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Abstract
In this paper, by applying the technique of measure of weak noncompactness and
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the Pettis integrability assumption for a coupled system of Hadamard fractional
differential equations.
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1 Introduction
Fractional differential equations have recently been applied in various areas of engineer-
ing, mathematics, physics and bio-engineering, and other applied sciences [, ]. There
has been a significant development in fractional differential and integral equations in re-
cent years; see the monographs of Abbas et al. [, ], Kilbas et al. [], and the papers
[–].

The measure of weak noncompactness was introduced by De Blasi []. The strong mea-
sure of noncompactness was considered by Banas̀ and Goebel [] and subsequently de-
veloped and used in many papers; see, for example, Akhmerov et al. [], Alvàrez [],
Benchohra et al. [], Guo et al. [], and the references therein. In [, ] the au-
thors considered some existence results by applying the techniques of the measure of
noncompactness. Recently, several researchers obtained other results by application of
the technique of measure of weak noncompactness; see [, , ] and the references
therein.

In this paper, we discuss the existence of weak solutions to the following coupled system
of Hadamard fractional differential equations:

⎧
⎨

⎩

(HDr
u)(t) = f(t, u(t), v(t)),

(HDρ
 v)(t) = f(t, u(t), v(t));

t ∈ I := [, T], ()
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with the following initial conditions:

⎧
⎨

⎩

(HI–r
 u)(t)|t= = φ,

(HI–ρ
 v)(t)|t= = ψ ,

()

where T > , r,ρ ∈ (, ], φ,ψ ∈ E, f, f : I × E × E → E are given continuous functions, E
is a real (or complex) Banach space with norm ‖ · ‖E and dual E∗ such that E is the dual
of a weakly compactly generated Banach space X, HIr

 is the left-sided mixed Hadamard
integral of order r, and HDr

 is the Hadamard fractional derivative of order r.

2 Preliminaries
Let C be the Banach space of all continuous functions w from I into E with the supremum
(uniform) norm

‖w‖∞ := sup
t∈I

∥
∥w(t)

∥
∥

E .

As usual, AC(I) denotes the space of absolutely continuous functions from I into E. By
Cr,ln(I), we denote the weighted space of continuous functions defined by

Cr,ln(I) =
{

w(t) : (ln t)rw(t) ∈ C
}

,

with the norm

‖w‖Cr,ln := sup
t∈I

∥
∥(ln t)rw(t)

∥
∥

E.

We denote ‖w‖Cr,ln by ‖w‖Cr . Also, by Cr,ρ,ln(I) := Cr,ln(I) × Cρ,ln(I) we denote the product
weighted space with the norm

∥
∥(u, v)

∥
∥
Cr,ρ,ln(I) = ‖u‖Cr + ‖v‖Cρ .

In the following we denote ‖(u, v)‖Cr,ρ,ln(I) by ‖(u, v)‖C .
Let (E, w) = (E,σ (E, E∗)) be the Banach space E with its weak topology.

Definition . A Banach space X is called weakly compactly generated (WCG for short)
if it contains a weakly compact set whose linear span is dense in X.

Definition . A function h : E → E is said to be weakly sequentially continuous if h takes
each weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for any
(un) in E with un → u in (E, w) then h(un) → h(u) in (E, w)).

Definition . ([]) The function u : I → E is said to be Pettis integrable on I if and only
if there is an element uJ ∈ E corresponding to each J ⊂ I such that φ(uJ ) =

∫

J φ(u(s)) ds for
all φ ∈ E∗, where the integral on the right-hand side is assumed to exist in the sense of
Lebesgue (by definition, uJ =

∫

J u(s) ds).
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Let P(I, E) be the space of all E-valued Pettis integrable functions on I , and L(I, E) be
the Banach space of Lebesgue integrable functions u : I → E. Define the class P(I, E) by

P(I, E) =
{

u ∈ P(I, E) : ϕ(u) ∈ L(I, E) for every ϕ ∈ E∗}.

The space P(I, E) is normed by

‖u‖P = sup
ϕ∈E∗ ,‖ϕ‖≤

∫ T



∣
∣ϕ

(
u(x)

)∣
∣dλx,

where λ stands for a Lebesgue measure on I .
The following result is due to Pettis (see [], Theorem . and Corollary .).

Proposition . ([]) If u ∈ P(I, E) and h is a measurable and essentially bounded E-
valued function, then uh ∈ P(J , E).

For all that follows, the symbol “
∫

” denotes the Pettis integral.
Let us recall some definitions and properties of Hadamard fractional integration and

differentiation. We refer to [, ] for a more detailed analysis.

Definition . ([, ]) The Hadamard fractional integral of order q >  for a function
g ∈ L(I, E) is defined as

(HIq
 g

)
(x) =


�(q)

∫ x



(

ln
x
s

)q– g(s)
s

ds,

provided the integral exists, where �(·) is the (Euler’s) gamma function defined by

�(ξ ) =
∫ ∞


tξ–e–t dt, ξ > .

Example . Let  < q < . Then

HIq
 ln t =


�( + q)

(ln t)+q for a.e. t ∈ [, e].

Remark . Let g ∈ P([, T], E). For every ϕ ∈ E∗, we have

ϕ
(HIq

 g
)
(x) =

(HIq
 ϕg

)
(x) for a.e. x ∈ I.

Analogous to the Riemann-Liouville fractional calculus, the Hadamard fractional
derivative is defined in terms of the Hadamard fractional integral in the following way.
Set

δ = x
d

dx
, q > , n = [q] + ,

where [q] is the integer part of q, and

ACn
δ :=

{
u : [, T] → E : δn–[u(x)

] ∈ AC(I)
}

.
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Definition . ([, ]) The Hadamard fractional derivative of order q applied to the func-
tion w ∈ ACn

δ is defined as

(HDq
 w

)
(x) = δn(HIn–q

 w
)
(x).

Example . Let  < q < . Then

HDq
 ln t =


�( – q)

(ln t)–q for a.e. t ∈ [, e].

It has been proved (see, e.g., Kilbas [], Theorem .) that in the space L(I, E), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.,

(HDq

)(HIq

 w
)
(x) = w(x).

From Theorem . of [], we have

(HIq

)(HDq

 w
)
(x) = w(x) –

(HI–q
 w)()
�(q)

(ln x)q–.

Corollary . Let h : I → E be a continuous function. A function w ∈ L(I, E) is said to be
a solution of the equation

(HDq
 w

)
(t) = h(t)

if and only if u satisfies the following Hadamard integral equation:

w(t) =
(HI–q

 u)()
�(q)

(ln t)q– +
(HIq

 h
)
(t).

Definition . ([]) Let E be a Banach space, �E be the bounded subsets of E, and B

be the unit ball of E. The De Blasi measure of weak noncompactness is the map β : �E →
[,∞) defined by

β(X) = inf{ε >  : there exists weakly compact � ⊂ E such that X ⊂ εB + �}.

The De Blasi measure of weak noncompactness satisfies the following properties:
(a) A ⊂ B ⇒ β(A) ≤ β(B),
(b) β(A) =  ⇔ A is weakly relatively compact,
(c) β(A ∪ B) = max{β(A),β(B)},
(d) β(Aω) = β(A) (Aω denotes the weak closure of A),
(e) β(A + B) ≤ β(A) + β(B),
(f ) β(λA) = |λ|β(A),
(g) β(conv(A)) = β(A),
(h) β(

⋃
|λ|≤h λA) = hβ(A).

The next result follows directly from the Hahn-Banach theorem.
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Proposition . Let E be a normed space, and x ∈ E with x �= . Then there exists
ϕ ∈ E∗ with ‖ϕ‖ =  and ϕ(x) = ‖x‖.

For a given set V of functions v : I → E, let us denote

V (t) =
{

v(t) : v ∈ V
}

, t ∈ I,

and

V (I) =
{

v(t) : v ∈ V , t ∈ I
}

.

Lemma . ([]) Let H ⊂ C be a bounded and equicontinuous subset. Then the function
t → β(H(t)) is continuous on I , and

βC(H) = max
t∈I

β
(
H(t)

)
,

and

β

(∫

I
u(s) ds

)

≤
∫

I
β
(
H(s)

)
ds,

where H(s) = {u(s) : u ∈ H , s ∈ I}, and βC is the De Blasi measure of weak noncompactness
defined on the bounded sets of C.

For our purpose, we will need the following fixed point theorem.

Theorem . ([]) Let Q be a nonempty, closed, convex, and equicontinuous subset of
a metrizable locally convex vector space C(J , E) such that  ∈ Q. Suppose T : Q → Q is
weakly-sequentially continuous. If the implication

V = conv
({} ∪ T(V )

) ⇒ V is relatively weakly compact ()

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3 Existence of weak solutions
Let us start by defining what we mean by a weak solution of the coupled system ()-().

Definition . By a weak solution of the coupled system ()-(), we mean measurable
coupled functions (u, v) ∈ Cr,ρ,ln satisfying conditions () and equations () on I .

The following hypotheses will be used in the sequel.

(H) For a.e. t ∈ I , the functions v → fi(t, v, ·), i = , , and w → fi(t, ·, w), i = , , are weakly
sequentially continuous;

(H) For each v, w ∈ E, the function t → f (t, v, w) is Pettis integrable a.e. on I ;
(H) There exists pi ∈ C(I, [,∞)), i = , , such that for all ϕ ∈ E∗, we have

∣
∣ϕ

(
fi(t, u, v)

)∣
∣ ≤ pi(t)‖ϕ‖

 + ‖ϕ‖ + ‖u‖E + ‖v‖E
for a.e. t ∈ I and each u, v ∈ E;
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(H) For each bounded and measurable set B ⊂ E and for each t ∈ I , we have

β
(
fi(t, B, B)

) ≤ (ln t)–rpi(t)β(B), i = , .

Set

p∗
i = sup

t∈I
pi(t), i = , .

Theorem . Assume that hypotheses (H)-(H) hold. If

L :=
p∗

 ln T
�( + r)

+
p∗

 ln T
�( + ρ)

< , ()

then the coupled system ()-() has at least one weak solution defined on I .

Proof Define the operators N : Cr,ln → Cr,ln and N : Cρ,ln → Cρ,ln by

(Nu)(t) =
φ

�(r)
(ln t)r– +

∫ t



(

ln
t
s

)r– f(s, u(s), v(s))
s�(r)

ds ()

and

(Nv)(t) =
ψ

�(ρ)
(ln t)ρ– +

∫ t



(

ln
t
s

)ρ– f(s, u(s), v(s))
s�(ρ)

ds. ()

Consider the continuous operator N : Cr,ρ,ln → Cr,ρ,ln defined by

(
N(u, v)

)
(t) =

(
(Nu)(x, y), (Nv)(t)

)
. ()

First notice that the hypotheses imply that the functions t → (ln t
s )r– f(s,u(s),v(s))

s and t →
(ln t

s )ρ– f(s,u(s),v(s))
s , for a.e. t ∈ I , are Pettis integrable, and for each (u, v) ∈ Cr,ρ,ln, the func-

tion t → f (t, u(t), v(t)) is Pettis integrable over I . Thus, the operator N is well defined. Let
R >  be such that

R >
p∗

 ln T
�( + r)

+
p∗

 ln T
�( + ρ)

,

and consider the set

Q =
{

(u, v) ∈ Cr,ρ,ln :
∥
∥(u, v)

∥
∥
C ≤ R and

∥
∥(ln t)–ru(t) – (ln t)–ru(t)

∥
∥

E

+
∥
∥(ln t)–ρ(Nu)(t) – (ln t)–ρ(Nu)(t)

∥
∥

E ≤ p∗


�( + r)
(ln T)–r

∣
∣
∣
∣ln

t

t

∣
∣
∣
∣

r

+
p∗


�(r)

∫ t



∣
∣
∣
∣(ln t)–r

(

ln
t

s

)r–

– (ln t)–r
(

ln
t

s

)r–∣∣
∣
∣ds

+
p∗


�( + ρ)

(ln T)–ρ

∣
∣
∣
∣ln

t

t

∣
∣
∣
∣

ρ

+
p∗


�(ρ)

∫ t



∣
∣
∣
∣(ln t)–ρ

(

ln
t

s

)ρ–

– (ln t)–ρ

(

ln
t

s

)ρ–∣∣
∣
∣ds

}

.
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Clearly, the subset Q is closed, convex, and equicontinuous. We shall show that the opera-
tor N satisfies all the assumptions of Theorem .. The proof will be given in several steps.

Step . N maps Q into itself.
Let (u, v) ∈ Q, t ∈ I , and assume that (Niu)(t) �= , i = , . Then there exists ϕ ∈ E∗ such

that ‖(ln t)–r(Niu)(t)‖E = ϕ(|(ln t)–r(Niu)(t)|). Thus

∥
∥(ln t)–r(Nu)(t)

∥
∥

E = ϕ

(
φ

�(r)
+

(ln t)–r

�(r)

∫ t



(

ln
t
s

)r– f(s, u(s), v(s))
s

ds
)

.

Then

∥
∥(ln t)–r(Nu)(t)

∥
∥

E ≤ (ln t)–r

�(r)

∫ t



(

ln
t
s

)r– |ϕ(f(s, u(s), v(s))|
s

ds

≤ p∗
 (ln T)–r

�(r)

∫ t



(

ln
t
s

)r– ds
s

≤ p∗
 ln T

�( + r)
.

Again, we get

∥
∥(ln t)–ρ(Nv)(t)

∥
∥

E ≤ p∗
 ln T

�( + ρ)
.

Thus, we obtain

∥
∥
(
N(u, v)

)∥
∥
C ≤ p∗

 ln T
�( + r)

+
p∗

 ln T
�( + ρ)

.

Next, let t, t ∈ I such that t < t, and let (u, v) ∈ Q, with

(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t) �= ,

and

(ln t)–ρ(Nv)(t) – (ln t)–ρ(Nv)(t) �= .

Then there exists ϕ ∈ E∗ with ‖ϕ‖ =  such that

∥
∥(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t)

∥
∥

E = ϕ
(
(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t)

)

and

∥
∥(ln t)–ρ(Nv)(t) – (ln t)–ρ(Nv)(t)

∥
∥

E = ϕ
(
(ln t)–ρ(Nv)(t) – (ln t)–ρ(Nv)(t)

)
.

Then

∥
∥(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t)

∥
∥

E

= ϕ
(
(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t)

)
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≤ ϕ

(

(ln t)–r
∫ t



(

ln
t

s

)r– f(s, u(s), v(s))
s�(r)

ds

– (ln t)–r
∫ t



(

ln
t

s

)r– f(s, u(s), v(s))
s�(r)

ds
)

.

This gives

∥
∥(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t)

∥
∥

E

≤ (ln t)–r
∫ t

t

∣
∣
∣
∣ln

t

s

∣
∣
∣
∣

r– |ϕ(f(s, u(s), v(s)))|
s�(r)

ds

+
∫ t



∣
∣
∣
∣(ln t)–r

(

ln
t

s

)r–

– (ln t)–r
(

ln
t

s

)r–∣∣
∣
∣
|ϕ(f(s, u(s), v(s)))|

s�(r)
ds

≤ (ln t)–r
∫ t

t

∣
∣
∣
∣ln

t

s

∣
∣
∣
∣

r– p(s)
�(r)

ds

+
∫ t



∣
∣
∣
∣(ln t)–r

(

ln
t

s

)r–

– (ln t)–r
(

ln
t

s

)r–∣∣
∣
∣
p(s)
�(r)

ds.

Thus, we get

∥
∥(ln t)–r(Nu)(t) – (ln t)–r(Nu)(t)

∥
∥

E

≤ p∗


�( + r)
(ln T)–r

∣
∣
∣
∣ln

t

t

∣
∣
∣
∣

r

+
p∗


�(r)

∫ t



∣
∣
∣
∣(ln t)–r

(

ln
t

s

)r–

– (ln t)–r
(

ln
t

s

)r–∣∣
∣
∣ds.

Also, we can obtain that

∥
∥(ln t)–ρ(Nu)(t) – (ln t)–ρ(Nu)(t)

∥
∥

E

≤ p∗


�( + ρ)
(ln T)–ρ

∣
∣
∣
∣ln

t

t

∣
∣
∣
∣

ρ

+
p∗


�(ρ)

∫ t



∣
∣
∣
∣(ln t)–ρ

(

ln
t

s

)ρ–

– (ln t)–ρ

(

ln
t

s

)ρ–∣∣
∣
∣ds.

Hence N(Q) ⊂ Q.
Step . N is weakly-sequentially continuous.
Let (un, vn) be a sequence in Q, and let (un(t), vn(t)) → (u(t), v(t)) in (E,ω) × (E,ω) for

each t ∈ I . Fix t ∈ I , since for any i ∈ {, } the function fi satisfies assumption (H), we
have fi(t, un(t), vn(t)) converges weakly uniformly to f (t, u(t), v(t)). Hence the Lebesgue
dominated convergence theorem for Pettis integral implies that ((Nun)(t), (Nvn)(t)) con-
verges weakly uniformly to ((Nu)(t), (Nv)(t)) in (E,ω) × (E,ω) for each t ∈ I . Thus,
N(un, vn) → (N(u), N(v)). Hence, N : Q → Q is weakly-sequentially continuous.

Step . Implication () holds.
Let V be a subset of Q such that V = conv(N(V ) ∪ {}). Obviously

V (t) ⊂ conv
(
(NV )(t) ∪ {}), t ∈ I.
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Further, as V is bounded and equicontinuous, by Lemma  in [] the function t → v(t) =
β(V (t)) is continuous on I . From (H), (H), Lemma . and the properties of the measure
β , for any t ∈ I , we have

(ln t)–rv(t) ≤ β
(
(ln t)–r(NV )(t) ∪ {})

≤ β
(
(ln t)–r(NV )(t)

)

≤ (ln T)–r

�(r)

∫ t



∣
∣
∣
∣ln

t
s

∣
∣
∣
∣

r– p(s)β(V (s))
s

ds

+
(ln T)–ρ

�(ρ)

∫ t



∣
∣
∣
∣ln

t
s

∣
∣
∣
∣

ρ– p(s)β(V (s))
s

ds

≤ (ln T)–r

�(r)

∫ t



∣
∣
∣
∣ln

t
s

∣
∣
∣
∣

r– (ln s)–rp(s)v(s)
s

ds

+
(ln T)–ρ

�(ρ)

∫ t



∣
∣
∣
∣ln

t
s

∣
∣
∣
∣

/rho– (ln s)–ρp(s)v(s)
s

ds

≤ p∗
 ln T

�( + r)
‖v‖C +

p∗
 ln T

�( + ρ)
‖v‖C .

Thus

‖v‖C ≤ L‖v‖C .

From (), we get ‖v‖C = , that is, v(t) = β(V (t)) =  for each t ∈ I . And then, by Theo-
rem  in [], V is weakly relatively compact in [C]r,ρ,ln. Applying now Theorem ., we
conclude that N has a fixed point which is a weak solution of the coupled system ()-(). �

4 An example
Let

E = l =

{

u = (u, u, . . . , un, . . .),
∞∑

n=

|un| < ∞
}

be the Banach space with the norm

‖u‖E =
∞∑

n=

|un|.

We consider the following coupled system of Hadamard fractional differential equations:

⎧
⎨

⎩

(HD


 un)(t) = fn(t, u(t), v(t)),

(HD


 vn)(t) = gn(t, u(t), v(t)),

t ∈ [, e], ()

with the initial conditions
⎧
⎨

⎩

(HI



 u)(t)|t= = ,

(HI



 v)(t)|t= = ,
()
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where

fn
(
t, u(t), v(t)

)
=

ct

 + ‖u(t)‖E + ‖v(t)‖E

(

e– +


et+

)

un(t), t ∈ [, e],

and

gn
(
t, u(t), v(t)

)
=

cte–

 + ‖u(t)‖E + ‖v(t)‖E
vn(t), t ∈ [, e],

with

u = (u, u, . . . , un, . . .), v = (v, v, . . . , vn, . . .), and c :=
e


�

(



)

.

Set

f = (f, f, . . . , fn, . . .) and g = (g, g, . . . , gn, . . .).

Clearly, the functions f and g are continuous. For each u, v ∈ E and t ∈ [, e], we have

∥
∥f

(
t, u(t), v(t)

)∥
∥

E ≤ ct
(

e– +


et+

)

and

∥
∥g

(
t, u(t), v(t)

)∥
∥

E ≤ cte–.

Hence, hypothesis (H) is satisfied with p∗
 = p∗

 = ce–. We shall show that condition ()
holds with T = e. Indeed,

p∗
 ln T

�( + r)
+

p∗
 ln T

�( + ρ)
=

c
e�( 

 )
=




< .

Simple computations show that all conditions of Theorem . are satisfied. It follows that
the coupled system ()-() has at least one solution on [, e].
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