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Abstract
This paper is concerned with a class of neutral Nicholson blowflies models with
leakage delays and linear harvesting terms. Under appropriate conditions, some
criteria are established for the existence and global exponential stability of almost
periodic solutions for the model by applying exponential dichotomy theory. An
example is provided to illustrate the effectiveness of the results.
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1 Introduction
The delay differential equation model

x′(t) = –δx(t) + px(t – τ )e–γ x(t–τ ) (.)

and its analogous models have been proposed by Nicholson [] and Gurney et al. [], to
describe the dynamics of Nicholson’s blowflies model. In [], x(t) is the size of the popula-
tion at time t; p is the maximum per capital daily egg production, 

γ
is the size at which the

population reproduces at its maximum rate, δ is the per capita daily adult death rate, and τ

is the generation time. Since then, Nicholson’s blowflies model and its modifications have
attracted much attention, some researchers obtained numerous interesting results such
as permanence, extinction and stability [–].

It is well known that periodically and almost periodically environmental variabilities
are important foundations to be considered for the theory of natural selection. Compared
with periodic effects, almost functional differential equations are more frequent in some
ecological models. Therefore, in recent years, there has been considerable interest in the
existence and stability of almost periodic type solutions for Nicholson’s blowflies models
[–].

According to the fact that the harvests of population species commonly appear in fish-
ery, forestry and wildlife management, the study of population dynamics with harvesting is
an important subject in mathematical bioeconomics [–]. Recently, assuming that the
harvesting function is a function of the delayed estimate of the true population, Berezan-
sky et al. [] studied the following Nicholson blowflies model with a linear harvesting
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term:

x′(t) = –δx(t) + Px(t – τ )e–γ x(t–τ ) – Hx(t – σ ), δ, p, τ , H ,σ ∈ (, +∞). (.)

Meanwhile, an open problem of linear harvest terms was put forward in []. Since then,
there have been some interesting results about the influence of dynamic models with linear
terms.

In [], Liu and Meng proposed a class of non-autonomous Nicholson-type delay sys-
tems with linear harvesting terms, some criteria were established to ensure the existence
and exponential convergence of the almost periodic solution of Nicholson-type systems.
Recently, Wang [] investigated the existence and convergence of positive almost periodic
solutions of the following Nicholson blowflies model with path structure and multiple lin-
ear harvesting terms:

x′
i(t) = –αi(t)xi(t) +

n∑

j=

βij(t)xj(t) +
m∑

j=

cij(t)xi
(
t – τij(t)

)
e–γij(t)xi(t–τij(t))

–
l∑

j=

Hij(t)xi
(
t – σij(t)

)
, i = , , . . . , n. (.)

Some researchers focus on typical time delays named leakage delays which may exist in
many real systems and also have a great impact on the dynamic systems. Recently, neutral
type time delay has drawn much attention [, ], however, to the best of our knowl-
edge, there are few papers published on neutral Nicholson’s blowflies model with leakage
delays and linear harvesting terms. Thus, it is necessary and important to consider the
existence and stability of almost periodic solutions to neutral Nicholson’s blowflies mod-
els with leakage delays and linear harvesting terms. The main purpose of this paper is to
study the existence and stability of almost periodic solutions of the following neutral delay
Nicholson blowflies models with leakage delays and linear harvesting terms:

x′
i(t) = –αi(t)xi

(
t – ai(t)

)
+

n∑

j=

βij(t)xj
(
t – bij(t)

)
+

n∑

j=

δij(t)x′
j
(
t – ηij(t)

)

+
m∑

j=

cij(t)xj
(
t – τij(t)

)
e–γij(t)xi(t–τij(t)) –

l∑

j=

Hij(t)xi
(
t – σij(t)

)
. (.)

For equation (.), we assume that the following assumption holds:
(H) αi, ai,βij, bij, δij,ηij, cik , τik ,γik , Hik ,σik : R → R+ = [, +∞) are almost periodic

functions and i, j = , , . . . , n; k = , , . . . , m; k = , , . . . , l. To simplify the
notation and without loss of generality, for all t ∈ R and i = , , . . . , n, we will
assume βii =  and δii = .

For convenience, we set

f + = sup
t∈R

f (t), f – = inf
t∈R

f (t),

where f is a bounded continuous function on R.
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By applying the exponential dichotomy of linear differential equations and some analysis
techniques, we investigate the existence and global exponential stability of the almost peri-
odic solutions to equation (.). Let X = {φ = (ϕ,ϕ, . . . ,ϕn)T |ϕi ∈ C(R, R+),ϕi are almost
periodic functions on R, i = , , . . . , n} with the norm ‖φ‖ = max{|ϕ|, |ϕ′|}, where |ϕ| =
max≤i≤n ϕ+

i , |ϕ′| = max≤i≤n(ϕ′
i)+ and C(R, R+) is the collection of continuous functions

with continuous derivatives on R. It is easy to see that X is a Banach space. Throughout
this paper, a fixed initial time t ∈ R is chosen and the following initial value of equation
(.) is satisfied:

xi(t + s) = ϕi(s), s ∈ [–r, ], i = , , . . . , n, (.)

where each ϕi is a nonnegative function on [–r, ] and ϕi() > ,

r = max{ai, bij,ηij, τik ,σik : i, j = , , . . . , n; k = , , . . . , m; k = , , . . . , l}.

The rest of the paper is organized as follows. In Section , some definitions and lemmas
which play important roles in proofs of the results will be introduced. In Section , some
criteria for the existence and stability of almost periodic solutions to equation (.) are
established. An example is provided to illustrate the effectiveness of the proposed results
in Section .

2 Preliminary
Now let us recall the following definitions and lemmas, which will be useful in proving the
main results.

Definition . ([, ]) A function f : R → Rn is said to be almost periodic, if for any
ε > , there is a constant l(ε) > , such that in any interval of length l(ε) there exists τ such
that the inequality

∥∥f (t + τ ) – f (t)
∥∥ < ε

is satisfied for all t ∈ R. The number τ is called an ε-translation number of f (t).

Definition . ([, ]) Let f (t) : R → Rn is continuously differentiable in t, u(t) and
u′(t) are almost periodic on R, then u(t) is said to be a continuously differentiable almost
periodic function.

Definition . ([, ]) Let x ∈ Rn and Q(t) be a n×n continuously matrix defined on R.
The linear system

x′(t) = A(t)x(t) (.)

is said to admit an exponential dichotomy on R if there exist constants λ, k, projection P
and the fundamental solution matrix X(t) of equation (.) satisfying

∥∥X(t)PX–(s)
∥∥ ≤ λe–k(t–s), t ≥ s;

∥∥X(t)(I – P)X–(s)
∥∥ ≤ λe–k(s–t), t ≤ s.
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Lemma . ([, ]) If the linear system (.) admits an exponential dichotomy, the al-
most periodic system

x′(t) = A(t)x(t) + g(t)

has a unique almost periodic solution x(t), and

x(t) =
∫ t

–∞
X(t)PX–(s)f (s) ds –

∫ ∞

t
X(t)(I – P)X–(s)f (s) ds,

where X(t) is the fundamental solution matrix of equation (.).

Lemma . ([, ]) Assume ci(t) (i = , , . . . , n) are almost periodic on R, and

M[ci] = lim
T→+∞


T

∫ t+T

t
ci(s) ds > , i = , , . . . , n.

Then the linear system x′ = C(t)x(t) admits an exponential dichotomy on R, where C(t) =
diag(–c(t), –c(t), . . . , –cn(t)).

3 Main results
In this section, we will state and prove our main results concerning the existence and
stability of almost solutions of equation (.). The following assumptions are satisfied:

(H) α–
i > , i = , , . . . , n.

(H) There exists a positive constant L satisfying γ +
ij L < .

(H) M := max≤i≤n{i+�i
α–

i
, ( + a+

i
α–

i
)(i + �i)} < , where i = a+

i α+
i +

∑n
j= β+

ij + δ+
ij ,

�i =
∑m

j= c+
ij +

∑l
j= H+

ij .

Theorem . Assume that the conditions (H)-(H) hold. Then equation (.) has a
unique almost solution in X = {φ ∈ X|‖φ‖ ≤ L,φ(t) = (ϕ(t),ϕ(t), . . . ,ϕn(t))T }.

Proof Rewrite equation (.) in the form

x′
i(t) = –αi(t)xi(t) + αi(t)

∫ t

t–ai(t)
x′

i(s) ds

+
n∑

j=

βij(t)xj
(
t – bij(t)

)
+

n∑

j=

δij(t)x′
j
(
t – ηij(t)

)

+
m∑

j=

cij(t)xi
(
t – τij(t)

)
e–γij(t)xi(t–τij(t))

–
l∑

j=

Hij(t)xi
(
t – σij(t)

)
, i = , , . . . , n. (.)

For any given φ ∈ X, we consider the following auxiliary equation:

x′
i(t) = –αi(t)xi(t) + fi(t,ϕ) + gi(t,ϕ), (.)
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where i = , , . . . , n,

fi(t,ϕ) = αi(t)
∫ t

t–ai(t)
ϕ′

i(s) ds +
n∑

j=

βij(t)ϕj
(
t – bij(t)

)

+
n∑

j=

δij(t)ϕ′
j
(
t – ηij(t)

)
, (.)

and

gi(t,ϕ) =
m∑

j=

cij(t)ϕi
(
t – τij(t)

)
e–γij(t)ϕi(t–τij(t)) –

l∑

j=

Hij(t)ϕi
(
t – σij(t)

)
. (.)

Since α–
i >  and due to Lemma ., the linear system

x′
i(t) = –αi(t)xi(t), i = , , . . . , n,

admits an exponential dichotomy on R. Therefore, by Lemma ., we see that system (.)
has a unique almost periodic solution as follows:

xϕ
i =

∫ t

–∞
e–

∫ t
s αi(u) du(fi(s,ϕ) + gi(s,ϕ)

)
ds, i = , , . . . , n. (.)

Define the following nonlinear operator:

� : X → X, (ϕ,ϕ, . . . ,ϕn)T → (
xϕ

 , xϕ
 , . . . , xϕ

n
)T , (.)

where xϕ
i (i = , , . . . , n) are given by equation (.). We will prove that the operator � is a

contraction mapping.
Firstly, for any φ ∈ X, we show that �φ ∈ X. From (.), for i = , , . . . , n, we get

∣∣fi(t,ϕ)
∣∣ =

∣∣∣∣∣αi(t)
∫ t

t–ai(t)
ϕ′

i(s) ds +
n∑

j=

βij(t)ϕj
(
t – bij(t)

)
+

n∑

j=

δij(t)ϕ′
j
(
t – ηij(t)

)
∣∣∣∣∣

≤ αi(t)
∫ t

t–ai(t)

∣∣ϕ′
i(s)

∣∣ds +
n∑

j=

βij(t)
∣∣ϕj

(
t – bij(t)

)∣∣

+
n∑

j=

δij(t)
∣∣ϕ′

j
(
t – ηij(t)

)∣∣

≤ α+
i α+

i
∣∣ϕ′∣∣

 +
n∑

j=

β+
ij |ϕ| +

n∑

j=

δ+
ij
∣∣ϕ′∣∣



≤
(

α+
i α+

i +
n∑

j=

β+
ij +

n∑

j=

δ+
ij

)
‖ϕ‖

≤
(

α+
i α+

i +
n∑

j=

β+
ij +

n∑

j=

δ+
ij

)
L = iL. (.)
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Since ϕi ∈ C(R, R+) (i = , , . . . , n), similarly, we obtain

∣∣gi(t,ϕ)
∣∣ ≤

m∑

j=

cij(t)ϕi
(
t – τij(t)

)
e–γ –

ij ϕi(t–τij(t)) +
l∑

j=

Hij(t)ϕi
(
t – σij(t)

)

≤
m∑

j=

cij(t)ϕi
(
t – τij(t)

)
+

l∑

j=

H+
ij ‖ϕ‖

≤
( m∑

j=

c+
ij +

l∑

j=

H+
ij

)
‖ϕ‖

≤
( m∑

j=

c+
ij +

l∑

j=

H+
ij

)
L = �iL, i = , , . . . , n. (.)

By (.)-(.), we get

∣∣�φ(t)
∣∣ ≤

∣∣∣∣
∫ t

–∞
e–

∫ t
s αi(u) dufi(s,ϕ) ds

∣∣∣∣ +
∣∣∣∣
∫ t

–∞
e–

∫ t
s αi(u) dugi(s,ϕ) ds

∣∣∣∣

≤
∫ t

–∞
e–

∫ t
s αi(u) du∣∣fi(s,ϕ) ds

∣∣ +
∫ t

–∞
e–

∫ t
s αi(u) du∣∣gi(s,ϕ) ds

∣∣

≤
∫ t

–∞
e–

∫ t
s αi(u) duiL ds +

∫ t

–∞
e–

∫ t
s αi(u) du�iL ds

≤ iL
α–

i
+

�iL
α–

i
=

i + �i

α–
i

L, i = , , . . . , n. (.)

Similarly, by (.)-(.), we have

∣∣(�φ)′(t)
∣∣ ≤

∣∣∣∣

(∫ t

–∞
e–

∫ t
s αi(u) dufi(s,ϕ) ds

)′∣∣∣∣ +
∣∣∣∣

(∫ t

–∞
e–

∫ t
s αi(u) dugi(s,ϕ) ds

)′∣∣∣∣

≤
∣∣∣∣fi(t,ϕ) – αi(t)

∫ t

–∞
e–

∫ t
s αi(u) dufi(s,ϕ) ds

∣∣∣∣

+
∣∣∣∣gi(t,ϕ) – αi(t)

∫ t

–∞
e–

∫ t
s αi(u) dugi(s,ϕ) ds

∣∣∣∣

≤ ∣∣fi(t,ϕ)
∣∣ + αi(t)

∫ t

–∞
e–

∫ t
s αi(u) du∣∣fi(s,ϕ) ds

∣∣

+
∣∣gi(t,ϕ)

∣∣ + αi(t)
∫ t

–∞
e–

∫ t
s αi(u) du∣∣gi(s,ϕ) ds

∣∣

≤ iL +
α+

i
α–

i
iL + �iL +

α+
i

α–
i
�iL

=
(

 +
α+

i
α–

i

)
(i + �i)L, i = , , . . . , n. (.)

It follows from (H), (.) and (.) that

‖�φ‖ = max
≤i≤n

{
i + �i

α–
i

L,
(

 +
α+

i
α–

i

)
(i + �i)L

}
≤ L,

therefore, �φ ∈ X. Next, we show that � is a contraction.
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For φ = (ϕ,ϕ, . . . ,ϕn)T , φ̃ = (ϕ̃, ϕ̃, . . . , ϕ̃n)T ∈ X, we have

∣∣fi(s,ϕ) – fi(s, ϕ̃)
∣∣

=

∣∣∣∣∣αi(s)
∫ s

s–ai(s)

(
ϕ′

i(u) – ϕ̃′
i(u)

)
du +

n∑

j=

βij(s)
(
ϕj

(
s – bij(s)

)
– ϕ̃j

(
s – bij(s)

))

+
n∑

j=

δij(s)
(
ϕ′

j
(
s – ηij(s)

)
– ϕ̃′

j
(
s – ηij(s)

))
∣∣∣∣∣

≤ αi(s)
∫ s

s–ai(s)

∣∣ϕ′
i(u) – ϕ̃′

i(u)
∣∣du +

n∑

j=

βij(s)
∣∣ϕj

(
s – bij(s)

)
– ϕ̃j

(
s – bij(s)

)∣∣

+
n∑

j=

δij(s)
∣∣ϕ′

j
(
s – ηij(s)

)
– ϕ̃′

j
(
s – ηij(s)

)∣∣

≤ α+
i a+

i ‖ϕ – ϕ̃‖ +
n∑

j=

β+
ij ‖ϕ – ϕ̃‖ +

n∑

j=

δ+
ij ‖ϕ – ϕ̃‖

=

(
α+

i a+
i +

n∑

j=

β+
ij +

n∑

j=

δ+
ij

)
‖ϕ – ϕ̃‖

= i‖ϕ – ϕ̃‖, i = , , . . . , n. (.)

For  < rL < , and |xe–rx – ye–ry| = e–rξ | – rξ ||x – y| = ( – rξ )e–rξ |x – y| ≤ |x – y|, where ξ

is between in x and y.
Since γ +

ij L < , we obtain

∣∣gi(s,ϕ) – gi(s, ϕ̃)
∣∣

=

∣∣∣∣∣

m∑

j=

cij(s)
(
ϕi

(
s – τij(s)

)
e–γij(s)ϕi(s–τij(s)) – ϕ̃i

(
s – τij(s)

)
e–γij(s)ϕ̃i(s–τij(s)))

+
l∑

j=

Hij(s)
(
ϕi

(
s – σij(s)

)
– ϕ̃i

(
s – σij(s)

))
∣∣∣∣∣

≤
m∑

j=

cij(s)
∣∣ϕi

(
s – τij(s)

)
e–γij(s)ϕi(s–τij(s)) – ϕ̃i

(
s – τij(s)

)
e–γij(s)ϕ̃i(s–τij(s))∣∣

+
l∑

j=

Hij(s)
∣∣ϕi

(
s – σij(s)

)
– ϕ̃i

(
s – σij(s)

)∣∣

≤
m∑

j=

c+
ij‖ϕ – ϕ̃‖ +

l∑

j=

H+
ij ‖ϕ – ϕ̃‖

=

( m∑

j=

c+
ij +

l∑

j=

H+
ij

)
‖ϕ – ϕ̃‖

= �i‖ϕ – ϕ̃‖, i = , , . . . , n. (.)
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By (H), (.)-(.) and (.)-(.), we have

∣∣(�φ – �φ̃)(t)
∣∣

≤
∣∣∣∣
∫ t

–∞
e–

∫ t
s αi(u) du(fi(s,ϕ) – fi(s, ϕ̃)

)
ds

∣∣∣∣

+
∣∣∣∣
∫ t

–∞
e–

∫ t
s αi(u) du(gi(s,ϕ) – gi(s, ϕ̃)

)
ds

∣∣∣∣

≤
∫ t

–∞
e–

∫ t
s αi(u) du∣∣fi(s,ϕ) – fi(s, ϕ̃)

∣∣ds +
∫ t

–∞
e–

∫ t
s αi(u) du∣∣gi(s,ϕ) – gi(s, ϕ̃)

∣∣ds

≤
∫ t

–∞
e–

∫ t
s αi(u) dui‖ϕ – ϕ̃‖ds +

∫ t

–∞
e–

∫ t
s αi(u) du�i‖ϕ – ϕ̃‖ds

≤ i

α–
i
‖ϕ – ϕ̃‖ +

�i

α–
i
‖ϕ – ϕ̃‖

=
i + �i

α–
i

‖ϕ – ϕ̃‖, i = , , . . . , n. (.)

Similarly, by (.)-(.) and (.)-(.), we have

∣∣(�φ – �φ̃)′(t)
∣∣

≤
∣∣∣∣
∫ t

–∞
e–

∫ t
s αi(u) du(fi(s,ϕ) – fi(s, ϕ̃)

)′ ds
∣∣∣∣

+
∣∣∣∣
∫ t

–∞
e–

∫ t
s αi(u) du(gi(s,ϕ) – gi(s, ϕ̃)

)′ ds
∣∣∣∣

≤ ∣∣fi(t,ϕ) – fi(t, ϕ̃)
∣∣ + αi(t)

∫ t

–∞
e–

∫ t
s αi(u) du∣∣fi(s,ϕ) – fi(s, ϕ̃)

∣∣ds

+
∣∣gi(t,ϕ) – gi(t, ϕ̃)

∣∣ + αi(t)
∫ t

–∞
e–

∫ t
s αi(u) du∣∣gi(s,ϕ) – gi(s, ϕ̃)

∣∣ds

≤ i‖ϕ – ϕ̃‖ + α+
i

∫ t

–∞
e–

∫ t
s αi(u) dui‖ϕ – ϕ̃‖ds

+ �i‖ϕ – ϕ̃‖ + α+
i

∫ t

–∞
e–

∫ t
s αi(u) du�i‖ϕ – ϕ̃‖ds

≤ i‖ϕ – ϕ̃‖ +
α+

i
α–

i
i‖ϕ – ϕ̃‖ + �i‖ϕ – ϕ̃‖ +

α+
i

α–
i
�i‖ϕ – ϕ̃‖

=
(

 +
α+

i
α–

i

)
(i + �i)‖ϕ – ϕ̃‖, i = , , . . . , n. (.)

It follows from (.) and (.) that ‖�φ – �φ̃‖ < M‖φ – φ̃‖. Thus, this implies that the
mapping � is a contraction. Therefore, by the fixed point theorem of Banach space, � has
a fixed point φ∗ ∈ X such that �φ∗ = φ∗. That is to say, (.) has a unique almost periodic
solution φ∗ ∈ X. So, there exists a unique almost periodic solution φ∗ of equation (.)
in X. The proof is complete. �

Next, we show that the solution of equation (.) is globally exponentially stable. In order
to obtain the result, we make the following assumption:
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(H) α+
i a+

i <  for i = , , . . . , n, and there exist positive constants ζ, ζ, . . . , ζn and ϒ∗
such that, for t >  and i = , , . . . , n,

–ϒ∗ > –
[
αi(t)

(
 – α+

i a+
i
)

–
∣∣αi(t) –

(
 – a′

i(t)
)
αi

(
t – ai(t)

)∣∣] ζi

 – α+
i a+

i

+
n∑

j=

(
βij(t) + δij(t)

) ζi

 – α+
j a+

j

+

( m∑

j=

cij(t) +
l∑

j=

Hij(t)

)
ζi

 – α+
i a+

i
.

It follows from (H) that we can choose  < r < α–
i and ϒ such that

–ϒ > –
[(

αi(t) – r
)(

 – α+
i α+

i
)

–
∣∣αi(t)erai(t) –

(
 – a′

i(t)
)
αi

(
t – ai(t)

)∣∣] ζi

 – α+
i a+

i

+
n∑

j=

(
βij(t)erbij(t) + δij(t)erηij(t)) ζj

 – α+
j a+

j

+

( m∑

j=

cij(t)erτij(t) +
l∑

j=

Hij(t)erσij(t)

)
ζi

 – α+
i a+

i
, t ≥ , i = , , . . . , n.

Theorem . Let Z∗(t) = (x∗
 (t), x∗

(t), . . . , x∗
n(t))T be the almost periodic solution of equa-

tion (.) in the region X. Suppose that the conditions (H)-(H) are satisfied. Then the
almost solution Z∗(t) of equation (.) is globally exponentially stable.

Proof Define y(t) = (y(t), y(t), . . . , yn(t))T = (x(t) – x∗
 (t), x(t) – x∗

(t), . . . , xn(t) – x∗
n(t)) =

Z(t) – Z∗(t), where Z(t) = (x(t), x(t), . . . , xn(t))T is an arbitrary solution of equation (.).
It follows that

y′
i(t) = –αi(t)yi

(
t – ai(t)

)
+

n∑

j=

βij(t)yi
(
t – bij(t)

)

+
n∑

j=

δij(t)y′
j
(
t – ηij(t)

)

+
m∑

j=

cij(t)
[
xi

(
t – τij(t)

)
e–γij(t)xi(t–τij(t)) – x∗

i
(
t – τij(t)

)
e–γij(t)x∗

i (t–τij(t))]

–
l∑

j=

Hij(t)yi
(
t – σij(t)

)
.

We obtain

Y ′
i (t) = –

(
αi(t) – r

)
Yi(t) –

(
αi(t) – r

)∫ t

t–ai(t)
αi(s)ersyi(s) ds

–
[
αi(t) –

(
 – a′

i(t)
)
αi

(
t – ai(t)

)
e–rai(t)]ertyi

(
t – ai(t)

)

+ ert

{ n∑

j=

βij(t)yj
(
t – bij(t)

)
+

n∑

j=

δij(t)y′
j
(
t – ηij(t)

)
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+
m∑

j=

cij(t)
[
xi

(
t – τij(t)

)
e–γij(t)xi(t–τij(t)) – x∗

i
(
t – τij(t)

)
e–γij(t)x∗

i (t–τij(t))]

–
l∑

j=

Hij(t)yi
(
t – σij(t)

)
}

, (.)

where Yi(t) = ertyi(t) –
∫ t

t–ai(t) αi(s)ersyi(s) ds, i = , , . . . , n.
Denote M = max{max≤i≤n(sups∈(–∞,] |Yi(s)|), max≤i≤n(sups∈(–∞,] |Y ′

i (s)|)}.
There exists K >  such that |Yi(t)| ≤ M < Kζi, |Y ′

i (t)| ≤ M < Kζi for all t ∈ (–∞, ], and
i = , , . . . , n.

We claim that |Yi(t)| < Kζi, |Y ′
i (t)| < Kζi for t ∈ (,∞), and i = , , . . . , n. Otherwise, there

exists i ∈ {, , . . . , n}, θ ∈ (, +∞) such that |Yi(θ )| = Kζi, |Yk(t)| < Kζk and |Y ′
i (θ )| = Kζi,

|Y ′
k(t)| < Kζk for t ∈ (–∞, θ ), k ∈ {, , . . . , n}.
It follows that, for t ∈ (–∞, θ ), k ∈ {, , . . . , n},

ert∣∣yk(t)
∣∣ ≤

∣∣∣∣e
rtyk(t) –

∫ t

t–ai(t)
αi(s)ersyi(s) ds

∣∣∣∣

+
∣∣∣∣
∫ t

t–ai(t)
αi(s)ersyi(s) ds

∣∣∣∣

≤ Kζk + α+
k a+

k sup
s∈(–∞,θ ]

ers∣∣yk(s)
∣∣ (.)

and

ert∣∣y′
k(t)

∣∣ ≤
∣∣∣∣e

rty′
k(t) –

∫ t

t–ai(t)
αi(s)ersy′

i(s) ds
∣∣∣∣

+
∣∣∣∣
∫ t

t–ai(t)
αi(s)ersy′

i(s) ds
∣∣∣∣

≤ Kζk + α+
k a+

k sup
s∈(–∞,θ ]

ers∣∣y′
k(s)

∣∣. (.)

Thus

ert∣∣yk(t)
∣∣ ≤ sup

s∈(–∞,θ ]
ers∣∣yk(s)

∣∣ ≤ Kζk

 – α+
k a+

k
(.)

and

ert∣∣y′
k(t)

∣∣ ≤ sup
s∈(–∞,θ ]

ers∣∣yk(s)
∣∣ ≤ Kζk

 – α+
k a+

k
. (.)

Now we calculate the upper left derivative of Yi(t). From (H) and (.)-(.), we have

 ≤ D–∣∣Yi(θ )
∣∣

≤ –
(
αi(θ ) – r

)
Yi(θ ) +

∣∣∣∣–
(
αi(θ ) – r

)∫ θ

θ–ai(θ )
αi(s)ersyi(s) ds

∣∣∣∣

+

∣∣∣∣∣–
[
αi(θ ) –

(
 – a′

i(θ )
)
αi

(
θ – ai(θ )

)
e–rai(θ )]erθ yi

(
θ – ai(θ )

)
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+ erθ

{ n∑

j=

βij(θ )yj
(
θ – bij(θ )

)
+

n∑

j=

δij(θ )y′
j
(
θ – ηij(θ )

)

+
m∑

j=

cij(θ )
[
xi

(
θ – τij(θ )

)
e–γij(θ )xi(θ–τij(θ )) – x∗

i
(
θ – τij(θ )

)
e–γij(θ )x∗

i (θ–τij(θ ))]

–
l∑

j=

Hij(θ )yi
(
θ – σij(θ )

)
}∣∣∣∣∣

≤ –
(
αi(θ ) – r

)∣∣∣∣e
rθ yi(θ ) –

∫ t

θ–ai(θ )
αi(s)ersyi(s) ds

∣∣∣∣ +
(
αi(θ ) – r

) Kζi

 – α+
i a+

i

+
∣∣αi(θ ) –

(
 – a′

i(θ )
)
αi

(
θ – ai(θ )

)
e–rai(θ )∣∣erai(θ )er(θ–ai(θ ))∣∣yi

(
θ – ai(θ )

)∣∣

+
n∑

j=

βij(θ )erbij(θ )er(θ–bij(θ ))∣∣yi
(
θ – bij(θ )

)∣∣

+
n∑

j=

δij(θ )erηij(θ )er(θ–ηij(θ ))∣∣y′
i
(
θ – ηij(θ )

)∣∣

+
m∑

j=

cij(θ )erτij(θ )er(θ–τij(θ ))∣∣yi
(
θ – τij(θ )

)∣∣

+
l∑

j=

Hij(θ )erσij(θ )er(θ–σij(θ ))∣∣yi
(
θ – σij(θ )

)∣∣

≤ –
[(

αi(θ ) – r
)(

 – α+
i a+

i
)

–
∣∣αi(θ )erai(θ ) –

(
 – a′

i(θ )
)
αi

(
θ – ai(θ )

)∣∣] Kζi

 – α+
i a+

i

+
n∑

j=

(
βij(θ )erbij(θ ) + δij(θ )erηij(θ )) Kζi

 – α+
i a+

i

+

( m∑

j=

cij(θ )erτij(θ ) +
l∑

j=

Hij(θ )erσij(θ )

)
Kζi

 – α+
i α+

i

=

{
–
[(

αi(θ ) – r
)(

 – α+
i α+

i
)

–
∣∣αi(θ )erai(θ ) –

(
 – a′

i(θ )
)
αi

(
θ – ai(θ )

)∣∣] ζi

 – α+
i a+

i

+
n∑

j=

(
βij(θ )erbij(θ ) + δij(θ )erηij(θ )) ζj

 – α+
j a+

j

+

( m∑

j=

cij(θ )erτij(θ ) +
l∑

j=

Hij(θ )erσij(θ )

)
ζi

 – α+
i a+

i

}
K

< –ϒK

< ,

which is a contradiction. So, for all t ∈ (, +∞) and i = , , . . . , n, |Yi(t)| < Kζi holds. Ac-
cording to the above, it is easy to obtain |xi(t) – x∗

i (t)| ≤ Kζj
–α+

i a+
i

e–rt for all t ∈ (, +∞) and
i = , , . . . , n. Therefore, the solution of equation (.) is globally exponential stable. This
completes the proof of Theorem .. �
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4 An example
In this section, an example is given to demonstrate the results obtained in Section .

Example . Consider the following neutral Nicholson blowflies model with leakage de-
lays and linear harvesting terms:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = –( + cos t)x(t – .| sin t|) + (. + . sin t)x(t – .| cos
√

t|)
+ (. + . sin t)x′

(t – .| cos
√

t|)
+ (. + . sin t)x(t – .| cos

√
t|)

× e–.x(t–.| cos
√

t|)

+ (. + . sin t)x(t – .| cos
√

t|)e–.x(t–.| cos
√

t|)

– . cos tx(t – .| cos
√

t|),
ẋ(t) = –( + sin t)x(t – .| cos t|) + (. + . cos t)x(t – .| sin

√
t|)

+ (. + . cos t)x′
(t – .| sin

√
|t)

+ (. + . cos t)x(t – .| sin
√

t|)
× e–.x(t–.| sin

√
t|)

+ (. + . cos t)x(t – .| sin
√

t|)e–.x(t–.| sin
√

t|)

– . sin tx(t – .| sin
√

t|).

We take L = e, ζ = ζ = .. It is not difficult to check that the assumptions (H)-(H) are
all satisfied, respectively. Hence, from Theorem . and Theorem ., the above system
has exactly one almost periodic solution, which is globally exponentially stable.

Remark . In this paper, a class of neutral delay Nicholson’s blowflies model with leakage
delays and linear harvesting terms is considered. To the best of our knowledge, no results
can be associated with equation (.). So, the results of this paper are novel. Moreover, the
obtained results are dependent on the leakage delay. As for future work, it would be an
interesting topic to investigate the Nicholson blowflies model dependent on a probability
distribution leakage term.
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