj)
( + σj)

+ Pjσjdj

]
+ h

j
(
σ 

j dxj Rj
)
,

sup
j = – +

hjaj

(σj + )
[
Pj(σj + ) – Rj + Qj

]



Mohanty et al. Advances in Difference Equations  (2017) 2017:327 Page 9 of 23

+ h
j

[axj (Pj( + σj)σj + Rj)
( + σj)

+ Pjσjbj

]
+ h

j
(
σ 

j bxj Pj
)
,

φ
j = , φ

j = –h
j
[
σj(Pj + Qj + Rj)gj + hjσj(Pjσj – Rj)gxj

]
. ()

Similarly, using ()-() and ()-() up to O(h
j ) terms in scheme () we get the

second difference scheme of higher order.

4.1 Application to sixth-order singular boundary value problem
Let us consider a linear singular sixth-order boundary value problem of the following form:

dy
dx = a(x)

dy
dx + b(x)

dy
dx

+ c(x)
dy
dx + d(x)

dy
dx + e(x)

dy
dx

+ f (x)y(x) + g(x),  < x ≤ b, ()

subject to boundary conditions:

y() = A,
d

dx y() = A,
d

dx y() = A,

y(b) = B,
d

dx y(b) = B,
d

dx y(b) = B,
()

where A, A, A, B, B, B are real constants and any one of the coefficients a(x), b(x),
c(x), d(x), e(x), f (x) or g(x) may be singular at x = . We may rewrite the problem ()-()
as a system of second-order boundary value problems:

dy
dx = z(x), ()

dz
dx = v(x), ()

dv
dx = a(x)

dv
dx

+ b(x)v(x) + c(x)
dz
dx

+ d(x)z(x) + e(x)
dy
dx

+ f (x)y(x) + g(x), ()

subject to

y() = A, z() = A, v() = A,

y(b) = B, z(b) = B, v(b) = B.
()

Applying the difference scheme () to the coupled second-order boundary value problem
()-(), we obtain the following difference scheme:

σjyj– – ( + σj)yj + yj+ = hjhj+(Pjzj+ + Qjzj + Rjzj–), ()

σjzj– – ( + σj)zj + zj+ = hjhj+(Pjvj+ + Qjvj + Rjvj–), ()

σjvj– – ( + σj)vj + vj+ = hjhj+
[
Pj(aj+v̄xj+ + bj+vj+ + cj+z̄xj+

+ dj+zj+ + ej+ȳxj+ + fj+yj+ + gj+)

+ Qj(ajv̄xj + bjvj + cjz̄xj + djzj + ejȳxj + fjyj + gj)
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+ Rj(aj–v̄xj– + bj–vj– + cj–z̄xj–

+ dj–zj– + ej–ȳxj– + fj–yj– + gj–)
]
, ()

where Pj, Qj, Rj are defined in Section . The boundary value problem has a singularity at
x = . Therefore, as in Section  we use the approximation ()-() in ()-() and we
get

σjyj– – ( + σj)yj + yj+ = hjhj+(Pjzj+ + Qjzj + Rjzj–), ()

σjzj– – ( + σj)zj + zj+ = hjhj+(Pjvj+ + Qjvj + Rjvj–), ()

σjvj– – ( + σj)vj + vj+ = hjhj+
[
Pj

(
a∗

j+v̄xj+ + b∗
j+vj+ + c∗

j+z̄xj+

+ d∗
j+zj+ + e∗

j+ȳxj+ + f ∗
j+yj+ + g∗

j+
)

+ Qj(ajv̄xj + bjvj + cjz̄xj + djzj + ejȳxj + fjyj + gj)

+ Rj
(
a∗

j–v̄xj– + b∗
j–vj– + c∗

j–z̄xj–

+ d∗
j–zj– + e∗

j–ȳxj– + f ∗
j–yj– + g∗

j–
)]

. ()

Finally, substituting ()-() in ()-(), we obtain the vector difference equation of
boundary value problem () as follows:

⎡

⎢
⎣

sub
j sub

j sub
j

sub
j sub

j sub
j

sub
j sub

j sub
j

⎤

⎥
⎦

⎡

⎢
⎣

yj–

zj–

vj–

⎤

⎥
⎦ +

⎡

⎢
⎣

diag
j diag

j diag
j

diag
j diag

j diag
j

diag
j diag

j diag
j

⎤

⎥
⎦

⎡

⎢
⎣

yj

zj

vj

⎤

⎥
⎦

+

⎡

⎢
⎣

sup
j sup

j sup
j

sup
j sup

j sup
j

sup
j sup

j sup
j

⎤

⎥
⎦

⎡

⎢
⎣

yj+

zj+

vj+

⎤

⎥
⎦ =

⎡

⎢
⎣

φ
j

φ
j

φ
j

⎤

⎥
⎦ , ()

where

⎧
⎪⎪⎨

⎪⎪⎩

sub
j = –σj, sub

j = h
j σjRj, sub

j = ,

sub
j = , sub

j = –σj, sub
j = h

j σjRj,

sub
j = C, sub

j = B, sub
j = –σj + A,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diag
j = ( + σj), diag

j =
h

j σj(σj+)
 , diag

j = ,

diag
j = , diag

j = ( + σj), diag
j =

h
j σj(σj+)

 ,

diag
j = C, diag

j = B, diag
j =  + σj + A,

⎧
⎪⎪⎨

⎪⎪⎩

sup
j = –, sup

j = h
j σ


j Pj, sup

j = ,

sup
j = , sup

j = –, sup
j = h

j σ

j Pj,

sup
j = C, sup

j = B, sup
j = – + A,

A =
hjaj

Sj

(
σ 

j α( + σj) + σj(σjβ + β) – σjγ
)

+ h
j

(axj

Sj

(
σ 

j α( + σj) + σjγ
)

+ σ 
j αbj

)

+ h
j

(axxj

Sj

(
σ 

j α( + σj) – σjγ
)

+ σ 
j αbxj

)
+ h

j

(
σ 

j α
bxxj



)
, ()
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A =
hjaj

Sj

(
–σ 

j α( + σj) + σj(σjβ + β)
(
σ 

j – 
)

+ σjγ ( + σj))

+ h
j

(axj ( + σj)

Sj

(
–σ 

j α – σjγ
)

+ σj(σjβ + β)bj

)

+ h
j

(axxj ( + σj)

Sj

(
–σ 

j α + γ σj
)
)

, ()

A =
hjaj

Sj

(
σ 

j α – σ 
j (σjβ + β) – σ 

j γ ( + σj)
)

+ h
j

(axj

Sj

(
σ 

j α + σ 
j γ ( + σj)

)
– σjγ bj

)

+ h
j

(axxj

Sj

(
σ 

j α – σ 
j γ ( + σj)

)
– σjγ bxj

)
+ h

j

(
σ 

j α
bxxj



)
, ()

B =
hjcj

Sj

(
σ 

j α( + σj) + σj(σjβ + β) – σjγ
)

+ h
j

( cxj

Sj

(
σ 

j α( + σj) + σjγ
)

+ σ 
j αdj

)

+ h
j

( cxxj

Sj

(
σ 

j α( + σj) – σjγ
)

+ σ 
j αdxj

)
+ h

j

(
σ 

j α
dxxj



)
, ()

B =
hjcj

Sj

(
–σ 

j α( + σj) + σj(σjβ + β)
(
σ 

j – 
)

+ σjγ ( + σj))

+ h
j

(cxj ( + σj)

Sj

(
–σ 

j α – σjγ
)

+ σj(σjβ + β)dj

)

+ h
j

(cxxj ( + σj)

Sj

(
–σ 

j α + γ σj
)
)

, ()

B =
hjcj

Sj

(
σ 

j α – σ 
j (σjβ + β) – σ 

j γ ( + σj)
)

+ h
j

(axj

Sj

(
σ 

j α + σ 
j γ ( + σj)

)
– σjγ dj

)

+ h
j

(axxj

Sj

(
σ 

j α – σ 
j γ ( + σj)

)
– σjγ dxj

)
+ h

j

(
σ 

j α
bxxj



)
, ()

C =
hjej

Sj

(
σ 

j α( + σj) + σj(σjβ + β) – σjγ
)

+ h
j

(exj

Sj

(
σ 

j α( + σj) + σjγ
)

+ σ 
j αfj

)

+ h
j

(exxj

Sj

(
σ 

j α( + σj) – σjγ
)

+ σ 
j αfxj

)
+ h

j

(
σ 

j α
fxxj



)
, ()

C =
hjej

Sj

(
–σ 

j α( + σj) + σj(σjβ + β)
(
σ 

j – 
)

+ σjγ ( + σj))

+ h
j

(exj ( + σj)

Sj

(
–σ 

j α – σjγ
)

+ σj(σjβ + β)fj

)

+ h
j

(exxj ( + σj)

Sj

(
–σ 

j α + γ σj
)
)

, ()

C =
hjej

Sj

(
σ 

j α – σ 
j (σjβ + β) – σ 

j γ ( + σj)
)

+ h
j

(exj

Sj

(
σ 

j α + σ 
j γ ( + σj)

)
– σjγ fj

)

+ h
j

(exxj

Sj

(
σ 

j α – σ 
j γ ( + σj)

)
– σjγ fxj

)
+ h

j

(
σ 

j α
fxxj



)
, ()

φ
j = , φ

j = ,

φ
j = –h

j σj

[
(
σjα + (σjβ + β) + γ

)
gj + hj

(
σ 

j α – γ
)
gxj + h

j
(
σ 

j α + γ
)gxxj



]
.

()
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5 Convergence analysis
We provide the vector convergence analysis for M = , i.e., a fourth-order non-linear
singular boundary value problem ()-(). We apply the difference scheme () to the
boundary value problem and obtain the following difference scheme:

σyj– – ( + σ )yj + yj+ = h
j [Pj ¯̄zj+ + Qj ¯̄zj + Rj ¯̄zj–] + T(hj), ()

σ zj– – ( + σ )zj + zj+ = h
j [Pj

¯̄Fj+ + Qj
¯̄Fj + Rj

¯̄Fj–] + T(hj), ()

where

Pj =
(σ 

j + σj – )


, Qj =
(σj + )(σ 

j + σj + )


, Rj =
σj( + σj – σ 

j )


.

Now, let ŷ = (ŷ, ŷ, . . . , ŷN–)T , ẑ = (ẑ, ẑ, . . . , ẑN–)T represent the exact solutions and y =
(y, y, . . . , yN–)T and z = (z, z, . . . , zN–)T be the approximate solutions. Then we define
the error as ŷ – y = (e,, e,, . . . , eN–,)T and ẑ – z = (e,, e,, . . . , eN–,)T . Next, we define
the following approximation:

ˆ̄Fj± = F̄j± + ej±,G
j± + ( ˆ̄yxj± – ȳxj± )H

j± + ej±,V 
j± + ( ˆ̄zxj± – z̄xj± )W 

j±, ()

ˆ̄̄Fj± = ¯̄Fj± + ej±,G
j± + ( ˆ̄̄yxj± – ¯̄yxj± )H

j± + ej±,V 
j± + ( ˆ̄̄zxj± – ¯̄zxj± )W 

j±, ()

ˆ̄Fj = F̄j + ej,G
j + ( ˆ̄yxj – ȳxj )H


j + ej,V 

j + ( ˆ̄zxj – z̄xj )W

j , ()

ˆ̄̄Fj = ¯̄Fj± + ej,G
j + ( ˆ̄̄yxj – ¯̄yxj )H


j + ej,V 

j + ( ˆ̄̄zxj – ¯̄zxj )W

j , ()

where

G
r =

∂F̄
∂yr

, H
r =

∂F̄
∂yxr

, V 
r =

∂F̄
∂zr

, W 
r =

∂F̄
∂zxr

, ()

G
r =

∂ ¯̄F
∂yr

, Hr
 =

∂ ¯̄F
∂yxr

, V 
r =

∂ ¯̄F
∂zr

, W 
r =

∂ ¯̄F
∂zxr

, r = j, j ± . ()

Further, a singularity is at x = . Therefore, we may define Gk
j±, k = , , as the following

approximation. Moreover, similar approximations can be also defined for Hk
j±, V k

j± and
W k

j±, k = , . We have

Gk
j+ = Gk

j + hjσGx
k
j +

(hjσ )


Gxx

k
j , ()

Gk
j– = Gk

j – hjGx
k
j +

h
j


Gxx

k
j . ()

Thus, as we use the approximations ()-(), ()-() in equations ()-(), we get
the error equation in matrix form as follows:

LE + T(hj) = , ()
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where E = ((e,, e,), (e,, e,), . . . , (eN–,, eN–,))T , T(hj) = ((T(h), T(h)), (T(h),
T(h)), . . . , (T(hN–), T(hN–)))T , and L = (Lk,j)N–

k,j= denote the block tri-diagonal matrix.
The block elements of L are as follows:

lj,j =

[
 + σ h

j Qj

B  + σ + B

]

, lj,j+ =

[
– h

j Pj

C – + C

]

, lj,j– =

[
–σ h

j Rj

A –σ + A

]

,

where

A = hj
(
–RjH

j – QjσβH
j
)

+
(
RjH

xj
+ RjG

j
)

+ h
j

(
Rj


H

xxj
– RjG

xj

)
+ h

j

(
Rj


G

xxj

)
, ()

A = hj
(
–RjW 

j – QjσβW 
j
)

+
(
RjW 

xj
+ RjV 

j
)

+ h
j

(
Rj


W 

xxj
– RjV 

xj
– RjβH

j + Qjσβγ H
j

)

+ h
j

(
Rj


V 

xxj
+ RjβH

j

)
, ()

B = hj

(–PjH
j

σ
+ RjH

j + Qj
σ β – β

σ
H

j

)

+ h
j
(
–PjH

xj
– RjH

xj
+ QjG

j
)

+ h
j

(
–Pjσ + Rj


H

xxj

)
, ()

B = hj

(–PjW 
j

σ
+ RjW 

j + Qj
σ β – β

σ
W 

j

)
+ h

j
(
–PjW 

xj
– RjW 

xj
+ QjV 

j
)

+ h
j

(
–Pjσ + Rj


W 

xxj

)
+ h

j (σαPj – Rjγ ) + h
j
(
H

j
(
σ αPj – Rjγ

))
, ()

C = hj

(
Pj + Qjβ

σ
H

j

)
+ h

j
(
PjHxj + PjG

j
)

+ h
j Pjσ

(H
xxj


+ G

xj

)
+ h

j

(Pjσ
G

xxj



)
, ()

C = hj

(
Pj + Qjβ

σ
W 

j

)
+ h

j
(
PjWxj + PjV 

j
)

+ h
j

(
Pjσ

(W 
xxj


+ V 

xj
– QjσαβH

j + σβPjH
xj

))

+ h
j

(Pjσ
V 

xxj


+ Pjσ

βH
xj

)
. ()

Further, for some K, K > , we assume

K = max
(∣∣G

j
∣
∣,

∣
∣H

j
∣
∣,

∣
∣G

xj

∣
∣,

∣
∣H

xj

∣
∣,

∣
∣G

xxj
|, |H

xxj

∣
∣), ()

K = max
(∣∣V 

j
∣
∣,

∣
∣W 

j
∣
∣,

∣
∣V 

xj

∣
∣,

∣
∣W 

xj

∣
∣,

∣
∣V 

xxj
|, |W 

xxj

∣
∣). ()
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Then, using lj,j+ lj,j– and ()-(), we get

‖ supj ‖∞ ≤ max
≤j≤N–

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 + h
j Pj,

 + hj((
Pj+Qjβ

σ
) + hjPj + h

j
Pjσ

 + h
j

Pjσ

j

 )(|K| + |K|)
+ h

j (|Pjβ – Qσjαβ| + Pjσ

j β)|K|,

‖ subj ‖∞ ≤ max
≤j≤N–

⎧
⎪⎪⎨

⎪⎪⎩

σ + h
j Rj,

σ + hj((Rj + Qjσβ) + hjRj + h
j

Rj
 + h

j
Rj
 )(|K| + |K|)

+ h
j (|Rjβ – Qσjγβ| + Rjβ)|K|.

Thus for sufficiently small hj, we get ‖ subj ‖∞ ≤ σ and ‖ supj ‖∞ ≤ . Hence, L is irre-
ducible. Next we prove that L is monotone. We let the sum of the elements of the kth row
of L be SUMk . Then

SUMk = σ +
h

j


(Pj + Qj), k = , ()

SUMk = σ + hjr,j + h
j
(
(Pj + Qj)

(
G

j + V 
j
)

– R
(
H

xj
+ W 

xj

))
+ O

(
h

j
)
, k = , ()

SUMk = h
j (Pj + Qj + Rj), k = , , . . . , N – , ()

SUMk = h
j (Pj + Qj + Rj)

(
G

j + V 
j
)
, k = , , . . . , N – , ()

SUMk =  + h
j (Rj + Qj), k = N – , ()

SUMk =  + hj
(
(r,j) + hj

(
(Rj + Qj)

(
G

j + V 
j
)

– Pj
(
H

xj
+ W 

xj

)))
+ O

(
h

j
)
, k = N – , ()

where

r,j = (Rj + Qjσβ)
(
H

j + W 
j
)
,

r,j =
–Pj – Qjβ

σ

(
H

j + W 
j
)
.

()

Now, using ()-(), we have

|r,j| ≤
∣∣(Rj + Qjσβ)

∣∣(|K| + |K|
)
, |r,j| =

∣
∣∣
∣
Pj + Qjβ

σ

∣
∣∣
∣
(|K| + |K|

)
. ()

Finally, for sufficiently small hj and ()-(), we can easily prove that L is monotone.
Therefore, L– exists and L– ≥ . Hence by () we have

‖E‖ =
∥
∥L–∥∥‖T‖. ()

Now for sufficiently small hj and by ()-() we can say that

SUMk >

⎧
⎨

⎩
h

j (P + Q), k = ,

h
j ((P + Q)(|K| + |K|)), k = ,

()
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SUMk ≥
⎧
⎨

⎩
h

j (P + Q + R), k = , , . . . , N – ,

h
j (P + Q + R)(|K| + |K|), k = , , . . . , N – ,

()

SUMk >

⎧
⎨

⎩
h

j (R + Q), k = N – ,

h
j ((R + Q)(|K| + |K|)), k = N – .

()

Since σ 
=  we can say that

SUMk > max
[
h

j (P + Q), h
j
(
(P + Q)

(|K| + |K|
))]

= h
j
(
(P + Q)

(|K| + |K|
))

, for k = , , ()

SUMk ≥ max
[
h

j (P + Q + R), h
j (P + Q + R)

(|K| + |K|
)]

= h
j (P + Q + R)

(|K| + |K|
)
, for k = , , . . . , N – , ()

SUMk > max
[
h

j (R + Q), h
j (R + Q)

(|K| + |K|
)]

= h
j
(
(R + Q)

(|K| + |K|
))

, for k = N – , N – . ()

Let L–
i,k be the (i, k)th element of L–, then by the theory of matrices [] for i = , , . . . , N –

L–
i,k ≤ 

SUMk
. ()

By using ()-(), we have


SUMk

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


h

j (P+Q)(|K|+|K|) , k = , ,


h

j (P+Q+R)(|K|+|K|) , k = , , , . . . , N – ,


h

j (R+Q)(|K|+|K|) , k = N – , N – .

()

Now let us define

∥∥L–
i,k

∥∥ = max
≤i≤N–

N–∑

k=

∣∣L–
i,k

∣∣ and ‖Tj‖ = max
≤j≤N–

N–∑

j=

∣∣Tj(hj)
∣∣. ()

Therefore, as discussed in Section  in scheme (), Tj(hj) = O(h
j ) and using (), ()-

() we get

‖E‖ ≤ 
h

j (|K| + |K|)
[


(P + Q)

+


(P + Q + R)
+


(R + Q)

]
O

(
h

j
)

= O
(
h

j
)
. ()

Hence, the third-order vector convergence of scheme () follows. Along similar lines, we
can prove the second-order vector convergence of scheme () for a system of second-
order boundary value problems ().

Theorem  The scheme () for the numerical solution of system of non-linear singular
boundary value problem () with sufficiently small hj and σ 
=  has third-order convergence
under appropriate conditions.
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6 Numerical illustration
To illustrate the comparative performance of our method with existing methods, we solved
the following eight problems. The root mean square errors (RMSs) in the case of a vari-
able mesh, the maximum absolute error (MA) and the relative error (RE) for a uniform
mesh are tabulated in Tables -. Let h = (σ–)

(σN –) , σ 
= . Therefore, the rest of the hj can be
obtained: hj+ = σhj, j = , . . . , N – . In the case of the presence of a boundary layer near
the left or right end of the domain, take

h =

⎧
⎨

⎩

σ–
σN – , σ > ,
–σ

–σN , σ < .

This ensures the presence of mesh points in the boundary layer region near the left or right
end of the interval. The linear system of difference equations have been solved by the block
Gauss elimination method and the non-linear system of difference equations by the block
Newton’s method in which we have considered y =  as the initial approximation. Also,
without loss of generality, throughout we will use θj+ = θj = θ . This does not affect the
accuracy of the scheme. All calculations have been done in Matlab .

Table 1 Example 6.1

N RMS error MA error
O(h2

j ) method O(h3
j ) method O(h4) method Ramadan [31]

8 3.6416e–03 2.5016e–05 2.0053e–06 3.010 e–05
16 1.4662e–03 5.5065e–06 1.2888e–07 1.8318 e–06
32 8.1036e–04 2.2304e–06 8.1743e–09 1.1179e–07

Table 2 Example 6.2

N RMS error MA error
O(h2

j ) method O(h3
j ) method O(h4) method Akram et al. [21] Siddiqi et al. [32]

8 3.6473e–03 2.4393e–05 1.9706e–06 1.5379 e–06 8.1514e–05
16 1.4829e–03 5.3686e–06 1.2665e–07 1.9790 e–07 2.1052 e–05
32 8.2427e–04 2.1736e–06 8.0345e–09 4.0596 e–08 5.3084 e–06

Table 3 Example 6.3

N RMS error MA error
O(h2

j ) method O(h3
j ) method x O(h4) method Wazwaz [20]

8 2.3784e–05 1.3919e–07 0.2 5.95 e–09 1.3e–08
16 1.0736e–05 3.1300e–08 0.4 8.06 e–09 2.3e–08
32 6.2320e–06 1.2854e–08 0.6 7.26e–09 2.4e–08
64 4.2796e–06 8.0985e–09 0.8 4.34e–09 1.7e–08

Table 4 Example 6.4

N RMS error MA error
O(h2

j ) method O(h3
j ) method O(h4) method Arshad et al. [33]

8 2.6861e–04 2.0392e–06 1.9385e–07 7.02e–06
16 9.2450e–05 4.6577e–07 1.2204e–08 4.35e–06
32 5.2686e–05 2.2137e–07 7.6317e–10 7.87e–07
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Table 5 Example 6.5

N RMS error RE error
O(h2

j ) method O(h3
j ) method x O(h4) method Fazhan et al. [34]

40 9.6364e–02 8.3838e–03 0.40 2.9483e–05 7.5000e–04
80 6.8221e–02 5.9544e–03 0.56 2.9671e–05 7.5000e–04
160 4.8385e–02 4.2234e–03 0.72 2.9898e–05 7.2000e–04

Table 6 Example 6.6

N RMS error MA error
O(h2

j ) method O(h3
j ) method O(h4) method COC∗

8 9.9887e–05 1.3841e–05 3.0756e–05 -
16 6.1365e–05 1.7426e–06 1.8795e–06 4.0324
32 4.3896e–05 5.1946e–07 1.1320e–07 4.0534
64 3.1303e–05 3.1459e–07 6.8994e–09 4.0362

Table 7 Example 6.7

N RMS error MA error
O(h2

j ) method O(h3
j ) method O(h4) method COC∗

8 3.4729e–04 1.0887e–05 2.4630e–05 -
16 2.3177e–05 2.9061e–06 1.8929e–06 3.7017
32 3.8023e–05 1.4735e–06 1.3820e–07 3.7757
64 4.1196e–05 1.2815e–06 9.9099e–09 3.8018

Table 8 Example 6.8

N RMS error MA error
O(h2

j ) method O(h3
j ) method O(h4) method COC∗

8 2.8679e–03 1.8940e–05 2.5391e–06 -
16 1.1316e–03 3.3587e–06 1.6213e–07 3.9691
32 7.0535e–04 1.3791e–06 1.0187e–08 3.9923
64 6.4066e–04 1.1509e–06 6.3748e–10 3.9982

Example . Consider the fourth-order linear boundary value problem of the form []

dy
dx (x) – y(x) = –x cos(x) –  sin(x),  ≤ x ≤ ,

y() = y() = ,
d

dx y() = ,
d

dx y() =  sin() +  cos().

The exact solution is given by y(x) = (x – ) sin(x). The RMS errors for a fixed value
σ = . and MA error for σ =  are tabulated in Table . The graph of the exact solution
versus the approximate solution using the fourth-order method for N =  is given by
Figure .

Example . We consider the sixth-order linear boundary value problem [, ]

(
d

dx + 
)

y(x) = 
(
x cos(x) +  sin(x)

)
,  ≤ x ≤ ,

y() = y() = ,
d

dx y() = ,
d

dx y() =  sin() +  cos(),
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Figure 1 Graph of the exact solution
y(x) = (x2 – 1) sin(x) versus the approximate
solution in fourth-order uniform mesh method
for N = 32 and σ = 1 for Example 6.1.

Figure 2 Graph of the exact solution
y(x) = (x2 – 1) sin(x) versus the approximate
solution in fourth-order uniform mesh method
for N = 32 and σ = 1 for Example 6.2.

d

dx y() = ,
d

dx y() = – sin() –  cos().

The exact solution is given by y(x) = (x –) sin(x). The RMS errors for a fixed value σ = .
and MA error for σ =  are tabulated in Table . The graph of the exact solution versus the
approximate solution using the fourth-order method for N =  is given by Figure .

Example . Consider the fourth-order non-linear boundary value problem []:

dy
dx (x) = – exp

(
–y(x)

)
,  ≤ x ≤  – e,

y() = , y( – e) = ln(),
d

dx y() = –

e ,

d

dx y( – e) = –



.

The exact solution is given by y(x) = ln(e + x). The RMS errors for a fixed value σ = .
and MA error for σ =  are tabulated in Table . The graph of the exact solution versus the
approximate solution using the fourth-order method for N =  is given by Figure .

Example . Consider the sixth-order non-linear boundary value problem []:

dy
dx = exp(–x)y,  ≤ x ≤ ,

y() =
d

dx y() =
d

dx y() = , y() =
d

dx y() =
d

dx y() = e.
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Figure 3 Graph of the exact solution
y(x) = ln(e + x) versus the approximate solution
in fourth-order uniform mesh method for N = 64
and σ = 1 for Example 6.3.

Figure 4 Graph of the exact solution
y(x) = exp(x) versus the approximate solution in
fourth-order uniform mesh method for N = 32
and σ = 1 for Example 6.4.

The exact solution is given by y(x) = exp(x). The RMS errors for a fixed value σ = .
and MA error for σ =  are tabulated in Table . The graph of the exact solution versus
the approximate solution using the fourth-order method for N =  is given by Figure .

Example . Consider a sixth-order singular boundary value problem of the form []:

x( – x)
dy
dx + x

dy
dx +

(
 + exp(x)

)dy
dx +

(
 + exp(x)

) dy
dx + xy = f (x),  < x < ,

y() = y() = ,
d

dx y() =
d

dx y() = ,
d

dx y() =
d

dx y() = ,

where

f (x) = πx cos(πx) +
(
–
(
 + exp(x)

)
π +

(
 + exp(x)

)
π + x + π(x – )x

)
sin(πx).

The exact solution is given by y(x) = sin(πx). The RMS errors for a fixed value σ = .
and RE error for σ =  are tabulated in Table . The graph of the exact solution versus the
approximate solution using the fourth-order method for N =  is given by Figure .

Example . Consider a fourth-order non-linear singular boundary value problem of the
form

(
d

dx +

x

d

dx

)
y = y +

cos(x)
x

(
x sin(x) – 

)
,  < x ≤ .
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Figure 5 Graph of the exact solution
y(x) = sin(πx) versus the approximate solution in
fourth-order uniform mesh method for N = 160
and σ = 1 for Example 6.5.

Figure 6 Graph of the exact solution
y(x) = sin(x) versus the approximate solution in
fourth-order uniform mesh method for N = 64
and σ = 1 for Example 6.6.

The exact solution is given by y(x) = sin(x). The boundary conditions are obtained from the
exact solution by a test procedure. The RMS errors for a fixed value σ = . and MA error
for σ =  are tabulated in Table . The graph of the exact solution versus the approximate
solution using the fourth-order method for N =  is given by Figure .

Example . We consider a sixth-order non-linear singular boundary value problem of
the form

(
d

dx +

x

d

dx + 
)

y = ey + ex
(

 + x
x

)
,  < x ≤ .

The exact solution is given by y(x) = exp(x). The boundary conditions are obtained from
the exact solution by a test procedure. The RMS errors for a fixed value σ = . and MA
error for σ =  are tabulated in Table . The graph of the exact solution versus the approx-
imate solution using the fourth-order method for N =  is given by Figure .

Example . We consider a system of second-order boundary value problem of the form:

dy
dx = y

dz
dx

+ z
dy
dx

+ f (x),  ≤ x ≤ ,

dz
dx = z

dz
dx

+ y
dy
dx

+ g(x).

The exact solution is given by y(x) = sinh(x), z(x) = cosh(x). The boundary conditions are
obtained from the exact solution by a test procedure. The RMS errors for a fixed value
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Figure 7 Graph of the exact solution
y(x) = exp(x) versus the approximate solution in
fourth-order uniform mesh method for N = 64
and σ = 1 for Example 6.7.

Figure 8 Graph of the exact solution
y(x) = sinh(x) versus the approximate solution in
fourth-order uniform mesh method for N = 64
and σ = 1 for Example 6.8.

σ = . and MA error for σ =  are tabulated in Table . The graph of the exact solution
versus the approximate solution using the fourth-order method for N =  is given by
Figure .

7 Conclusion
We derived second- as well as third-order variable-mesh schemes for solving linear, non-
linear even-order cases and systems of second-order boundary value problems. Although,
in this paper, only fourth-order and sixth-order non-linear and linear singular boundary
value problems are considered, the method is general enough to implement in the case of
higher even-order linear and non-linear singular boundary value problems.

Tables - shows the presence of refinement in results when compared with other lin-
ear and non-linear boundary value problems solved by computational methods using the
quintic non-polynomial spline, a septic non-polynomial and a parametric spline, a sex-
tic spline, and a modified Adomian decomposition method. In Table  results have been
compared with solutions derived analytically by reproducing kernel method []. Com-
putationally our methods seem to be more viable due to the usage of only three grid points
at a time which leads to solving of a tri-diagonal matrix. However, in the case of the quin-
tic, the sextic and septic splines a higher number of grid points are required, which re-
sults in pentadiagonal or septadiagonal matrices. Also, in the end we have solved fourth-
and sixth-order non-linear singular and a system of second-order boundary value prob-
lems. As per the literature available, such a class of boundary value problems has not been
solved so far. Therefore, due to the unavailability of any prior results we were unable to
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present a comparative study. Hence we have compared our own results in Table , ,  and
have also provided the computational order of convergence (COC∗) for the uniform mesh
method. Our methods are also applicable to problems in cartesian as well as polar coor-
dinates with minor modifications and even higher-order singularly perturbed boundary
value problems can be solved easily due to the use of a variable mesh.
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