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Abstract
In this paper, we deal with a class of Gilpin-Ayala ecological models with discrete and
distributed time delays. By employing a fixed point theorem of strict-set-contraction
and inequality techniques, some sufficient conditions for the existence of periodic
solutions are established. As an application, one example is given to illustrate the
validity of our main results.
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1 Introduction
In this paper, we mainly study the following Gilpin-Ayala-like functional differential sys-
tem with discrete and distributed time delays:

{
x′

i(t) = xi(t)[ri(t) – Fi(t, x(t), y(t))], i = , , . . . , n,
y′

j(t) = yj(t)[–r̂j(t) + F̂j(t, x(t), y(t))], j = , , . . . , m,
(.)

where x(t) = (x(t), x(t), . . . , xn(t)), y(t) = (y(t), y(t), . . . , ym(t)),

Fi
(
t, x(t), y(t)

)
=

n∑
k=

aik(t)xθk
k

(
t – τik(t)

)
+

m∑
l=

bil(t)yϑl
l

(
t – σil(t)

)

+
n∑

k=

cik(t)
∫ 

–∞
Kik(s)xθk

k (t + s) ds +
m∑

l=

dil(t)
∫ 

–∞
Lil(s)yϑl

l (t + s) ds,

F̂j
(
t, x(t), y(t)

)
=

n∑
k=

âkj(t)xθk
k

(
t – τ̂kj(t)

)
+

m∑
l=

b̂lj(t)yϑl
l

(
t – σ̂lj(t)

)

+
n∑

k=

ĉkj(t)
∫ 

–∞
K̂kj(s)xθk

k (t + s) ds +
m∑

l=

d̂lj(t)
∫ 

–∞
L̂lj(s)yϑl

l (t + s) ds,

ri, r̂j, aik , âkj, bil, b̂lj, cik , ĉkj, dil, d̂lj ∈ C(R, (,∞)) (i, k = , , . . . , n; j, l = , , . . . , m) and
τik ,σil, τ̂kj, σ̂lj ∈ C(R,R) (i, k = , , . . . , n; j, l = , , . . . , m) are ω-periodic functions.
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θi >  (i = , , . . . , n) and ϑj >  (j = , , . . . , m) are all constants. Kik , K̂kj, Lil, L̂lj ∈
C((–∞, ], (,∞)) with

∫ 
–∞ Kik(s) ds =

∫ 
–∞ K̂kj(s) ds =

∫ 
–∞ Lil(s) ds =

∫ 
–∞ L̂lj(s) ds = .

The importance of system (.) is due to the wide application of functional differential
equations in the ecosystem. It is well known that functional differential equations are mod-
eled by mathematical models to describe interactions and changes among species in many
ecosystems or biological systems. One of the most famous and important population dy-
namics models is the Lotka-Volterra predator-prey model proposed by Lotka and Volterra
in [, ]. This rudimentary and important model of mathematical ecology is expressed in
the form of{

x′(t) = x(t)(r – ay(t)),
y′(t) = y(t)(–d + bx(t)),

where x(t) is the density of the prey species at time t, y(t) is the density of the predator
species at time t. r is the intrinsic growth rate of the prey, a is the per-capita rate of pre-
dation of the predator, d is the death rate of the predator, b denotes the product of the
per-capita rate of predation and the rate of converting the prey into the predator.

The Lotka-Volterra model and its various generalized forms have successfully described
the interactions among species in a population dynamics. There have been many papers
dealing with its various dynamical properties, and one has seen great progress [–].
However, regardless of this fact, the Lotka-Volterra system has a disadvantageous prop-
erty, that is, the rate of change in the size of each species is a linear function of the sizes of
the interacting species. It is worth noticing that Ayala and Gilpin et al. [] conducted ex-
periments on fruit fly dynamics to test the validity of competitions. The model accounting
best for the experimental results is given by

{
x′(t) = rx(t)[ – ( x(t)

K
)θ – a

y(t)
K

],
y′(t) = ry(t)[ – a

x(t)
K

– ( y(t)
K

)θ ],

where ri is the intrinsic rate of growth of species, Ki is the environment carrying capacity
of species i in the absence of competition, θi provides a nonlinear measure of interspecific
interference, and aij provides a measure of interspecific interference. Compared with the
Lotka-Volterra system, this model called Gilpin-Ayala competition system is somewhat
more complicated and accurate. As soon as it was put forward, the Gilpin-Ayala model
received extensive attention. Many scholars have studied the dynamics of the Gilpin-Ayala
system and its various generalized forms and obtained a lot of good results (see [–]).

To the best of our knowledge, there are few papers dealing with the existence of positive
periodic solutions of system (.) by the theory of strict-set-contraction. Our main purpose
of this paper is to establish some new existence conditions of positive periodic solutions
for system (.) by using a fixed point theorem of strict-set-contraction.

2 Preliminaries
For convenience, we introduce the notation

δi = e–θi
∫ ω

 ri(τ ) dτ , δ̂j = eϑj
∫ ω

 r̂j(τ ) dτ , f M = max
t∈[,ω]

{
f (t)

}
,

�i =
θi

 – δi

∫ ω



[ n∑
k=

(
aik(s) + cik(s)

)
+

m∑
l=

(
bil(s) + dil(s)

)]
ds,
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�̂j =
ϑjδ̂j

δ̂j – 

∫ ω



[ n∑
k=

(
âik(s) + ĉik(s)

)
+

m∑
l=

(
b̂il(s) + d̂il(s)

)]
ds,

	i =
θiδ


i

 – δi

∫ ω



[ n∑
k=

δk
(
aik(s) + cik(s)

)
+

m∑
l=


δ̂l

(
bil(s) + dil(s)

)]
ds,

	̂j =
ϑj

δ̂j(δ̂j – )

∫ ω



[ n∑
k=

δk
(
âik(s) + ĉik(s)

)
+

m∑
l=


δ̂l

(
b̂il(s) + d̂il(s)

)]
ds,

� = min

{

�

, . . . ,

�n

,

�̂

, . . . ,


�̂m

}
, 	 = max

{


	
, . . . ,


	n

,


	̂
, . . . ,


	̂m

}
,

where i = , , . . . , n, j = , , . . . , m and f (t) is a continuous ω-periodic function on R.
Let xθi

i (t) = ui(t), yϑj
j (t) = vj(t), i = , , . . . , n, j = , , . . . , m, then system (.) changes into

the following system:

{
u′

i(t) = θiui(t)[ri(t) – Fi(t, u(t), v(t))], i = , , . . . , n,
v′

j(t) = ϑjvj(t)[–r̂j(t) + F̂j(t, u(t), v(t))], j = , , . . . , m,
(.)

where u(t) = (u(t), u(t), . . . , un(t)), v(t) = (v(t), v(t), . . . , vm(t)),

Fi
(
t, u(t), v(t)

)
=

n∑
k=

aik(t)uk
(
t – τik(t)

)
+

m∑
l=

bil(t)vl
(
t – σil(t)

)

+
n∑

k=

cik(t)
∫ 

–∞
Kik(s)uk(t + s) ds +

m∑
l=

dil(t)
∫ 

–∞
Lil(s)vl(t + s) ds,

F̂j
(
t, u(t), v(t)

)
=

n∑
k=

âkj(t)uk
(
t – τ̂kj(t)

)
+

m∑
l=

b̂lj(t)vl
(
t – σ̂lj(t)

)

+
n∑

k=

ĉkj(t)
∫ 

–∞
K̂kj(s)uk(t + s) ds +

m∑
l=

d̂lj(t)
∫ 

–∞
L̂lj(s)vl(t + s) ds.

Obviously, if (ū(t), . . . , ūn(t), v̄(t), . . . , v̄m(t)) is a positive ω-periodic solution of system

(.), then (ū

θ
 (t), . . . , ū


θn
n (t), v̄


ϑ
 (t), . . . , v̄


ϑm
m (t)) is a positive ω-periodic solution of system

(.). Hence, we only need to argue the existence of a positive ω-periodic solutions of sys-
tem (.). To do this, we introduce the following lemma.

Lemma . Let r ∈ C(R,R), a ∈ R and ya ∈ R, the unique solution of the initial value
problem

y′(t) = r(t)y(t) + h(t), y(a) = ya

is given by

y(t) = yae
∫ t

a r(s) ds +
∫ t

a
e–

∫ s
t r(τ ) dτ h(s) ds.

The existence of periodic solutions of system (.) is equivalent to the existence of peri-
odic solutions of the corresponding integral system. So the following lemma is important
in our discussion.
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Lemma . x(t) = (u(t), v(t))T = (u(t), . . . , un(t), v(t), . . . , vm(t))T is an ω-periodic solution
of (.) is equivalent to x(t) is an ω-periodic solution of the following integral system:

{
ui(t) = θi

∫ t+ω

t Gi(t, s)ui(s)Fi(s, u(s), v(s)) ds, i = , , . . . , n,
vj(t) = ϑj

∫ t+ω

t Ĝj(t, s)vj(s)F̂j(s, u(s), v(s)) ds, j = , , . . . , m,
(.)

where

Gi(t, s) =
e–θi

∫ s
t ri(τ ) dτ

 – e–θi
∫ ω

 ri(τ ) dτ
, s ∈ [t, t + ω], i = , , . . . , n, (.)

and

Ĝj(t, s) =
eϑj

∫ s
t r̂j(τ ) dτ

eϑj
∫ ω

 r̂j(τ ) dτ – 
, s ∈ [t, t + ω], j = , , . . . , m. (.)

Proof If (u(t), v(t)) is an ω-periodic solution of (.), by applying Lemma . and the first
equation of (.), for ξ ≥ t, we have

ui(ξ ) = ui(t)eθi
∫ ξ

t ri(s) ds – θi

∫ ξ

t
e–θi

∫ s
ξ ri(τ ) dτ ui(s)Fi

(
s, u(s), v(s)

)
ds.

Let ξ = t + ω in the above equality and notice that ui(t) = ui(t + ω), ri(t + ω) = ri(t), we have

ui(t) = ui(t + ω) = ui(t)eθi
∫ t+ω

t ri(s) ds – θi

∫ t+ω

t
e–θi

∫ s
t+ω ri(τ ) dτ ui(s)Fi

(
s, u(s), v(s)

)
ds

= ui(t)eθi
∫ ω

 ri(s) ds – θi

∫ t+ω

t
eθi

∫ ω
 ri(τ ) dτ e–θi

∫ s
t ri(τ ) dτ ui(s)Fi

(
s, u(s), v(s)

)
ds,

which implies that

ui(t) = θi

∫ t+ω

t

e–θi
∫ s

t ri(τ ) dτ

 – e–θi
∫ ω

 ri(τ ) dτ
ui(s)Fi

(
s, u(s), v(s)

)
ds

= θi

∫ t+ω

t
Gi(t, s)ui(s)Fi

(
s, u(s), v(s)

)
ds.

Similarly, we get

vj(t) = ϑj

∫ t+ω

t
Ĝj(t, s)vj(s)F̂j

(
s, u(s), v(s)

)
ds.

Thus, we conclude that (u(t), v(t)) satisfies (.), and vice versa. The proof is complete. �

Lemma . If ri(t), r̂j(t) > , ∀t ∈ R, and θi,ϑj > , i = , , . . . , n, j = , , . . . , m, then Gi(t, s)
(i = , , . . . , n) and Ĝj(t, s) (j = , , . . . , m) defined by (.) and (.) satisfy the following:

() δi
–δi

≤ Gi(t, s) ≤ 
–δi

, ∀s ∈ [t, t + ω], where δi � e–θi
∫ ω

 ri(τ ) dτ , i = , , . . . , n;

() 
δ̂j–

≤ Ĝj(t, s) ≤ δ̂j
δ̂j–

, ∀s ∈ [t, t + ω], where δ̂j � eϑj
∫ ω

 r̂j(τ ) dτ , j = , , . . . , m;

() Gi(t + ω, s + ω) = Gi(t, s), i = , , . . . , n, Ĝj(t + ω, s + ω) = Ĝj(t, s), j = , , . . . , m.
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Proof Since e–θi
∫ s

t ri(τ ) dτ is monotone decreasing and eϑj
∫ s

t r̂j(τ ) dτ is monotone increasing
on the variable s in [t, t + ω], respectively, we have

δi

 – δi
=

e–θi
∫ t+ω

t ri(τ ) dτ

 – δi
≤ Gi(t, s) ≤ e–θi

∫ t
t ri(τ ) dτ

 – δi
=


 – δi

,


δ̂j – 

=
eϑj

∫ t
t r̂j(τ ) dτ

δ̂j – 
≤ Ĝj(t, s) ≤ eϑj

∫ t+ω
t r̂j(τ ) dτ

δ̂j – 
=

δ̂j

δ̂j – 
.

Thus, assertions () and () hold. Now we show that assertion () holds too. Indeed, by the
integration by substitution, we have

Gi(t + ω, s + ω) =
e–θi

∫ s+ω
t+ω ri(τ ) dτ

 – e–θi
∫ ω

 ri(τ ) dτ
=

e–θi
∫ s

t ri(ξ+ω) dξ

 – e–θi
∫ ω

 ri(τ ) dτ
=

e–θi
∫ s

t ri(ξ ) dξ

 – e–θi
∫ ω

 ri(τ ) dτ
= Gi(t, s).

It is similar to prove that Ĝj(t + ω, s + ω) = Ĝj(t, s). The proof of Lemma . is complete. �

For the sake of obtaining the existence of a periodic solution of system (.), we need
the following preparations.

Let X be a real Banach space and K be a closed, nonempty subset of X. Then K is a cone
provided

(i) kα + lβ ∈ K for all α,β ∈ K and all k, l ≥ ;
(ii) α, –α ∈ K imply α = θ , here θ is the zero element of X .

Let E be a Banach space and K be a cone in E. The semi-order induced by the cone K
is denoted by ≤. That is, x ≤ y if and only if y – x ∈ K . In addition, for a bounded subset
A ⊂ E, let αE(A) denote the (Kuratowski) measure of non-compactness defined by

αE(A) = inf
{
δ >  : A admits a finite cover by subsets of Ai ⊂ A

such that diam(Ai) ≤ δ
}

,

where diam(Ai) denotes the diameter of the set Ai.
Let E, F be two Banach spaces and D ⊂ E. A continuous and bounded map  : � → F

is called k-set contractive if, for any bounded set S ⊂ D, we have

αF
(
(S)

) ≤ kαE
(
(S)

)
.

 is called strict-set-contractive if it is k-set-contractive for some  ≤ k < . Particularly,
completely continuous operators are -set-contractive.

The following lemma is useful for the proof of our main results of this paper.

Lemma . ([, ]) Let K be a cone in the real Banach space X and Kr,R = {x ∈ K :
r ≤ ‖x‖ ≤ R} with R > r > . Suppose that  : Kr,R → K is strict-set-contractive such that
one of the following two conditions is satisfied:

(i) x � x, ∀x ∈ K , ‖x‖ = r and x � x, ∀x ∈ K , ‖x‖ = R.
(ii) x � x, ∀x ∈ K , ‖x‖ = r and x � x, ∀x ∈ K , ‖x‖ = R.

Then  has at least one fixed point in Kr,R.
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Let C(R,Rn+m) be a set of the continuous function x : R → R
n+m. Define X = {x :

x ∈ C(R,Rn+m), x(t + ω) = x(t)} endowed with the norm defined by ‖x‖ = max≤i≤n+m |xi|,
where |xi| = supt∈[,ω]T{|xi(t)|}, i = , , . . . , n + m. Then X is a Banach space. In view of
Lemma ., we define the cone K in X as

K =
{

x = (u, . . . , un, v, . . . , vm) ∈ X : ui(t) ≥ δi|ui|, vj(t) ≥ 
δ̂j

|vj|, t ∈ [,ω]
}

.

Let the map  be defined by

(x)(t) =
(
(x)(t), . . . , (nx)(t), (�x)(t), . . . , (�mx)(t)

)T , (.)

where x ∈ K , t ∈R,

(ix)(t) = θi

∫ t+ω

t
Gi(t, s)ui(s)Fi

(
s, u(s), v(s)

)
ds, i = , , . . . , n,

(�jx)(t) = ϑj

∫ t+ω

t
Ĝj(t, s)vj(s)F̂j

(
s, u(s), v(s)

)
ds, j = , , . . . , m,

and Gi(t, s) (i = , , . . . , n), Ĝj(t, s) (j = , , . . . , m) defined by (.) and (.), respectively.

Lemma .  : K → K defined by (.) is well defined, that is, (K) ⊂ K .

Proof For any x ∈ K , it is clear that x ∈ C(R,Rn+m). In view of Lemma . and (.), we
obtain

(ix)(t + ω) = θi

∫ t+ω

t+ω

Gi(t + ω, s)ui(s)Fi
(
s, u(s), v(s)

)
ds

= θi

∫ t+ω

t
Gi(t + ω, τ + ω)ui(τ + ω)Fi

(
τ + ω, u(τ + ω), v(τ + ω)

)
dτ

= θi

∫ t+ω

t
Gi(t + ω, τ + ω)ui(τ + ω)

[ n∑
k=

aik(τ + ω)uk
(
τ + ω – τik(τ + ω)

)

+
m∑

l=

bil(τ + ω)vl
(
τ + ω – σil(τ + ω)

)

+
n∑

k=

cik(τ + ω)
∫ 

–∞
Kik(s)uk(τ + ω + s) ds

+
m∑

l=

dil(τ + ω)
∫ 

–∞
Lil(s)vl(τ + ω + s) ds

]
dτ

= θi

∫ t+ω

t
Gi(t, τ )ui(τ )

[ n∑
k=

aik(τ )uk
(
τ – τik(τ )

)
+

m∑
l=

bil(τ )vl
(
τ – σil(τ )

)

+
n∑

k=

cik(τ )
∫ 

–∞
Kik(s)uk(τ + s) ds +

m∑
l=

dil(τ )
∫ 

–∞
Lil(s)vl(τ + s) ds

]
dτ

= θi

∫ t+ω

t
Gi(t, τ )ui(τ )Fi

(
τ , u(τ ), v(τ )

)
dτ = (ix)(t),
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that is, (ix)(t + ω) = (ix)(t), ∀t ∈ R, i = , , . . . , n. Similarly, we have (�jx)(t + ω) =
(�jx)(t), ∀t ∈R, j = , , . . . , m. So x ∈ X. For any x ∈ K , we have

|ix| ≤ θi

 – δi

∫ ω


ui(s)Fi

(
s, u(s), v(s)

)
ds, i = , , . . . , n,

|�jx| ≤ δ̂jϑj

δ̂j – 

∫ ω


vj(s)F̂j

(
s, u(s), v(s)

)
ds, j = , , . . . , m,

and

(ix)(t) ≥ δiθi

 – δi

∫ t+ω

t
ui(s)Fi

(
s, u(s), v(s)

)
ds

=
δiθi

 – δi

∫ ω


ui(s)Fi

(
s, u(s), v(s)

)
ds ≥ δi|ix|,

(�jx)(t) ≥ ϑj

δ̂j – 

∫ t+ω

t
vj(s)F̂j

(
s, u(s), v(s)

)
ds

=
ϑj

δ̂j – 

∫ ω


vj(s)F̂j

(
s, u(s), v(s)

)
ds ≥ 

δ̂j
|�jx|.

So x ∈ K . This completes the proof of Lemma .. �

Lemma .  : K → K defined by (.) is completely continuous.

Proof It is easy to see that  is continuous and bounded. Now we show that  maps
bounded sets into relatively compact sets. Let � ⊂ K be an arbitrary open bounded
set in K , then there exists a number R >  such that ‖x‖ < R for any x = (u, . . . , un,
v, . . . , vm)T ∈ �. We prove that (�) is compact. In fact, for any x ∈ � and t ∈ [,ω],
we have

∣∣(ix)(t)
∣∣ = θi

∫ t+ω

t
Gi(t, s)ui(s)Fi

(
s, u(s), v(s)

)
ds

≤ θi

 – δi

∫ ω


ui(s)Fi

(
s, u(s), v(s)

)
ds

=
θi

 – δi

∫ ω


ui(s)

[ n∑
k=

aik(s)uk
(
s – τik(s)

)
+

m∑
l=

bil(s)vl
(
s – σil(s)

)

+
n∑

k=

cik(s)
∫ 

–∞
Kik(τ )uk(τ + s) dτ +

m∑
l=

dil(s)
∫ 

–∞
Lil(τ )vl(τ + s) dτ

]
ds

≤ θiω|ui|
 – δi

[ n∑
k=

aM
ik |uk| +

m∑
l=

bM
il |vl|

+
n∑

k=

cM
ik

∫ 

–∞
Kik(τ )|uk| dτ +

m∑
l=

dM
il

∫ 

–∞
Lil(τ )|vl| dτ

]

≤ θiω‖x‖
 – δi

[ n∑
k=

aM
ik ‖x‖ +

m∑
l=

bM
il ‖x‖
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+
n∑

k=

cM
ik

∫ 

–∞
Kik(τ )‖x‖dτ +

m∑
l=

dM
il

∫ 

–∞
Lil(τ )‖x‖dτ

]

<
θiωR

 – δi

[ n∑
k=

(
aM

ik + cM
ik

)
+

m∑
l=

(
bM

il + dM
il

)]
� Ai, i = , , . . . , n,

and

∣∣(ix)′(t)
∣∣ = θi

∣∣ri(t)(ix)(t) – ui(t)Fi
(
t, u(t), v(t)

)∣∣
≤ θirM

i Ai + R

[ n∑
k=

(
aM

ik + cM
ik

)
+

m∑
l=

(
bM

il + dM
il

)]
� Bi, i = , , . . . , n.

Similarly, for any x ∈ � and t ∈ [,ω], we have

∣∣(�jx)(t)
∣∣ <

δ̂jϑjωR

δ̂j – 

[ n∑
k=

(
âM

ik + ĉM
ik

)
+

m∑
l=

(
b̂M

il + d̂M
il

)]
� Âj, j = , , . . . , m,

and

∣∣(�jx)′(t)
∣∣ ≤ ϑjr̂M

j Âj + R

[ n∑
k=

(
âM

ik + ĉM
ik

)
+

m∑
l=

(
b̂M

il + d̂M
il

)]
� B̂j, j = , , . . . , m.

Hence,

∥∥(x)
∥∥ ≤ max{A, . . . , An, Â, . . . , Âm}, ∥∥(x)′

∥∥ ≤ max{B, . . . , Bn, B̂, . . . , B̂m}.

It follows from Lemma . in [] that (�̄) is relatively compact in X. The proof of
Lemma . is complete. �

3 Main results
In this section, we shall give our main results.

Theorem . If � < , then system (.) has at least one positive ω-periodic solution.

Proof Take  < r < � and R > 	. Noting that  < δi <  and δ̂j > , we have �i > 	i and
�̂j > 	̂j. Then we obtain  < r < � < 	 < R. It follows from Lemmas .-. and � <  that
 is strict-set-contractive on Kr,R. By Lemma ., it is easy to see that if there exists x∗ ∈ K
such that x∗ = x∗, then x∗ is one positive ω-periodic solution of system (.). Now, we
shall prove that condition (ii) of Lemma . holds.

First, we prove that x � x, ∀x ∈ K , ‖x‖ = r. Otherwise, there exists x ∈ K , ‖x‖ = r such
that x �= x. So, ‖x‖ >  and x – x ∈ K , which implies that

(ix)(t) – ui(t) ≥ δi|ix – ui| ≥ , ∀t ∈ [,ω], i = , , . . . , n, (.)

and

(�jx)(t) – vj(t) ≥ 
δ̂j

|�jx – vj| ≥ , ∀t ∈ [,ω], j = , , . . . , m. (.)
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Moreover, for t ∈ [,ω], we have

∣∣(ix)(t)
∣∣ = θi

∫ t+ω

t
Gi(t, s)ui(s)Fi

(
s, u(s), v(s)

)
ds ≤ θi

 – δi

∫ ω


ui(s)Fi

(
s, u(s), v(s)

)
ds

=
θi

 – δi

∫ ω


ui(s)

[ n∑
k=

aik(s)uk
(
s – τik(s)

)
+

m∑
l=

bil(s)vl
(
s – σil(s)

)

+
n∑

k=

cik(s)
∫ 

–∞
Kik(τ )uk(τ + s) dτ +

m∑
l=

dil(s)
∫ 

–∞
Lil(τ )vl(τ + s) dτ

]
ds

≤ θi|ui|
 – δi

∫ ω



[ n∑
k=

aik(s)|uk| +
m∑

l=

bil(s)|vl|

+
n∑

k=

cik(s)
∫ 

–∞
Kik(τ )|uk| dτ +

m∑
l=

dil(s)
∫ 

–∞
Lil(τ )|vl| dτ

]
ds

≤ θi‖x‖

 – δi

∫ ω



[ n∑
k=

(
aik(s) + cik(s)

)
+

m∑
l=

(
bil(s) + dil(s)

)]
ds

= �i‖x‖ <
�i

�
‖x‖ ≤ ‖x‖ = r, i = , , . . . , n. (.)

Similarly, for t ∈ [,ω], we have

∣∣(�jx)(t)
∣∣ = ϑj

∫ t+ω

t
Ĝj(t, s)vj(s)F̂j

(
s, u(s), v(s)

)
ds ≤ ϑjδ̂j

δ̂j – 

∫ ω


vj(s)F̂j

(
s, u(s), v(s)

)
ds

=
ϑjδ̂j

δ̂j – 

∫ ω


vj(s)

[ n∑
k=

âik(s)uk
(
s – τik(s)

)
+

m∑
l=

b̂il(s)vl
(
s – σil(s)

)

+
n∑

k=

ĉik(s)
∫ 

–∞
K̂ik(τ )uk(τ + s) dτ +

m∑
l=

d̂il(s)
∫ 

–∞
L̂il(τ )vl(τ + s) dτ

]
ds

≤ ϑjδ̂j|vj|
δ̂j – 

∫ ω



[ n∑
k=

âik(s)|uk| +
m∑

l=

b̂il(s)|vl|

+
n∑

k=

ĉik(s)
∫ 

–∞
K̂ik(τ )|uk| dτ +

m∑
l=

d̂il(s)
∫ 

–∞
L̂il(τ )|vl| dτ

]
ds

≤ ϑjδ̂j‖x‖

δ̂j – 

∫ ω



[ n∑
k=

(
âik(s) + ĉik(s)

)
+

m∑
l=

(
b̂il(s) + d̂il(s)

)]
ds

= �̂j‖x‖ <
�̂j

�
‖x‖ ≤ ‖x‖ = r, j = , , . . . , m. (.)

From (.)-(.), we get ‖x‖ ≤ ‖x‖ < r = ‖x‖, which is a contradiction. Next, we prove
that x � x, ∀x ∈ K , ‖x‖ = R also holds. Indeed, we only need to prove that x ≮ x,
∀x ∈ K , ‖x‖ = R. For the sake of contradiction, suppose that there exists x ∈ K and ‖x‖ = R
such that x < x. Thus x – x ∈ K \ {θ = (, , . . . , )T }. Furthermore, for any t ∈ [,ω], we
have

ui(t) – (x)(t) ≥ δi|ui – ix| ≥ , i = , , . . . , n, (.)
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and

vj(t) – (�x)(t) ≥ 
δ̂j

|vj – �jx| ≥ , j = , , . . . , m. (.)

For any t ∈ [,ω], we have

∣∣(ix)(t)
∣∣ = θi

∫ t+ω

t
Gi(t, s)ui(s)Fi

(
s, u(s), v(s)

)
ds ≥ θiδi

 – δi

∫ ω


ui(s)Fi

(
s, u(s), v(s)

)
ds

=
θiδi

 – δi

∫ ω


ui(s)

[ n∑
k=

aik(s)uk
(
s – τik(s)

)
+

m∑
l=

bil(s)vl
(
s – σil(s)

)

+
n∑

k=

cik(s)
∫ 

–∞
Kik(τ )uk(τ + s) dτ +

m∑
l=

dil(s)
∫ 

–∞
Lil(τ )vl(τ + s) dτ

]
ds

≥ θiδ

i |ui|

 – δi

∫ ω



[ n∑
k=

aik(s)δk|uk| +
m∑

l=

bil(s)

δ̂l

|vl|

+
n∑

k=

cik(s)
∫ 

–∞
Kik(τ )δk|uk| dτ +

m∑
l=

dil(s)
∫ 

–∞
Lil(τ )


δ̂l

|vl| dτ

]
ds

≥ θiδ

i ‖x‖

 – δi

∫ ω



[ n∑
k=

δk
(
aik(s) + cik(s)

)
+

m∑
l=


δ̂l

(
bil(s) + dil(s)

)]
ds

= 	i‖x‖ >
	i

	
‖x‖ ≥ ‖x‖ = R, i = , , . . . , n. (.)

Similarly, for t ∈ [,ω], we have

∣∣(�jx)(t)
∣∣ = ϑj

∫ t+ω

t
Ĝj(t, s)vj(s)F̂j

(
s, u(s), v(s)

)
ds ≥ ϑj

δ̂j – 

∫ ω


vj(s)F̂j

(
s, u(s), v(s)

)
ds

=
ϑj

δ̂j – 

∫ ω


vj(s)

[ n∑
k=

âik(s)uk
(
s – τik(s)

)
+

m∑
l=

b̂il(s)vl
(
s – σil(s)

)

+
n∑

k=

ĉik(s)
∫ 

–∞
K̂ik(τ )uk(τ + s) dτ +

m∑
l=

d̂il(s)
∫ 

–∞
L̂il(τ )vl(τ + s) dτ

]
ds

≥ ϑj|vj|
δ̂j(δ̂j – )

∫ ω



[ n∑
k=

âik(s)δk|uk| +
m∑

l=

b̂il(s)

δ̂l

|vl|

+
n∑

k=

ĉik(s)
∫ 

–∞
K̂ik(τ )δk|uk| dτ +

m∑
l=

d̂il(s)
∫ 

–∞
L̂il(τ )


δ̂l

|vl| dτ

]
ds

≥ ϑj‖x‖

δ̂j(δ̂j – )

∫ ω



[ n∑
k=

δk
(
âik(s) + ĉik(s)

)
+

m∑
l=


δ̂l

(
b̂il(s) + d̂il(s)

)]
ds

= 	̂j‖x‖ >
	̂j

	
‖x‖ ≥ ‖x‖ = R, j = , , . . . , m. (.)

From (.)-(.), we obtain ‖x‖ > ‖x‖ ≥ R, which is a contradiction. Therefore, condition
(ii) of Lemma . holds. By Lemma ., we see that  has at least one positive nonzero
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fixed point in Kr,R. Therefore, system (.) has at least one positive ω-periodic solution
(u∗

 (t), . . . , u∗
n(t), v∗

 (t), . . . , v∗
m(t)). Thus, system (.) has at least one positive ω-periodic so-

lution ((u∗
 (t))


θ , . . . , (u∗

n(t))

θn , (v∗

 (t))


ϑ , . . . , (v∗
m(t))


ϑm ). The proof of Theorem . is com-

plete. �

System (.) contains the following n-species Gilpin-Ayala competitive population dy-
namics model:

x′
i(t) = xi(t)

[
ri(t) –

n∑
k=

aik(t)xθk
k

(
t – τik(t)

)
–

n∑
k=

cik(t)
∫ 

–∞
Kik(s)xθk

k (t + s) ds

]
, (.)

where i = , , . . . , n, ri, aik , cik ∈ C(R, (,∞)) (i, k = , , . . . , n) and τik ∈ C(R,R)
(i, k = , , . . . , n) are ω-periodic functions. θk >  (k = , , . . . , n) is a constant. Kik ∈
C((–∞, ], (,∞)) with

∫ 
–∞ Kik(s) ds = . There exists a positive integer p such that

ti,k+p = tk + ω, k ∈ Z. Without loss of generality, we also assume that [,ω) ∩ {tk : k ∈ Z} =
{t, t, . . . , tp}.

Similar to the previous arguments, we conclude the existence of a positive ω-periodic
solution for system (.) as follows.

Theorem . If � = min{ 
�

, 
�

, . . . , 
�n

} < , where �i = θi
–δi

∑n
k=

∫ ω

 [aik(s) + cik(s)] ds,
then system (.) has at least one positive ω-periodic solution.

4 Illustrative example
Consider the following two-species Gilpin-Ayala population model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′(t) = x(t)[r(t) – a(t)xθ (t – τ (t)) – b(t)yϑ (t – σ (t))
– c(t)

∫ 
–∞ K(s)xθ (t + s) ds – d(t)

∫ 
–∞ L(s)yϑ (t + s) ds],

y′(t) = y(t)[–r̂(t) + â(t)xθ (t – τ̂ (t)) + b̂(t)yϑ (t – σ̂ (t))
+ ĉ(t)

∫ 
–∞ K̂(s)xθ (t + s) ds + d̂(t)

∫ 
–∞ L̂(s)yϑ (t + s) ds],

(.)

where θ = 
 , ϑ = , r(t) = (+cos t) ln 

π
, r̂(t) = (+sin t) ln 

π
, a(t) = +cos t

π
, b(t) = –sin t

π
, c(t) =

+π | sin t|
π

, d(t) = +cos t
π

, â(t) = –cos t
π

, b̂(t) = +sin t
π

, ĉ(t) = +π | sin t|
π

, d̂(t) = +cos t
π

, τ (t) = | sin t|
 ,

σ (t) = +sin t
 , τ̂ (t) = | cos t|

 , σ̂ (t) = –| cos t|
 , K(s) = K̂(s) = es, L(s) = L̂(s) =

√

π

e– s
 .

Obviously, r(t), r̂(t), a(t), b(t), c(t), d(t), â(t), b̂(t), ĉ(t), d̂(t), τ (t), σ (t), τ̂ (t) and σ̂ (t) are
all positive π-periodic functions. By a simple calculation, we have

∫ 

–∞
K(s) ds =

∫ 

–∞
K̂(s) ds =

∫ 

–∞
L(s) ds =

∫ 

–∞
L̂(s) ds = ,

δ = e–θ
∫ π

 r(s) ds =



, δ̂ = eϑ
∫ π

 r̂(s) ds = ,

� =
θ

 – δ

∫ π



[
a(s) + b(s) + c(s) + d(s)

]
ds = ,

�̂ =
ϑδ̂

δ̂ – 

∫ π



[
â(s) + b̂(s) + ĉ(s) + d̂(s)

]
ds = ,

� = min

{

�

,

�̂

}
= min

{



,



}
=




< .
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Thus, all the assumptions of Theorem . are satisfied. Hence, system (.) has at least one
positive π-periodic solution.
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