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Abstract
This paper deals with a three-species ecological system with time delay and
harvesting. Sufficient conditions guaranteeing the local stability and the occurrence
of Hopf bifurcation for the system are obtained. Further, the properties of Hopf
bifurcation are investigated using the center manifold theorem and normal form
theory. Computer simulations are carried out to illustrate the theoretical predictions.
Finally, biological meaning and a conclusion are presented.
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1 Introduction
Predator-prey interaction has always been an important issue in mathematical model-
ing of ecological processes []. In particular, there is a lot of literature on two-species
predator-prey systems [–]. In nature, however, there is often the interaction among mul-
tiple species, whose relationships are more complex than those in two species. Therefore,
it is more realistic to investigate multiple-species predator-prey systems. Based on this,
Upadhyay and Tiwari [] proposed the following food chain system that describes the in-
teraction among phytoplankton, zooplankton and fish:

⎧
⎪⎪⎨

⎪⎪⎩

dP(t)
dt = aP(t) – bP(t) – εP(t)Z(t)

P(t)+d ,
dZ(t)

dt = εP(t)Z(t)
P(t)+d – γ Z(t) – εZ(t)F(t)

Z(t)+η ,
dF(t)

dt = εZ(t)F(t)
Z(t)+η – δF(t) – δF(t) – qEF(t),

()

where P(t), Z(t) and F(t) are the densities of phytoplankton, zooplankton and fish at time t,
respectively. a is the growth rate of phytoplankton; b is the intraspecific competition rate of
phytoplankton; εP(t)Z(t)

P(t)+d is the response function of zooplankton, ε is the capturing rate of
zooplankton, ε/ε is the rate of conversing phytoplankton into new zooplankton, d is the
half-saturation constant of the phytoplankton density; εZ(t)F(t)

Z(t)+η is the response function
of fish, ε is the capturing rate of fish, ε/ε is the rate of conversing zooplankton into new
fish, η is the half-saturation constant of the zooplankton density; γ is the mortality rate
of zooplankton; δ is the mortality rate of fish; δ is the intraspecific competition rate of
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fish; q is the catchability coefficient and E is catch per unit effort. Upadhyay and Tiwari []
studied the stability of system () and discussed optimal harvesting policy.

Obviously, Upadhyay and Tiwari [] neglected the time delay due to gestation of zoo-
plankton and fish. The consumption of phytoplankton by zooplankton throughout its past
history governs the present birth rate of zooplankton. Likewise, the consumption of zoo-
plankton by fish throughout its past history governs the present birth rate of fish. Time
delay can play an important role in the dynamics of a predator-prey system. It can cause
a stable equilibrium to become unstable and cause the population to fluctuate [–].
Therefore, it is more realistic to take into account the effect of the time delay due to gesta-
tion of zooplankton and fish. Inspired by this idea, we consider the following predator-prey
system with time delay:

⎧
⎪⎪⎨

⎪⎪⎩

dP(t)
dt = aP(t) – bP(t) – εP(t)Z(t)

P(t)+d ,
dZ(t)

dt = εP(t–τ )Z(t–τ )
P(t–τ )+d – γ Z(t) – εZ(t)F(t)

Z(t)+η ,
dF(t)

dt = εZ(t–τ )F(t–τ )
Z(t–τ )+η – δF(t) – δF(t) – qEF(t),

()

where τ is the time delay due to the gestation of zooplankton and fish.
This paper is organized as follows. In the next section, we analyze the existence of the

Hopf bifurcation. Then, we investigate the direction of the Hopf bifurcation and the sta-
bility of bifurcating periodic solutions in Section . In Section , we give some numerical
simulations to demonstrate the theoretical results obtained in this paper. Our conclusion
is drawn in the final section.

2 Existence of the Hopf bifurcation
Based on the analysis in [] and by direct computation, we can conclude that if the condi-
tion (H): a > bP∗

εZ∗
Z∗+η > δ + qE is satisfied, then system () has a unique positive equi-

librium E∗(P∗, Z∗, F∗), where

Z∗ =
(a – bP∗)(P∗ + d)

ε
,

F∗ =
εZ∗

δ(Z∗ + η)
–

δ + qE
δ

,

and P∗ is the positive root of the following equation:

AP + AP + AP + AP + AP + AP + AP + AP + AP + A = , ()

where

A = adεε(δ + qE)
(
ε

 η
 + ad) + ε

 ηδ
γ

d – adδγ ε
 η



– adεεε – δγ ad,

A = δεad + ε
 ηδ(ε – γ ) – δγ

(
ad – abd) + adδεε


 η



– δγ ε
 η

(ad – abd) + ε
 εη

(δ + qE)
(
ad – bd – bd)

+ εε(δ + qE – ε)
(
ad – abd),
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A = adεε(δ + qE – ε)
(
a – abd + bd) + aε

 εη
(δ + qE)

– δγ ε
 η

(ad – abd + bd) + adδε(a – bd)
(
ε

 η
 + ad)

– adδγ
(
bd – abd + a),

A = δδε

 η

(bd – abd + a) – δγ ε
 η

(bd – abd + a)

+ εε(δ + qE – ε)
(
ad – abd + abd – bd)

– bε
 εη

(δ + qE) – adδγ
(
abd – abd + a – bd)

+ adδδ
(
bd – abd + a),

A = adεε(δ + qE – ε)
(
a – abd + abd – bd)

+ δεε

 η

(bd – ab
)

– δγ ε
 η

(bd – ab
)

– δγ
(
abd – abd – abd + ad + ad + bd)

+ adδε
(
abd – bd – abd + a),

A = δε
(
bd – abd + abd – abd + a + ad

)

+ bεε

 η

(δ – γ ) + bεε(δ + qE – ε)
(
abd – bd – a)

– δγ
(
bd + abd – abd – abd + ad + a),

A = bεε(δ + qE – ε)(a – bd) + bδε
(
bd – abd + abd – a)

– bδγ
(
bd – abd + abd – a),

A = bδε
(
bd – abd + a) – bεε(δ + qE – ε)

– bδγ
(
bd – abd + a),

A = bδε(bd – a) – bδγ (bd – a), A = bδ(ε – γ ).

Let p(t) = P(t) – P∗, z(t) = Z(t) – Z∗, f (t) = F(t) – F∗, and we still denote p(t), z(t) and f (t)
as P(t), Z(t) and F(t), respectively. Then the linearized system of system () at E∗(P∗, Z∗, F∗)
is given by

d
dt

⎛

⎜
⎝

P(t)
Z(t)
F(t)

⎞

⎟
⎠ =

⎛

⎜
⎝

a a 
 a a

  a

⎞

⎟
⎠

⎛

⎜
⎝

P(t)
Z(t)
F(t)

⎞

⎟
⎠ +

⎛

⎜
⎝

  
b b 
 b b

⎞

⎟
⎠

⎛

⎜
⎝

P(t – τ )
Z(t – τ )
F(t – τ )

⎞

⎟
⎠ , ()

with

a = a – bP∗ –
dεZ∗

(P∗ + d) , a = –
εP∗

P∗ + d
, a = –γ –

εη
Z∗F∗

(Z∗ + η) ,

a = –
εZ∗

Z∗ + η , a = –(δ + qE + δF∗),

b =
dεZ∗

(P∗ + d) , b =
εP∗

P∗ + d
, b =

εη
Z∗F∗

(Z∗ + η) , b =
εZ∗

Z∗ + η .
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The characteristic equation of system () is

λ + sλ
 + sλ + s +

(
sλ

 + sλ + s
)
e–λτ + (sλ + s)e–λτ = , ()

where

s = –aaa, s = aa + aa + aa,

s = –(a + a + a),

s = aab + aab – aab – aab,

s = b(a + a) + b(a + a) – ab – ab,

s = –(b + b),

s = abb – abb, s = bb.

Multiplying by eλτ , Eq. () becomes

sλ
 + sλ + s +

(
λ + sλ

 + sλ + s
)
eλτ + (sλ + s)e–λτ = . ()

When τ = , Eq. () becomes

λ + (s + s)λ + (s + s + s)λ + s + s + s = . ()

Thus, by the Routh-Hurwitz criterion, E∗(P∗, Z∗, F∗) is asymptotically stable if the con-
dition (H): s + s > , s + s + s > , s + s + s >  and (s + s)(s + s + s) >
s + s + s holds.

For τ > , let λ = iω (ω > ) be the root of Eq. (), then

{
(s + s – sω

)ω cos τω + ((s – r)ω + ω) sin τω = sω
 – s,

(s – s – sω
)ω sin τω + ((s + r)ω + ω) sin τω = –sω.

()

Thus, we can obtain

cos τω =
g(ω)
g(ω)

, sin τω =
g(ω)
g(ω)

,

where

g(ω) = ω +
(
s

 + s
)
ω

+
(
s

 – s
 – ss

)
ω + s

 – s
,

g(ω) = (s + ss)ω

+
[
s(s – s) – s(s – s) + ss

]
ω – s(s – s),

g(ω) = sω
 +

[
ss – s – s(s + s)

]
ω

+
[
s(s + s) – s(s + s)

]
ω.
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It follows that

g
(ω) – g

 (ω) – g
 (ω) = . ()

In order to obtain the main results in this paper, we suppose that (H): Eq. () has at least
one positive root ω. Thus, Eq. () has a pair of purely imaginary roots ±iω.

τ =

{


ω
× arccos{ g(ω)

g(ω) }, sin(ωτ) ≥ ,


ω
× (π – arccos{ g(ω)

g(ω) }), sin(ωτ) < .
()

Differentiating Eq. () with respect to τ , it follows that

[
dλ

dτ

]–

=
sλ + s + (λ + sλ + s)eλτ + se–λτ

λ[(sλ + s)e–λτ – (λ + sλ + sλ + s)eλτ ]
–

τ

λ
.

Further, we have

Re

[
dλ

dτ

]–

τ=τ

=
UV + UV

V 
 + V 


,

where

U =
(
s + s – ω


)

cos τω – sω sin τω + s,

U =
(
s – s – ω


)

cos τω + sω sin τω + sω,

V =
[
(s + s)ω – sω



]

sin τω –
[
(s – s)ω

 + ω

]

cos τω,

V =
[
(s – s)ω + sω



]

cos τω +
[
(s + s)ω

 – ω

]

sin τω.

Hence the transversality condition is satisfied if the condition (H): UU + VV �= 
holds. Then we have the following according to the Hopf bifurcation theorem in [].

Theorem  For system (), if conditions (H)-(H) hold, E∗(P∗, Z∗, F∗) is asymptotically
stable for τ ∈ [, τ) and system () undergoes a Hopf bifurcation at E∗(P∗, Z∗, F∗) when
τ = τ.

3 Stability and direction of the Hopf bifurcation
We already know that system () will undergo a Hopf bifurcation at E∗(P∗, Z∗, F∗) when
the time delay τ passes through the critical value τ. We investigate the direction, stability
and period of the Hopf bifurcation by means of the techniques introduced in []. Let
τ = τ + μ, μ ∈ R. Then μ =  is the Hopf bifurcation value of the system.

Define the space of continuous real-valued functions as C = C([–, ], R). Let u(t) =
P(t) – P∗, u(t) = Z(t) – Z∗, u(t) = F(t) – F∗ and ui(t) = ui(τ t) for i = , , . System () then
transforms to the following form:

u̇(t) = Lμut + F(μ, ut), ()

where ut = (u(t), u(t), u(t))T ∈ C = C([–, ], R),

Lμφ = (τ + μ)
(
Mφ() + Nφ(–)

)
()
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and

F(μ,φ) = (τ + μ)(F, F, F)T , ()

where

M =

⎛

⎜
⎝

a a 
 a a

  a

⎞

⎟
⎠ , N =

⎛

⎜
⎝

  
b b 
 b b

⎞

⎟
⎠

and

F = aφ

 () + aφ()φ() + aφ


 ()φ() + aφ


 () + · · · ,

F = aφ

 () + aφ()φ() + aφ


 ()φ() + aφ


()

+ aφ

 (–) + aφ(–)φ(–) + aφ


 (–)φ(–) + aφ


 (–) + · · · ,

F = aφ

 () + aφ


 (–) + aφ(–)φ(–) + aφ


 (–)φ(–) + aφ


 (–) + · · · ,

with

a = –b +
dεZ∗

(P∗ + d) , a =
dε

(P∗ + d) ,

a =
dε

(P∗ + d) , a = –
dεZ∗

(P∗ + d) ,

a =
εη

F∗(Z∗ – η)
(Z∗ + η) , a = –

εη
Z∗

(Z∗ + η) ,

a =
εη

(Z∗ – η)
(Z∗ + η) , a =

εη
F∗(η – Z∗)

(Z∗ + η) ,

a = –
dεZ∗

(P∗ + d) , a =
dε

(P∗ + d) ,

a = –
dε

(P∗ + d) , a =
dεZ∗

(P∗ + d) ,

a = –δ, a = –
εη

F∗(Z∗ – η)
(Z∗ + η) , a =

εη
Z∗

(Z∗ + η) ,

a = –
εη

(Z∗ – η)
(Z∗ + η) , a = –

εη
F∗(η – Z∗)

(Z∗ + η) .

By the representation theorem, there exists a  ×  matrix function η(θ ,μ), θ ∈ [–, ]
such that

Lμφ =
∫ 

–
dη(θ ,μ)φ(θ ), φ ∈ C.

In view of Eq. (), we can choose

η(θ ,μ) = (τ + μ)
(
Mδ(θ ) + Nδ(θ + )

)
,

where δ is the Dirac delta function.
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For φ ∈ C([–, ], R), define

A(μ)φ =

{ dφ(θ )
dθ

, – ≤ θ < ,
∫ 

– dη(θ ,μ)φ(θ ), θ = ,

and

R(μ)φ =

{
, – ≤ θ < ,
F(μ,φ), θ = .

Then system () is equivalent to

u̇(t) = A(μ)ut + R(μ)ut , ()

where ut(θ ) = u(t + θ ) for θ ∈ [–, ].
For ϕ ∈ C([, ], (R)∗), define

A∗(ϕ) =

{
– dϕ(s)

ds ,  < s ≤ ,
∫ 

– dηT (s, )ϕ(–s), s = ,

and a bilinear inner product

〈
ϕ(s),φ(θ )

〉
= ϕ̄()φ() –

∫ 

θ=–

∫ θ

ξ=
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , ()

where η(θ ) = η(θ , ). Then A() and A∗ are adjoint operators.
Suppose that ρ(θ ) = (,ρ,ρ)T eiωτθ is the eigenvector of A() belonging to +iωτ and

ρ∗(s) = D(,ρ∗
 ,ρ∗

 )eiωτs is the eigenvector of A∗() belonging to –iωτ. By a direct com-
putation, we obtain

ρ =
iω – a

a
, ρ =

a(iω + a)e–iτω

b(iω – a – be–iτω )a
,

ρ∗
 = –

iω + a

beiτω
, ρ∗

 =
a(iω + a)e–iτω

b(iω + a + beiτω )
.

From Eq. (), we can get

D̄ =
[
 + ρρ̄

∗
 + ρρ̄

∗
 + τe–iτω

(
bρ̄

∗
 + ρ

(
bρ̄

∗
 + bρ̄

∗

)

+ bρρ̄
∗

)]–

such that 〈ρ∗,ρ〉 = .
Next, we can obtain the coefficients by using the method introduced in [] and a com-

putation process similar to that in [, –]:

g = τD̄
[
a + aρ + ρ̄∗


(
aρ


 + aρρ + ae–iτω + aρe–iτω

)

+ ρ̄∗

(
aρ


 + aρe–iτω + aρρe–iτω

)]
,

g = τD̄
[
a + a(ρ + ρ̄) + ρ̄∗


(
aρρ̄ + a(ρρ̄ + ρ̄ρ) + a

+ a(ρ + ρ̄)
)

+ ρ̄∗

(
aρρ̄ + aρρ̄ + a(ρρ̄ + ρ̄ρ)

)]
,
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g = τD̄
[
a + aρ̄ + ρ̄∗


(
aρ̄


 + aρ̄ρ̄ + aeiτω + aρ̄eiτω

)

+ ρ̄∗

(
aρ̄


 + aρ̄eiτω + aρ̄ρ̄eiτω

)]
,

g = τD̄
[

a
(
W ()

 () + W ()
 ()

)
+ a

(

W ()
 ()ρ +




W ()
 ()ρ̄ + W ()

 ()

+



W ()
 ()

)

+ a(ρ̄ + ρ) + a + ρ̄∗


(

a
(
W ()

 ()ρ + W (
 ()ρ̄

)

+ a

(

W ()
 ()ρ +




W ()
 ()ρ̄ + W ()

 ()ρ +



W ()
 ()ρ̄

)

+ a
(
ρ

 ρ̄ + ρρ̄ρ
)

+ aρ

 ρ̄ + a

(
W ()

 (–)e–iτω + W ()
 (–)eiτω

)

+ a

(

W ()
 (–)ρe–iτω +




W ()
 (–)ρ̄eiτω + W ()

 (–)e–iτω

+



W ()
 (–)eiτω

)

+ a
(
ρ̄eiτω + ρe–iτω

)
+ aeiτω

)

+ ρ̄∗


(

a
(
W ()

 ()ρ + W ()
 ()ρ̄

)

+ a
(
W ()

 (–)ρe–iτω + W ()
 (–)ρ̄eiτω

)

+ a

(

W ()
 (–)ρe–iτω +




W ()
 (–)ρ̄eiτω + W ()

 (–)ρe–iτω

+



W ()
 (–)ρ̄eiτω

)

+ a
(
ρ

 ρ̄e–iτω + ρρ̄ρe–iτω
)

+ aρ

 ρ̄e–iτω

)]

,

with

W(θ ) =
igρ()

τω
eiτωθ +

iḡρ̄()
τω

e–iτωθ + Eeiτωθ ,

W(θ ) = –
igρ()
τω

eiτωθ +
iḡρ̄()
τω

e–iτωθ + E,

where E and E are given by the following equations, respectively:

⎛

⎜
⎝

iω – a –a 
–be–iτω iω – a – be–iτω –a

 –be–iτω iω – a – be–iτω

⎞

⎟
⎠E = 

⎛

⎜
⎝

E

E

E

⎞

⎟
⎠ ,

⎛

⎜
⎝

a a 
b a + b a

 b a + b

⎞

⎟
⎠E = –

⎛

⎜
⎝

E

E

E

⎞

⎟
⎠ ,

and

E = a + aρ,

E = aρ

 + aρρ + ae–iτω + aρe–iτω ,
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E = aρ

 + aρe–iτω + aρρe–iτω ,

E = a + a(ρ + ρ̄),

E = aρρ̄ + a(ρρ̄ + ρ̄ρ) + a + a(ρ + ρ̄),

E = aρρ̄ + aρρ̄ + a(ρρ̄ + ρ̄ρ).

Then we can get the following coefficients which determine the properties of the Hopf
bifurcation:

C() =
i

τω

(

gg – |g| –
|g|



)

+
g


,

μ = –
Re{C()}
Re{λ′(τ)} ,

β = Re
{

C()
}

,

T = –
Im{C()} + μ Im{λ′(τ)}

τω
.

()

Hence, we have the following according to the results describing the properties of the
Hopf bifurcation of dynamical systems in [].

Theorem  For system (), if μ >  (μ < ), then the Hopf bifurcation is supercritical
(subcritical). If β <  (β > ), then the bifurcating periodic solutions are stable (unstable).
If T >  (T < ), then the bifurcating periodic solutions increase (decrease).

4 Numerical example
In this section, the dynamical behavior of system () is investigated numerically. We
choose the following set of parameter values: a = ., b = ., ε = ., d = ,
ε = ., ε = ., ε = ., η = , δ = ., δ = ., qE = .. Then system () be-
comes

⎧
⎪⎪⎨

⎪⎪⎩

dP(t)
dt = .P(t) – .P(t) – .P(t)Z(t)

P(t)+ ,
dZ(t)

dt = .P(t–τ )Z(t–τ )
P(t–τ )+ – .Z(t) – .Z(t)F(t)

Z(t)+ ,
dF(t)

dt = .Z(t–τ )F(t–τ )
Z(t–τ )+ – .F(t) – .F(t) – .F(t),

()

from which one can obtain the unique positive equilibrium E∗(., ., .)
with the help of Matlab software package. Further, we have ω = ., τ = .,
λ′(τ) = . – .i and C() = –. + .i. From Eq. (), we obtain μ =
. > , β = –. <  and T = . > .

Thus, E∗(., ., .) is asymptotically stable when τ ∈ [, τ). Fix τ =
. < τ, then we can easily plot the time series of phytoplankton, zooplankton and
fish and phase portrait of system () and find that the solution of system () would tend
to E∗(., ., .). This reveals that the densities of phytoplankton, zooplank-
ton and fish in system () will tend to stabilization. This property can be illustrated by
Figure . When the time delay τ passes through τ, E∗(., ., .) loses its
stability and a Hopf bifurcation occurs and a family of periodic solutions bifurcate from
E∗(., ., .). Figure  is plotted by fixing the time delay τ = . > τ. It
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Figure 1 E∗ is locally asymptotically stable when τ = 5.6525 < τ0.

Figure 2 System (17) undergoes a Hopf bifurcation when τ = 9.1525 > τ0.

is shown that a Hopf bifurcation occurs and a family of periodic solutions bifurcate from
E∗(., ., .). This reveals that the densities of phytoplankton, zooplankton
and fish in system () will oscillate in the vicinity of P∗, Z∗ and F∗, respectively. Since
μ > , β <  and T > , we know that the direction of the Hopf bifurcation at τ = .
is supercritical; the periodic solutions bifurcating from E∗(., ., .) are sta-
ble and the period of the solutions increases.

5 Conclusions
In this paper, we have proposed a delayed system to study the dynamics of phytoplank-
ton, zooplankton and fish population with Holling type II and III functional responses
based on the system considered in []. The relationship between phytoplankton and zoo-
plankton is described by Holling type II functional response, and the relationship between
zooplankton and fish is described by Holling type III functional response. Compared with
the system considered in [], we mainly investigate the effect of time delay due to gestation
of zooplankton and fish on the system.
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In the context, we have given sufficient conditions for the local stability and the exis-
tence of a Hopf bifurcation by regarding the time delay as the bifurcation parameter. We
have shown that the system is asymptotically stable when the time delay is suitably small
(τ ∈ [, τ)) under some certain conditions, which means that the densities of phytoplank-
ton, zooplankton and fish in system () will tend to stabilization. However, the system will
lose its stability once the time delay passes through the critical value τ and a Hopf bifurca-
tion occurs, which means that the densities of phytoplankton, zooplankton and fish in the
system will fluctuate in periodic oscillation form. In particular, the properties of the Hopf
bifurcation have also been investigated by using the normal form theory and the center
manifold theorem. Finally, a numerical example has been presented in order to verify the
main results we obtained.
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