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Abstract
In this article, we study a class of fractional coupled systems with Riemann-Stieltjes
integral boundary conditions and generalized p-Laplacian which involves two
different parameters. Based on the Guo-Krasnosel’skii fixed point theorem, some new
results on the existence and nonexistence of positive solutions for the fractional
system are received, the impact of the two different parameters on the existence and
nonexistence of positive solutions is also investigated. An example is then given to
illuminate the application of the main results.
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1 Introduction
In this paper, our main research is the existence and nonexistence of positive solutions for
the following fractional coupled system with generalized p-Laplacian involving Riemann-
Stieltjes integral conditions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dβ
+ (φ(Dα

+ u(t))) + λf(t, u(t), v(t)) = ,

Dβ
+ (φ(Dα

+ v(t))) + λf(t, u(t), v(t)) = ,  < t < ,

u() = u′() = · · ·u(n–) = , φ(Dα
+ u()) = (φ(Dα

+ u()))′ = ,

v() = v′() = · · · v(m–) = , φ(Dα
+ v()) = (φ(Dα

+ v()))′ = ,

u() = μ
∫ 

 g(s)v(s) dA(s), v() = μ
∫ 

 g(s)u(s) dA(s),

()

where λi >  (i = , ) is a parameter,  < βi ≤ , n –  < α ≤ n, m –  < α ≤ m, n, m ≥ ,
Dαi

+ , Dβi
+ are the standard Riemann-Liouville derivatives. μi >  is a constant, gi : (, ) →

[, +∞) is continuous with gi ∈ L(, ), Ai is right continuous on [, ), left continuous at
t = , and nondecreasing on [, ], Ai() = ,

∫ 
 x(s) dAi(s) denotes the Riemann-Stieltjes

integrals of x with respect to Ai, φ is a generalized p-Laplacian operator and satisfies the
following condition (H).

The positive solution (u, v) of system () means that (u, v) ∈ C[, ] × C[, ], (u, v) satis-
fies system () and u(t) > , v(t) >  for all t ∈ (, ].
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(H) φ : R → R is an odd, increasing homeomorphism, and there exist two increasing
homeomorphisms ψ,ψ : (, +∞) → (, +∞) such that

ψ(x)φ(y) ≤ φ(xy) ≤ ψ(x)φ(y), x, y > .

Moreover, φ,φ– ∈ C(R), where φ– denotes the inverse of φ and R = (–∞, +∞).

Lemma . ([]) Assume that (H) holds. Then

ψ–
 (x)y ≤ φ–(xφ(y)

) ≤ ψ–
 (x)y, x, y > .

For φ satisfying (H), we call it a generalized p-Laplacian operator, it contains two im-
portant special cases: φ(u) = u and φ(u) = |u|p–u (p > ) (see []). Many researchers have
studied the existence of positive solutions for two above cases due to their great applica-
tion background (see [–]). Combined with the fractional calculus, the application of
the above two kinds of special circumstances becomes more extensive and practical. For
the sake of considering the turbulent flow in a porous medium, the governing equation

∂

∂x

(
∂um

∂x

∣
∣
∣
∣
∂um

∂x

∣
∣
∣
∣

p–)

= g
(

t, u,
∂u
∂t

)

, m ≤ ,



≤ p ≤  ()

was presented by Leibenson (see []). If p = , m > , it is used as a nonlinear model for
the dispersion of animals and insects (see []).

In [], Lu et al. studied the existence of positive solution for the fractional boundary
value problem with a p-Laplacian operator:

⎧
⎨

⎩

Dβ

+ (φp(Dα
+ u(t))) = f (t, u(t)),  < t < ,

u() = u′() = u() = , Dα
+ u() = Dα

+ u() = ,
()

where  < α ≤ ,  < β ≤ , Dα
+ , Dβ

+ are the standard Riemann-Liouville fractional deriva-
tives, φp(s) = |s|p–s, p > , φ–

p = φq, 
p + 

q = , f : [, ]× [, +∞) → [, +∞) is a continuous
function. By the properties of Green’s function and the Guo-Krasnosel’skii fixed point the-
orem, some results on the existence of positive solutions are obtained.

In [], Wang et al. investigated the same equation as () for  < α ≤ ,  < β ≤ , with
boundary value condition u() = , Dα

+ u() = , u() = au(ξ ), where  ≤ a ≤ ,  < ξ < ,
f : [, ] × [, +∞) → [, +∞) is a continuous function. Through the application of the
Guo-Krasnosel’skii fixed point theorem and the Leggett-Williams theorem, sufficient con-
ditions for the existence of positive solutions are received.

In system (),
∫ 

 g(s)v(s) dA(s),
∫ 

 g(s)u(s) dA(s) denote the Riemann-Stieltjes inte-
grals, and Ai is a function of bounded variation, which implies that dAi can be a signed
measure. Then, a multipoint boundary value problem and an integral boundary value
problem are included in our study, that is to say, system () includes more generalized
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boundary value conditions. Henderson and Luca in [] considered the following system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+ u(t) + λf(t, u(t), v(t)) = ,

Dα
+ v(t) + λf(t, u(t), v(t)) = ,  < t < ,

u() = u′() = · · ·u(n–) = , u() =
∑p

i= aiu(ξi),

v() = v′() = · · · v(m–) = , v() =
∑q

i= biv(ηi),

()

where λi >  (i = , ) is a parameter, n –  < α ≤ n, m –  < α ≤ m, n, m ≥ , Dαi
+ , Dβi

+

are the standard Riemann-Liouville derivatives. ai > , bi >  are constants, fi : [, ] ×
[, +∞) × [, +∞) → [, +∞) is a continuous function. By the Guo-Krasnosel’skii fixed
point theorem, the authors in [] got the existence of positive solutions on system ().
System () with uncoupled and coupled multi-point boundary value conditions

⎧
⎨

⎩

u() = u′() = · · ·u(n–) = , u() = μ
∫ 

 u(s) dA(s),

v() = v′() = · · · v(m–) = , v() = μ
∫ 

 v(s) dA(s),
⎧
⎨

⎩

u() = u′() = · · ·u(n–) = , u() = μ
∫ 

 v(s) dA(s),

v() = v′() = · · · v(m–) = , v() = μ
∫ 

 u(s) dA(s)

has been studied in many papers, where μi >  is a constant, for μi =  as an exceptional
case ( see [–] and the references therein). However, these articles only study the exis-
tence of positive solutions for the system, and do not relate to the nonexistence of positive
solutions.

Up to now, coupled boundary value conditions for a fractional differential system with
generalized p-Laplacian like system () have seldom been considered when λ, λ are dif-
ferent. Motivated by the results mentioned above, in this paper, we obtain several new
existence and nonexistence results for positive solutions in terms of different values of the
parameter λi by using the properties of Green’s function and the Guo-Krasnosel’skii fixed
point theorem on cone. Especially, paying attention to the nonlinear operator Dβ

+ (φ(Dα
+ ))

with the discussion in (), we can convert it to the linear operator Dβ

+ Dα
+ , if φ(u) = u, and

the additive index law

Dβ

+ Dα
+ u(t) = Dα+β

+ u(t)

holds under some reasonable constraints on the function u (see []). Therefore, our ar-
ticle promotes, includes and improves the previous results in a certain degree.

2 Preliminaries and lemmas
For convenience of the reader, we present some necessary definitions about fractional cal-
culus theory.

Definition . ([, ]) Let α >  and u be piecewise continuous on (, +∞) and inte-
grable on any finite subinterval of [, +∞). Then, for t > , we call

Iα
+ u(t) =



(α)

∫ t


(t – s)α–u(s) ds,

the Riemann-Liouville fractional integral of u of order α.



Wang and Jiang Advances in Difference Equations  (2017) 2017:337 Page 4 of 19

Definition . ([, ]) The Riemann-Liouville fractional derivative of order α > ,
n –  ≤ α < n, n ∈N, is defined as

Dα
+ u(t) =



(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–u(s) ds,

where N denotes the natural number set, the function u(t) is n times continuously differ-
entiable on [, +∞).

Lemma . ([, ]) Let α > , if the fractional derivatives Dα–
+ u(t) and Dα

+ u(t) are con-
tinuous on [, +∞), then

Iα
+ Dα

+ u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

where c, c, . . . , cn ∈ (–∞, +∞), n is the smallest integer greater than or equal to α.

Similarly to the proof in [], it enables us to obtain the following Lemmas ., . and
Remark ..

Lemma . Assume that the following condition (H) holds.

(H)
k =

∫ 


g(t)tα– dA(t) > , k =

∫ 


g(t)tα– dA(t) > ,

 – μμkk > .

Let hi ∈ C(, ) ∩ L(, ) (i = , ), then the system with the coupled boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) + h(t) = , Dα

+ v(t) + h(t) = ,  < t < ,

u() = u′() = · · ·u(n–) = , u() = μ
∫ 

 g(s)v(s) dA(s),

v() = v′() = · · · v(n–) = , v() = μ
∫ 

 g(s)u(s) dA(s)

()

has a unique integral representation

⎧
⎨

⎩

u(t) =
∫ 

 K(t, s)h(s) ds +
∫ 

 H(t, s)h(s) ds,

v(t) =
∫ 

 K(t, s)h(s) ds +
∫ 

 H(t, s)h(s) ds,
()

where

K(t, s) =
μμktα–

 – μμkk

∫ 


g(t)G(t, s) dA(t) + G(t, s),

H(t, s) =
μtα–

 – μμkk

∫ 


g(t)G(t, s) dA(t),

K(t, s) =
μμktα–

 – μμkk

∫ 


g(t)G(t, s) dA(t) + G(t, s),

H(t, s) =
μtα–

 – μμkk

∫ 


g(t)G(t, s) dA(t),

()
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and

Gi(t, s) =



(αi)

⎧
⎨

⎩

[t( – s)]αi– – (t – s)αi–,  ≤ s ≤ t ≤ ,

[t( – s)]αi–,  ≤ t ≤ s ≤ ,
i = , .

Lemma . For t, s ∈ [, ], the functions Ki(t, s) and Hi(t, s) (i = , ) defined as () satisfy

K(t, s), H(t, s) ≤ ρs( – s)α–, K(t, s), H(t, s) ≤ ρs( – s)α–,

K(t, s), H(t, s) ≤ ρtα–, K(t, s), H(t, s) ≤ ρtα–,

K(t, s) ≥ �tα–s( – s)α–, H(t, s) ≥ �tα–s( – s)α–,

K(t, s) ≥ �tα–s( – s)α–, H(t, s) ≥ �tα–s( – s)α–,

where

ρ = max

{



(α – )

(
μμk

 – μμkk

∫ 


g(t) dA(t) + 

)

,

μ


(α – )( – μμkk)

∫ 


g(t) dA(t),



(α – )

(
μμk

 – μμkk

∫ 


g(t) dA(t) + 

)

,

μ


(α – )( – μμkk)

∫ 


g(t) dA(t)

}

,

� = min

{
μμk


(α)( – μμkk)

∫ 


g(t)( – t)tα– dA(t),

μ


(α)( – μμkk)

∫ 


g(t)( – t)tα– dA(t),

μμk


(α)( – μμkk)

∫ 


g(t)( – t)tα– dA(t),

μ


(α)( – μμkk)

∫ 


g(t)( – t)tα– dA(t)

}

.

Remark . From Lemma ., for t ,̃ t, s ∈ [, ], we have

Ki(t, s) ≥ ωtαi–Ki (̃t, s), Hi(t, s) ≥ ωtαi–Hi (̃t, s), i = , ,

K(t, s) ≥ ωtα–H(̃t, s), H(t, s) ≥ ωtα–K(̃t, s),

K(t, s) ≥ ωtα–H(̃t, s), H(t, s) ≥ ωtα–K(̃t, s),

where ω = �

ρ
, �, ρ are defined as in Lemma .,  < ω < .

From Lemmas . and ., we obtain the following Lemma ..



Wang and Jiang Advances in Difference Equations  (2017) 2017:337 Page 6 of 19

Lemma . Let  < βi ≤ , n –  < α ≤ n, m –  < α ≤ m, hi ∈ C(, ) ∩ L(, ) (i = , ),
the following system of fractional differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ
+ (φ(Dα

+ u(t))) + λh(t) = , Dβ
+ (φ(Dα

+ v(t))) + λh(t) = ,  < t < ,

u() = u′() = · · ·u(n–) = , φ(Dα
+ u()) = (φ(Dα

+ u()))′ = ,

v() = v′() = · · · v(m–) = , φ(Dα
+ v()) = (φ(Dα

+ v()))′ = ,

u() = μ
∫ 

 v(s) dA(s), v() = μ
∫ 

 u(s) dA(s)

has a unique integral representation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) =
∫ 

 K(t, s)φ–(λ
∫ 

 G(s, τ )h(τ ) dτ ) ds

+
∫ 

 H(t, s)φ–(λ
∫ 

 G(s, τ )h(τ ) dτ ) ds,

v(t) =
∫ 

 K(t, s)φ–(λ
∫ 

 G(s, τ )h(τ ) dτ ) ds

+
∫ 

 H(t, s)φ–(λ
∫ 

 G(s, τ )h(τ ) dτ ) ds,

where

Gi(s, τ ) =



(βi)

⎧
⎨

⎩

s[s( – τ )]βi– – (s – τ )βi–,  ≤ τ ≤ s ≤ ,

s[s( – τ )]βi–,  ≤ s ≤ τ ≤ ,
i = , . ()

Lemma . ([]) The function Gi(s, τ ) defined as () is continuous on [, ] × [, ], and
for s, τ ∈ [, ], Gi(s, τ ) satisfies

() Gi(s, τ ) ≥ ; () Gi(s, τ ) ≤ Gi(τ , τ ); () Gi(s, τ ) ≥ sβi–Gi(, τ ).

In the rest of the paper, we always suppose that the following assumption holds:

(H) fi : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous.

Let X = C[, ] × C[, ], then X is a Banach space with the norm

∥
∥(u, v)

∥
∥ = max

{‖u‖,‖v‖}, ‖u‖ = max
t∈[,]

∣
∣u(t)

∣
∣, ‖v‖ = max

t∈[,]

∣
∣v(t)

∣
∣.

Denote

K =
{

(u, v) ∈ X : u(t) ≥ ωtα–∥∥(u, v)
∥
∥, v(t) ≥ ωtα–∥∥(u, v)

∥
∥, t ∈ [, ]

}
,

where ω is defined as Remark .. It is easy to see that K is a positive cone in X. Under
the above conditions (H)(H)(H), for any (u, v) ∈ K , we can define an integral operator
T : K → X by

T(u, v)(t) =
(
T(u, v)(t), T(u, v)(t)

)
,  ≤ t ≤ , ()
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T(u, v)(t) =
∫ 


K(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


H(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds,

T(u, v)(t) =
∫ 


K(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


H(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds,

()

we know that (u, v) is a positive solution of system () if and only if (u, v) is a fixed point of
T in K .

Lemma . Assume that (H)(H)(H) hold. Then T : K → K is a completely continuous
operator.

Proof By the routine discussion, we know that T : K → X is well defined, so we only prove
T(K) ⊆ K . For any (u, v) ∈ K ,  ≤ t, t̃ ≤ , by Remark ., we have

T(u, v)(t) =
∫ 


K(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


H(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 


ωtα–K(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


ωtα–H(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ωtα–
(∫ 


K(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


H(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds
)

≥ ωtα–T(u, v)(̃t). ()

On the other hand,

T(u, v)(t) ≥
∫ 


ωtα–H(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


ωtα–K(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ωtα–
(∫ 


H(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


K(̃t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds
)

≥ ωtα–T(u, v)(̃t). ()
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Then we have

T(u, v)(t) ≥ ωtα–∥∥T(u, v)
∥
∥, T(u, v)(t) ≥ ωtα–∥∥T(u, v)

∥
∥,

i.e.,

T(u, v)(t) ≥ ωtα–∥∥
(
T(u, v), T(u, v)

)∥
∥.

In the same way as () and (), we can prove that

T(u, v)(t) ≥ ωtα–∥∥
(
T(u, v), T(u, v)

)∥
∥.

Therefore, we have T(K) ⊆ K .
According to the Ascoli-Arzela theorem, we can easily get that T : K → K is completely

continuous. The proof is completed. �

In order to obtain the existence of the positive solutions of system (), we will use the
following cone compression and expansion fixed point theorem.

Lemma . ([]) Let P be a positive cone in a Banach space E, � and � are bounded
open sets in E, θ ∈ �, � ⊂ �, A : P ∩ �\� → P is a completely continuous operator. If
the following conditions are satisfied:

‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�, ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�,

or

‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�, ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�,

then A has at least one fixed point in P ∩ (�\�).

3 Main results
Denote

f = lim inf
x→+

inf
t∈[a,b]⊂(,)

y∈[,+∞)

f(t, x, y)
φ(x)

, f 
 = lim sup

x→+
sup

t∈[,]
y∈[,+∞)

f(t, x, y)
φ(x)

,

f = lim inf
y→+

inf
t∈[a,b]⊂(,)

x∈[,+∞)

f(t, x, y)
φ(y)

, f 
 = lim sup

y→+
sup

t∈[,]
x∈[,+∞)

f(t, x, y)
φ(y)

,

f∞ = lim inf
x→+∞ inf

t∈[a,b]⊂(,)
y∈[,+∞)

f(t, x, y)
φ(x)

, f ∞
 = lim sup

x→+∞
sup

t∈[,]
y∈[,+∞)

f(t, x, y)
φ(x)

,

f∞ = lim inf
y→+∞ inf

t∈[a,b]⊂(,)
x∈[,+∞)

f(t, x, y)
φ(y)

, f ∞
 = lim sup

y→+∞
sup

t∈[,]
x∈[,+∞)

f(t, x, y)
φ(y)

,

L = max

{

ρϕ–


(∫ 


G(τ , τ ) dτ

)

, ρϕ–


(∫ 


G(τ , τ ) dτ

)}

,
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L = min

{

�ωθ
∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

ds,

�ωθ
∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

ds
}

,

L = min

{

�θ

∫ 


ϕ–


(
sβ–)s( – s)α–ϕ–



(∫ 


G(, τ ) dτ

)

ds,

�θ

∫ 


ϕ–


(
sβ–)s( – s)α–ϕ–



(∫ 


G(, τ ) dτ

)

ds
}

, θ = min
t∈[a,b]

{
tα–, tα–}.

3.1 Existence of system (1)
Theorem . Assume that (H)(H)(H) hold and fi∞ϕ(L–

 ) > f 
i ϕ(L–

 ), then system ()
has at least one positive solution for

λi ∈
(

ϕ(L–
 )

fi∞
,
ϕ(L–

 )
f 
i

)

, ()

where we impose 
fi∞ =  if fi∞ = +∞ and 

f 
i

= +∞ if f 
i =  (i = , ).

Proof For any λi satisfying (), there exists ε >  such that

ϕ(L–
 )

fi∞ – ε
≤ λi ≤ ϕ(L–

 )
f 
i + ε

. ()

By the definition of f 
i , there exists r >  such that

fi(t, x, y) ≤ (
f 
i + ε

)
max

{
φ(x),φ(y)

}
,  ≤ x, y ≤ r, t ∈ [, ]. ()

Let Kr = {(u, v) ∈ K : ‖(u, v)‖ < r}. For any (u, v) ∈ ∂Kr , t ∈ [, ], by the definition of ‖ · ‖,
we know that

u(t) ≤ ∣
∣u(t)

∣
∣ ≤ ‖u‖ ≤ ∥

∥(u, v)
∥
∥ ≤ r,

v(t) ≤ ∣
∣v(t)

∣
∣ ≤ ‖v‖ ≤ ∥

∥(u, v)
∥
∥ ≤ r, t ∈ [, ].

()

Thus, for any (u, v) ∈ ∂Kr , by (), () and (H), we have

fi
(
t, u(t), v(t)

) ≤ (
f 
i + ε

)
φ(r), t ∈ [, ]. ()

Hence, for any (u, v) ∈ ∂Kr , by Lemmas ., ., . and (), we conclude that

∥
∥T(u, v)(t)

∥
∥ = max

t∈[,]

∣
∣
∣
∣

∫ 


K(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


H(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤ max
t∈[,]

∣
∣
∣
∣

∫ 


ρtα–φ–

(

λ

∫ 


G(τ , τ )

(
f 
 + ε

)
φ(r) dτ

)

ds

+
∫ 


ρtα–φ–

(

λ

∫ 


G(τ , τ )

(
f 
 + ε

)
φ(r) dτ

)

ds
∣
∣
∣
∣
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≤ ρrϕ
–


(
λ

(
f 
 + ε

))
ϕ–



(∫ 


G(τ , τ ) dτ

)

+ ρrϕ
–


(
λ

(
f 
 + ε

))
ϕ–



(∫ 


G(τ , τ ) dτ

)

≤ rϕ
–


(
λ

(
f 
 + ε

))L


+ rϕ

–


(
λ

(
f 
 + ε

))L


≤ r =

∥
∥(u, v)

∥
∥. ()

Similarly to (), for any (u, v) ∈ ∂Kr , we also have

∥
∥T(u, v)

∥
∥ ≤ r =

∥
∥(u, v)

∥
∥.

Consequently, we have

∥
∥T(u, v)

∥
∥ = max

{∥
∥T(u, v)

∥
∥,

∥
∥T(u, v)

∥
∥
} ≤ r =

∥
∥(u, v)

∥
∥, (u, v) ∈ ∂Kr . ()

On the other hand, by the definition of fi∞, there exist r′
, r′

 >  such that

f(t, x, y) ≥ (f∞ – ε)φ(x), x ≥ r′, y ≥ , t ∈ [a, b] ⊂ (, ),

f(t, x, y) ≥ (f∞ – ε)φ(y), y ≥ r′, x ≥ , t ∈ [a, b] ⊂ (, ).
()

Choose r = max{ r′
ωθ

, r′
ωθ

, r}. Let Kr = {(u, v) ∈ K : ‖(u, v)‖ < r}. For any (u, v) ∈ ∂Kr , by
the definition of ‖ · ‖, we have

u(t) ≥ ωtα–∥∥(u, v)
∥
∥ ≥ ωθr ≥ r′

,

v(t) ≥ ωtα–∥∥(u, v)
∥
∥ ≥ ωθr ≥ r′

, t ∈ [a, b] ⊂ (, ).
()

Thus, for any (u, v) ∈ ∂Kr , by (), () and (H), we have

f
(
t, u(t), v(t)

) ≥ (f∞ – ε)φ
(
u(t)

) ≥ (f∞ – ε)φ(ωθr), t ∈ [a, b] ⊂ (, ),

f
(
t, u(t), v(t)

) ≥ (f∞ – ε)φ
(
v(t)

) ≥ (f∞ – ε)φ(ωθr), t ∈ [a, b] ⊂ (, ).
()

Hence, for any (u, v) ∈ ∂Kr , by Lemmas ., ., . and (), we have

∥
∥T(u, v)(t)

∥
∥

≥ min
t∈[a,b]

∣
∣
∣
∣

∫ 


�tα–s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ )(f∞ – ε)φ(ωθr) dτ

)

ds

+
∫ 


�tα–s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ )(f∞ – ε)φ(ωθr) dτ

)

ds
∣
∣
∣
∣

≥ �ωθr

∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

dsψ–


(
λ(f∞ – ε)

)

+ �ωθr

∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

dsψ–


(
λ(f∞ – ε)

)

≥ rϕ
–


(
λ(f∞ – ε)

)L


+ rϕ

–


(
λ(f∞ – ε)

)L


≥ r =

∥
∥(u, v)

∥
∥. ()
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Therefore, we obtain

∥
∥T(u, v)

∥
∥ = max

{∥
∥T(u, v)

∥
∥,

∥
∥T(u, v)

∥
∥
} ≥ r =

∥
∥(u, v)

∥
∥ for any (u, v) ∈ ∂Kr . ()

It follows from the above discussion, (), (), Lemmas . and . that, for any λi ∈
( ϕ(L–

 )
fi∞ , ϕ(L–

 )
f 
i

), T has a fixed point (u, v) ∈ Kr \ Kr , so system () has at least one positive
solution (u, v); moreover, (u, v) satisfies r ≤ ‖(u, v)‖ ≤ r. The proof is completed. �

Remark . From the proof of Theorem ., if we choose

L = �ωθ
∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

ds, θ = min
t∈[a,b]

{
tα–, tα–}, ()

then for λ ∈ ( ϕ(L–
 )

f∞ , ϕ(L–
 )

f 


), λ ∈ (, ϕ(L–
 )

f 


), the conclusion of Theorem . is valid.
Or we choose

L̃ = �ωθ
∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

ds, θ = min
t∈[a,b]

{
tα–, tα–}, ()

then, for λ ∈ (, ϕ(L–
 )

f 


), λ ∈ ( ϕ(̃L–
 )

f∞ , ϕ(L–
 )

f 


), the conclusion of Theorem . is valid.

Theorem . Assume that (H)(H)(H) hold and fiϕ(L–
 ) > f ∞

i ϕ(L–
 ), then system ()

has at least one positive solution for

λi ∈
(

ϕ(L–
 )

fi
,
ϕ(L–

 )
f ∞
i

)

,

where we impose 
fi

=  if fi = +∞ and 
f ∞
i

= +∞ if f ∞
i = , i = , .

The proof of Theorem . is similar to that of Theorem ., and so we omit it.

Remark . Similar to Remark ., if we choose L as (), then for λ ∈ ( ϕ(L–
 )

f
, ϕ(L–

 )
f ∞


),

λ ∈ (, ϕ(L–
 )

f ∞


), the conclusion of Theorem . is valid.

Or we choose L̃ as (), then for λ ∈ (, ϕ(L–
 )

f ∞


), λ ∈ ( ϕ(̃L–
 )

f
, ϕ(L–

 )
f ∞


), the conclusion of
Theorem . is valid.

Theorem . Assume that (H)(H)(H) hold and there exist R > r >  such that

λi min
t∈[a,b]⊂(,)
ωθr≤x,y≤r

fi(t, x, y) ≥ φ

(
r

L

)

, λi max
t∈[,]

≤x,y≤R

fi(t, x, y) ≤ φ

(
R
L

)

, i = , . ()

Then system () has at least one positive solution (u, v); moreover, (u, v) satisfies r ≤
‖(u, v)‖ ≤ R.

Proof Set Kr = {(u, v) ∈ K : ‖(u, v)‖ < r}. For any (u, v) ∈ ∂Kr , by the definition of ‖ · ‖, we
have

ωθr ≤ ωtα–r = ωtα–∥∥(u, v)
∥
∥ ≤ u(t) ≤ r,

ωtα–r = ωtα–∥∥(u, v)
∥
∥ ≤ v(t) ≤ r, t ∈ [a, b] ⊂ (, ).
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Thus, for any (u, v) ∈ ∂Kr , by the first inequality of (), we have

λi min
t∈[a,b]⊂(,)

ωθr≤u(t),v(t)≤r

fi
(
t, u(t), v(t)

) ≥ φ

(
r

L

)

, i = , . ()

Hence, for any (u, v) ∈ ∂Kr , by Lemmas ., ., . and (), we have

∥
∥T(u, v)(t)

∥
∥

≥ min
t∈[a,b]

∣
∣
∣
∣

∫ 


�tα–s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


�tα–s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds
∣
∣
∣
∣

≥ �θ

∫ 


s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ ) min

τ∈[a,b]⊂(,)
ωr≤u(τ ),v(τ )≤r

f
(
τ , u(τ ), v(τ )

)
dτ

)

ds

+ �θ

∫ 


s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ ) min

τ∈[a,b]⊂(,)
ωr≤u(τ ),v(τ )≤r

f
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ φ–
(
λ min

τ∈[a,b]⊂(,)
ωr≤u(τ ),v(τ )≤r

f
(
τ , u(τ ), v(τ )

))L



+ φ–
(
λ min

τ∈[a,b]⊂(,)
ωr≤u(τ ),v(τ )≤r

f
(
τ , u(τ ), v(τ )

))L



≥ r =
∥
∥(u, v)

∥
∥. ()

Therefore, we obtain

∥
∥T(u, v)

∥
∥ = max

{∥
∥T(u, v)

∥
∥,

∥
∥T(u, v)

∥
∥
} ≥ r =

∥
∥(u, v)

∥
∥ for any (u, v) ∈ ∂Kr . ()

Choose KR = {(u, v) ∈ K : ‖(u, v)‖ < R}. For any (u, v) ∈ ∂KR, t ∈ [, ], by the definition of
‖ · ‖, we know that

u(t) ≤ ∣
∣u(t)

∣
∣ ≤ ‖u‖ ≤ ∥

∥(u, v)
∥
∥ ≤ R,

v(t) ≤ ∣
∣v(t)

∣
∣ ≤ ‖v‖ ≤ ∥

∥(u, v)
∥
∥ ≤ R, t ∈ [, ].

()

Thus, for any (u, v) ∈ ∂KR, by the first inequality of () and (), we have

λi max
t∈[,]

≤u(t),v(t)≤R

fi
(
t, u(t), v(t)

) ≤ φ

(
R
L

)

, i = , . ()

Hence, for any (u, v) ∈ ∂KR, by Lemmas ., ., . and (), we can gain

∥
∥T(u, v)(t)

∥
∥ ≤ max

t∈[,]

∣
∣
∣
∣

∫ 


ρtα–φ–

(

λ

∫ 


G(τ , τ ) max

τ∈[,]
≤u(τ ),v(τ )≤R

f
(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


ρtα–φ–

(

λ

∫ 


G(τ , τ ) max

τ∈[,]
≤u(τ ),v(τ )≤R

f
(
τ , u(τ ), v(τ )

)
dτ

)

ds
∣
∣
∣
∣
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≤ φ–
(
λ max

τ∈[,]
≤u(τ ),v(τ )≤R

f
(
τ , u(τ ), v(τ )

))L



+ φ–


(
λ max

τ∈[,]
≤u(τ ),v(τ )≤R

fi
(
τ , u(τ ), v(τ )

))L



≤ R =
∥
∥(u, v)

∥
∥. ()

Similarly to (), for any (u, v) ∈ ∂KR, we also have

∥
∥T(u, v)

∥
∥ < R =

∥
∥(u, v)

∥
∥.

Consequently, we have

∥
∥T(u, v)

∥
∥ = max

{∥
∥T(u, v)

∥
∥,

∥
∥T(u, v)

∥
∥
}

< R =
∥
∥(u, v)

∥
∥, (u, v) ∈ ∂KR. ()

It follows from the above discussion, (), (), Lemmas . and . that T has a fixed
point (u, v) ∈ KR \ Kr , so system () has at least one positive solution (u, v); moreover, (u, v)
satisfies r ≤ ‖(u, v)‖ ≤ R. The proof is completed. �

Remark . From the proof of Theorem ., if we choose

L = �θ

∫ 


ϕ–


(
sβ–)s( – s)α–ϕ–



(∫ 


G(, τ ) dτ

)

ds,

θ = min
t∈[a,b]

{
tα–, tα–}, ()

then for

λ min
t∈[a,b]⊂(,)

ωr≤x,y≤r

f(t, x, y) ≥ φ

(
r

L

)

, λi max
t∈[,]

≤x,y≤R

fi(t, x, y) ≤ φ

(
R
L

)

, i = , ,

the conclusion of Theorem . is valid.
Or we choose

L̃ = �θ

∫ 


ϕ–


(
sβ–)s( – s)α–ϕ–



(∫ 


G(, τ ) dτ

)

ds,

θ = min
t∈[a,b]

{
tα–, tα–}. ()

Then, for

λ min
t∈[a,b]⊂(,)

ωr≤x,y≤r

f(t, x, y) ≥ φ

(
r

L̃

)

, λi max
t∈[,]

≤x,y≤R

fi(t, x, y) ≤ φ

(
R
L

)

, i = , ,

the conclusion of Theorem . is valid.

Theorem . Assume that (H)(H)(H) hold and fi = fi∞ = +∞, then there exists λ∗
i > 

such that system () has at least two positive solutions for λi ∈ (,λ∗
i ), i = , .
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Proof Choose r > , define

χi(r) = sup
r>

φ(r)
ϕ(L) max t∈[,]

≤x,y≤r
fi(t, x, y)

, i = , .

In view of the continuity of fi and fi = fi∞ = +∞, we know χi(r) : (, +∞) → (, +∞) is
continuous and

lim
t→+

χi(r) = lim
t→+∞χi(r) = .

So, there exists r∗ ∈ (, +∞) such that χi(r∗) = supr> χi(r) = λ∗
i . Therefore, for λi ∈ (,λ∗

i ),
we can find r, r ( < r < r∗ < r < +∞) satisfying χi(r) = λ, χi(r) = λ. Thus, by (H),
we have

λ max
t∈[,]

≤x,y≤r

fi(t, x, y) ≤ φ(r)
ϕ(L)

≤ φ

(
r

L

)

, ()

λ max
t∈[,]

≤x,y≤r

fi(t, x, y) ≤ φ(r)
ϕ(L)

≤ φ

(
r

L

)

. ()

From the condition fi = fi∞ = +∞, there exist R, R ( < R < r < r∗ < r < R < +∞)
satisfying

f(t, x, y)
φ(x)

≥ 
λϕ(ωθ )ϕ(L)

, (x, y) ∈ [, R] ∪ [R, +∞), t ∈ [a, b] ⊂ (, ),

f(t, x, y)
φ(y)

≥ 
λϕ(ωθ )ϕ(L)

, (x, y) ∈ [, R] ∪ [R, +∞), t ∈ [a, b] ⊂ (, ).

Hence, by (H), we get

λi min
t∈[a,b]⊂(,)
ωθR≤x,y≤R

fi(t, x, y) ≥ φ

(
R

L

)

, ()

λi min
t∈[a,b]⊂(,)
ωθR≤x,y≤R

fi(t, x, y) ≥ φ

(
R

L

)

. ()

By () and (), () and (), combining with Lemmas ., . and Theorem ., sys-
tem () has at least two positive solutions for λi ∈ (,λ∗

i ), i = , . The proof is completed. �

Remark . From the proof of Theorem ., assume that (H)(H)(H) hold, if fi = +∞
or fi∞ = +∞, then there exists λ∗

i >  such that system () has at least one positive solution
for λi ∈ (,λ∗

i ), i = , .

3.2 Nonexistence of system (1)
Theorem . Assume that (H)(H)(H) hold and f ∞

i < +∞, f 
i < +∞, then there exists

λi >  such that for λi ∈ (,λi) (i = , ), system () has no positive solution.



Wang and Jiang Advances in Difference Equations  (2017) 2017:337 Page 15 of 19

Proof From the definitions of f ∞
i , f 

i , which are finite, there exist positive constants M
i ,

M
i and R, R (R < R) such that

fi(t, x, y) ≤ M
i max

{
φ(x),φ(y)

}
,  ≤ x, y ≤ R, t ∈ [, ],

fi(t, x, y) ≤ M
i max

{
φ(x),φ(y)

}
, x, y ≥ R, t ∈ [, ].

Set M
i = max{M

i , M
i , maxt∈[,],R≤x,y≤R

fi(t,x,y)
max{φ(x),φ(y)} }, we have

fi(t, x, y) ≤ M
i max

{
φ(x),φ(y)

}
, x, y ≥ , t ∈ [, ].

Assume that (u, v) is a positive solution of system (), we will show that this leads to a
contradiction. Define λi = (M

i )–
ϕ(L–

 ), since λi ∈ (,λi), by Lemmas ., . and .,
we conclude that

u(t) = T(u, v)(t)

=
∫ 


K(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 


H(t, s)φ–

(

λ

∫ 


G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 


ρtα–φ–

(

λ

∫ 


G(τ , τ )M

 max
{
φ
(
u(τ )

)
,φ

(
v(τ )

)}
dτ

)

ds

+
∫ 


ρtα–φ–

(

λ

∫ 


G(τ , τ )M

 max
{
φ
(
u(τ )

)
,φ

(
v(τ )

)}
dτ

)

ds

≤ ρ
∥
∥(u, v)

∥
∥ϕ–


(
λM


)
ϕ–



(∫ 


G(τ , τ ) dτ

)

+ ρ
∥
∥(u, v)

∥
∥ϕ–


(
λM


)
ϕ–



(∫ 


G(τ , τ ) dτ

)

≤ ∥
∥(u, v)

∥
∥ϕ–


(
λM


)L


+

∥
∥(u, v)

∥
∥ϕ–


(
λM


)L


. ()

Therefore, we conclude

‖u‖ ≤ ∥
∥(u, v)

∥
∥ϕ–


(
λM


)L


+

∥
∥(u, v)

∥
∥ϕ–


(
λM


)L



<
∥
∥(u, v)

∥
∥ϕ–


(
λM


)L


+

∥
∥(u, v)

∥
∥ϕ–


(
λM


)L


=

∥
∥(u, v)

∥
∥. ()

Similarly to () (), we also have

‖v‖ <
∥
∥(u, v)

∥
∥. ()

Hence, by () (), we get

∥
∥(u, v)

∥
∥ = max

{‖u‖,‖v‖} <
∥
∥(u, v)

∥
∥, ()

which is a contradiction. Therefore, system () has no positive solution. The proof is com-
pleted. �
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Theorem . Assume that (H)(H)(H) hold and fi∞ > , fi > , fi(t, x, y) >  for t ∈
[a, b] ⊂ (, ), x ≥ , y >  or t ∈ [a, b] ⊂ (, ), x > , y ≥ , then there exists λi∗ >  such
that for λi ∈ (λi∗, +∞) (i = , ), system () has no positive solution.

Proof From the definitions of fi∞, fi, which are finite, there exist positive constants m
i ,

m
i and R, R (R < R) such that

f(t, x, y) ≥ m
φ(x),  ≤ x, y ≤ R, t ∈ [a, b] ⊂ (, ),

f(t, x, y) ≥ m
φ(x), x, y ≥ R, t ∈ [a, b] ⊂ (, ).

Set m
 = min{m

, m
 , mint∈[a,b]⊂(,),R≤x,y≤R

f(t,x,y)
φ(x) }, we have

f(t, x, y) ≥ m
 φ(x), x, y ≥ , t ∈ [a, b] ⊂ (, ).

Similarly, set m
 = min{m

, m
, mint∈[a,b]⊂(,),R≤x,y≤R

f(t,x,y)
φ(y) }, we have

f(t, x, y) ≥ m
φ(y), x, y ≥ , t ∈ [a, b] ⊂ (, ).

Assume that (u, v) is a positive solution of system (), we will show that this leads to a
contradiction. Define λi∗ = (m

i )–
ϕ(L–

 ), since λi ∈ (λi∗, +∞), by Lemmas ., . and .,
we conclude that

‖u‖ =
∥
∥T(u, v)

∥
∥

≥ min
t∈[a,b]

∫ 


�tα–s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ )m

 φ
(
u(τ )

)
dτ

)

ds

+
∫ 


�tα–s( – s)α–φ–

(

λ

∫ 


sβ–G(, τ )m

φ
(
v(τ )

)
dτ

)

ds

≥ �ωθ∥∥(u, v)
∥
∥

∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

dsψ–


(
λm


)

+ �ωθ∥∥(u, v)
∥
∥

∫ 


ϕ–


(
sβ–)sβ–ϕ–



(∫ 


G(, τ ) dτ

)

dsψ–


(
λm


)

≥ ∥
∥(u, v)

∥
∥ϕ–


(
λm


)L


+

∥
∥(u, v)

∥
∥ϕ–


(
λm


)L


>

∥
∥(u, v)

∥
∥. ()

Similarly to (), we also have

‖v‖ >
∥
∥(u, v)

∥
∥. ()

Hence, by () (), we get

∥
∥(u, v)

∥
∥ = max

{‖u‖,‖v‖} >
∥
∥(u, v)

∥
∥, ()

which is a contradiction. Therefore, system () has no positive solution. The proof is com-
pleted. �

Similar to the proof of Theorem ., we obtain the following Theorems . and ..
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Theorem . Assume that (H)(H)(H) hold and f∞ > , f > , f(t, x, y) >  for t ∈
[a, b] ⊂ (, ), x ≥ , y >  or t ∈ [a, b] ⊂ (, ), x > , y ≥ , then there exists λ∗ >  such
that for λ ∈ (λ∗, +∞), λ ∈ (, +∞), system () has no positive solution.

Theorem . Assume that (H)(H)(H) hold and f∞ > , f > , f(t, x, y) >  for t ∈
[a, b] ⊂ (, ), x ≥ , y >  or t ∈ [a, b] ⊂ (, ), x > , y ≥ , then there exists λ∗ >  such
that for λ ∈ (λ∗, +∞), λ ∈ (, +∞), system () has no positive solution.

Remark . From the proof of Theorems .-., if we choose

f = lim inf
y→+

inf
t∈[a,b]⊂(,)

x∈[,+∞)

f(t, x, y)
φ(y)

, f 
 = lim sup

y→+
sup

t∈[,]
x∈[,+∞)

f(t, x, y)
φ(y)

,

f = lim inf
x→+

inf
t∈[a,b]⊂(,)

y∈[,+∞)

f(t, x, y)
φ(x)

, f 
 = lim sup

x→+
sup

t∈[,]
y∈[,+∞)

f(t, x, y)
φ(x)

,

f∞ = lim inf
y→+∞ inf

t∈[a,b]⊂(,)
x∈[,+∞)

f(t, x, y)
φ(y)

, f ∞
 = lim sup

y→+∞
sup

t∈[,]
x∈[,+∞)

f(t, x, y)
φ(y)

,

f∞ = lim inf
x→+∞ inf

t∈[a,b]⊂(,)
y∈[,+∞)

f(t, x, y)
φ(x)

, f ∞
 = lim sup

x→+∞
sup

t∈[,]
y∈[,+∞)

f(t, x, y)
φ(x)

,

then all the conclusion of Theorems .-. are valid.

4 Example
Consider the fractional differential system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D 
 (D



+ u(t)) + λf(t, u(t), v(t)) = ,

D 
 (D



+ v(t)) + λf(t, u(t), v(t)) = ,  < t < ,

u() = u′() = , D


+ u() = (D



+ u())′ = , u() = 


∫ 

 t– 
 v(t) dt,

v() = v′() = , D


+ v() = (D



+ v())′ = , v() =

∫ 
 u(t) dt 

 ,

()

where λi >  (i = , ) is a parameter, α = α = 
 , β = β = 

 , μ = 
 , μ = , A(t) = t,

A(t) = t 
 , g(t) = t– 

 , g(t) = , φ(x) = x, choose ϕ(x) = ϕ(x) = x. Then we have

k =
∫ 


g(t)tα– dA(t) =

∫ 


t– 

 t

 dt =




> ,

k =
∫ 


g(t)tα– dA(t) =

∫ 


t


 dt


 =




∫ 


t dt =




> ,

 – μμkk =



> .

So, condition (H) holds. Next, in order to demonstrate the application of our main results
obtained in Section , we choose two different sets of functions fi (i = , ) such that fi

satisfies the conditions of Theorems . and ..
Case . Let f(t, x, y) = x

+t + x sin y, f(t, x, y) = y

et + y sin x, choose [ 
 , 

 ] ⊂ [, ], we know
fi∞ = +∞, f 

i = . Then, by Theorem ., system () has at least one positive solution for
λi ∈ (, +∞) (i = , ).
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Case . Let f(t, x, y) = (x+x)(+sin y)
(+t)(x+) , f(t, x, y) = (y+y)(+sin x)

et (y+) , therefore, we have f ∞
 = ,

f 
 = , f ∞

 = , f 
 = , and for x, y ≤ , we get x ≤ f(t, x, y) ≤ x, y ≤ f(t, x, y) ≤ y.

By calculation, we obtain L = .
∫ 


τ


 (–τ )– 




( 
 )

dτ ≈ .. Then, by Theorem .,
system () has no positive solution for λ ∈ (, .), λ ∈ (, .).
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