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Abstract
We prove that if g(z) is a finite-order transcendental meromorphic solution of

(�cg(z))
2 = A(z)g(z)g(z + c) + B(z),

where A(z) and B(z) are polynomials such that degA(z) > 0, then

1 ≤ ρ(g) = max
{
λ(g),λ

(1
g

)}
.
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1 Introduction
Steinmetz [] and Bank and Kaufman [] proved that the equation

(
g ′)n = R(z, g)

can be reduced into a list of six simple differential equations by a suitable Möbius trans-
formation with polynomial coefficients, which include

(
g ′) = p(z)

(
g – q(z)

)(g – ζ )(g – η), (.)

where ζ , η are constant, and p(z), q(z) are rational functions. Let q(z) ∈ C. Then equation
(.) can be transformed into

(
g ′) = P(z)

(
g – 

)
.

Ishizaki and Korhonen [] investigated meromorphic solutions of

(�g(z)
) = P(z)

(
g(z)g(z + ) – Q(z)

)
. (.)
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They proved that equation (.) possesses a continuous limit to the equation

(
g ′) = P(z)

(
g – 

)
,

which extends to solutions in certain cases.
We assume that the reader is familiar with the basic notions of Nevanlinna theory (see,

e.g., [, ]). Of late, several scholars [, –] studied the properties of finite-order mero-
morphic solutions of algebraic difference equations and obtained many interesting results.

For the special case of (.), Whittaker [] has shown that the equation

g(z + ) = q(z)g(z),

where q(z) is a meromorphic function of finite order ρ(q), has a meromorphic solution g
such that ρ(q) ≤ ρ(g) ≤ ρ(q) + . Here ρ(g) denotes the order of growth of the meromor-
phic function g(z).

Chen [] has extended this above result and proved that the Pielou logistic equation

g(z + ) =
R(z)g(z)

P(z) + Q(z)g(z)
,

where R(z), P(z), and Q(z) are polynomials with P(z)R(z)Q(z) �≡ , has a finite-order tran-
scendental meromorphic solution g such that  ≤ ρ(g).

Replacing g(z + ) with �g(z), Ishizaki [] was concerned with the growth and value
distributions of transcendental meromorphic solutions of the algebraic difference equa-
tion

(�g(z)
) = P(z)g(z).

In , Liu [] considered the Nevanlinna growth of an equation related to (.). It is
interesting to consider some properties of (.), and our results will be stated in Section .

2 Main results
Theorem . Let c ∈C \ {}, and let A(z) and B(z) be polynomials such that deg A(z) > .
If g(z) is a finite-order transcendental meromorphic solution of

(�cg(z)
) = A(z)g(z)g(z + c) + B(z), (.)

then

 ≤ ρ(g) = max

{
λ(g),λ

(

g

)}
.

Remark It is a curious problem to construct a transcendental meromorphic solution of
(.) for the case deg A > .

Theorem . Let c ∈ C \ {}, and let E(z) = D(z)
F(z) be an irreducible rational function, where

D(z) and F(z) are polynomials with deg D(z) = d and deg F(z) = f . If the equation

(�cg(z)
) = g(z)g(z + c) + E(z) (.)



Liu Advances in Difference Equations  (2017) 2017:334 Page 3 of 10

has a rational solution

g(z) =
H(z)
K(z)

=
lhzh + · · · + l

mkzk + · · · + m
,

where lh (�= ), . . . , l, mk (�= ), . . . , m are constants, deg H(z) = h, and deg K(z) = k.
(i) If d ≥ f and d – f is zero or an even number, then

h – k =
d – f


.

(ii) If d < f , then h – k = d–f
 .

Further, Example . shows that there exist rational solutions satisfying Theorem .(i),
and Example . shows that there exist rational solutions satisfying Theorem .(ii).

Example . The equation

(
g(z + c) – g(z)

) = g(z + c)g(z) + c – z – ( + c)z – c – 

has a rational solution g(z) = z + , where d = , f = , and h – k =  = d–f
 .

Example . The equation

(
g(z + c) – g(z)

) = g(z + c)g(z) +
c – z(z + c)

z(z + c)

has a rational solution g(z) = 
z , where d = , f = , and h – k = – = d–f

 .

3 Proof of Theorem 2.1
Lemma . ([]) Let w(z) be a transcendental meromorphic solution of finite order of the
difference equation

P(z, w) = ,

where P(z, w) is a difference polynomial in w(z) and its shift. If P(z, a) �≡  for a slowly mov-
ing target function a, that is, T(r, a) = S(r, w), then

m
(

r,


w – a

)
= S(r, w).

The following result obtained by Chiang and Feng [] and Halburd and Korhonen [,
] independently. We state here the form stated in [, Theorem .(b)].

Lemma . ([]) Let c, c be two arbitrary complex numbers, and let w(z) be a mero-
morphic function of finite order ρ . Let ε >  be given. Then there exists a subset E ⊂ (,∞)
of finite logarithmic measure such that, for all |z| = r /∈ E ∪ [, ], we have

exp
(
–r(ρ–+ε)) ≤

∣∣∣∣
w(z + c)
w(z + c)

∣∣∣∣ ≤ exp
(
r(ρ–+ε)).
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Firstly, we prove that ρ(g) = ρ ≥ . We consider the following two cases separately.
Case .. If g(z) has infinitely many poles, we can pick a pole z of g(z) such that g(z) =

∞π , where π ≥ , then we deduce by (.) that g(z + c) = ∞π , where π ≥ m. Substituting
z + c for z into (.), we have

(
g(z + c) – g(z + c)

) = A(z + c)g(z + c)g(z + c) + B(z + c). (.)

Then (.) implies that z + c is a pole of g of multiplicity π ≥ π ≥ π .
Since g(z) has infinitely many poles, following the previous steps, we pick a pole z of

g(z) such that

g(z + nc) = f (ξn) = ∞πn ,

where πn ≥ π for all n ∈ N
. Hence, we can choose a sequence {ξn = z + nc, n ∈ N

} of
poles of g(z), the multiplicity of which is πn ≥ π , so we obtain λ( 

g ) ≥ , and therefore
ρ(g) ≥ λ( 

g ) ≥ .
Case .. If g(z) is a transcendental meromorphic function with finitely many poles, then

we can rewrite g(z) as

g(z) =
g(z)
P(z)

, (.)

where g(z) is a transcendental entire function, and P(z) is a polynomial. Substituting (.)
into (.), we have

(
g(z + c)
P(z + c)

–
g(z)
P(z)

)

= A(z)
g(z + c)
P(z + c)

g(z)
P(z)

+ B(z). (.)

By computing (.) we have

P(z)
P(z + c)

g(z + c)
g(z)

+
P(z + c)

P(z)
g(z)

g(z + c)
=  + A(z) +

B(z)P(z)P(z + c)
g(z)g(z + c)

. (.)

We prove that ρ(g) = ρ(g) = ρ ≥ . Suppose, on the contrary to the assertion, that ρ(g) =
ρ(g) = ρ < . For any given ε ( < ε < –ρ(g)

 ), by Lemma . we obtain

∣∣∣∣
g(z + c)

g(z)

∣∣∣∣ ≤ exp
(
rρ(g)–+ε

)
= exp

(
o()

)
,

∣∣∣∣
g(z)

g(z + c)

∣∣∣∣ ≤ exp
(
rρ(g)–+ε

)
= exp

(
o()

) (.)
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outside a finite logarithmic measure E. As zk satisfies |g(zk)| = M(rk , g), |zk| = rk /∈ E,
rk → ∞, we deduce by (.) and (.) that

∣∣A(zk)
∣∣ =

∣∣∣∣
P(zk)

P(zk + c)
g(zk + c)

g(zk)
+

P(zk + c)
P(zk)

g(zk)
g(zk + c)

–
B(zk)P(zk)P(zk + c)

g(zk)g(zk + c)
– 

∣∣∣∣

≤
∣∣∣∣

P(zk)
P(zk + c)

g(zk + c)
g(zk)

∣∣∣∣ +
∣∣∣∣
P(zk + c)

P(zk)
g(zk)

g(zk + c)

∣∣∣∣

+
∣∣∣∣
B(zk)P(zk)P(zk + c)

M(rk , g)
g(zk)

g(zk + c)

∣∣∣∣ + 

≤ M,

where M is some finite constant, a contradiction, since deg A(z) > . Hence we have
ρ(g) ≥ .

Next, we prove that max{λ(g),λ( 
g )} = ρ(g). If B(z) �≡ , then we set

P(z, g) =
(
g(z + c) – g(z)

) – A(z)g(z + c)g(z) – B(z).

Since P(z, ) = –B(z) �≡ , by Lemma . we deduce that

N
(

r,

g

)
= T(r, g) + S(r, f ).

Hence λ(g) = ρ(g).
If B(z) ≡ , then (.) can be reduced to

(
g(z + c) – g(z)

) = A(z)g(z + c)g(z).

Next, we prove that max{λ(g),λ( 
g )} = ρ(g). Suppose, on the contrary to the assertion, that

max{λ(g),λ( 
g )} = α < ρ(g). We next divide the proof into the following two cases.

Case . Suppose that ρ(g) = . Then we obtain

g(z) = m(z) expqz+p, (.)

where q �=  and p are constants, and m(z) is a meromorphic function such that ρ(m) =
α < . Substituting (.) into (.), we obtain

(
m(z + c) expq(z+c)+p –m(z) expqz+p) = A(z)m(z + c) expq(z+c)+p m(z) expqz+p . (.)

By computing (.) we obtain

m(z + c) expqc+p expqz +m(z) expp expqz

=
(
A(z) + 

)
m(z)m(z + c) expqc+p expqz, (.)

that is,

(
A(z) + 

)
expqc+p expqz =

m(z + c)
m(z)

expqc+p expqz +
m(z)

m(z + c)
expp expqz . (.)
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By Lemma . we obtain

∣∣∣∣
m(z + c)

m(z)

∣∣∣∣ ≤ exp
(
rρ(m)–+ε

)
= exp

(
o()

)
,

∣∣∣∣
m(z)

m(z + c)

∣∣∣∣ ≤ exp
(
rρ(m)–+ε

)
= exp

(
o()

) (.)

outside a finite logarithmic measure. By (.) and (.), as |z| → ∞, we obtain

∣∣(A(z) + 
)

expqc+p ∣∣ =
∣∣∣∣
m(z + c)

m(z)
expqc+p +

m(z)
m(z + c)

expp
∣∣∣∣

≤
∣∣∣∣
m(z + c)

m(z)
expqc+p

∣∣∣∣ +
∣∣∣∣

m(z)
m(z + c)

expp
∣∣∣∣ ≤ M

outside a finite logarithmic measure, where M is a finite constant. This is impossible,
since deg A(z) > .

Case . Suppose that ρ(g) > . Then

g(z) = m(z) expl(z), (.)

where l(z) is a polynomial such that ρ(g) = deg l(z) > , and m(z) is a meromorphic function
such that ρ(m) < ρ(g). Substituting (.) into (.), we obtain

(
m(z + c) expl(z+c) –m(z) expl(z)) = A(z)m(z + c) expl(z+c) m(z) expl(z) . (.)

Let

l(z) = pkzk + pk–zk– + · · · + pz + p,

where pk �= . Then

l(z + c) = pkzk + (ckpk + pk–)zk– + Q(z), (.)

l(z + c) – l(z) = (ckpk)zk– + Q(z), (.)

where Q(z) and Q(z) are polynomials of degree at most k – . Equalities (.) and (.)
imply that

m(z + c) expckpk zk–+Q(z) +m(z) =
(
A(z) + 

)
m(z + c)m(z) expckpk zk–+Q(z),

that is,

∣∣ expckpk zk–+Q(z) ∣∣ =
∣∣∣∣–

m(z)
m(z + c)

+
(
A(z) + 

) m(z)
m(z + c)

expckpk zk–+Q(z)
∣∣∣∣

≤
∣∣∣∣

m(z)
m(z + c)

∣∣∣∣ +
∣∣∣∣
(
A(z) + 

) m(z)
m(z + c)

expckpk zk–+Q(z)
∣∣∣∣. (.)
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By Lemma . we obtain

∣∣∣∣
m(z)

m(z + c)

∣∣∣∣ ≤ exp
(
rρ(m)–+ε

)
(.)

outside a possible set of finite logarithmic measure E. As |z| = r /∈ E ∪ [, ], and r → ∞,
we deduce by (.) and (.) that

∣∣ expckpk zk–+Q(z) ∣∣

≤ exp
(
rρ(m)–+ε

)
+

∣∣rM exp
(
rρ(m)–+ε

)
expckpk zk–+Q(z)∣∣, (.)

where M is a positive constant.
We can find a sequence {zk} (|zk| → ∞) such that |zk| = rk /∈ E ∪ [, ], and cpkzk–

k =
|cpk|rk–

k as rk → ∞. We obtain

∣∣ expckpk zk–
k +Q(zk ) ∣∣ = expk|cpk |rk–

k
∣∣ expQ(zk ) ∣∣ ≥ exp


 k|cpk |rk–

k . (.)

By (.) and (.), for any given ε ( < ε < k–ρ(m)
 ), we obtain

exp

 k|cpk |rk–

k ≤ exp
(
rρ(m)–+ε

k
)

+ rM
k exp

(
rρ(m)–+ε

k
)

expckpk rk–
k ≤ exp


 k|cpk |rk–

k ,

which is impossible. Hence we proved that max{λ(g),λ( 
g )} = ρ(g). Theorem . is thus

proved.

4 Proof of Theorem 2.2
Suppose that (.) has a rational solution g(z) and has poles l, l, . . . , lk . Hence g(z) can be
represented as

g(z) =
H(z)
K(z)

=
k∑

j=

[ tjsj

(z – lj)sj
+ · · · +

tj
(z – lj)

]
+ b + bz + · · · + brzr , (.)

where b, . . . , br , tjsj , . . . , tj are constants.
(i) If d > f and d – f is an even number, then (.) and (.) imply that

(
H(z + c)
K(z + c)

–
H(z)
K(z)

)

–
H(z + c)
K(z + c)

H(z)
K(z)

=
D(z)
F(z)

. (.)

Let deg H(z) = h and deg K(z) = k. Suppose h < k. Then

lim
z→∞

H(z + c)
K(z + c)

= , lim
z→∞

H(z)
K(z)

= . (.)

From (.) with (.) we obtain

D(z)
F(z)

=
(

H(z + c)
K(z + c)

–
H(z)
K(z)

)

–
H(z + c)
K(z + c)

H(z)
K(z)

→ .

This is impossible, since D(z)
F(z) → ∞ as z → ∞.
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Suppose h = k. Then

lim
z→∞

H(z + c)
K(z + c)

= β , lim
z→∞

H(z)
K(z)

= β , (.)

where β ∈C \ {}. Relations (.) and (.) yield that

D(z)
F(z)

=
(

H(z + c)
K(z + c)

–
H(z)
K(z)

)

–
H(z + c)
K(z + c)

H(z)
K(z)

→ –β,

a contradiction, since D(z)
F(z) → ∞ as z → ∞. Hence, we obtain that h > k. So br �=  (r ≥ ).

As z → ∞, we have

g(z) = brzs( + o()
)
, g(z + c) = brzs( + o()

)
,

D(z)
F(z)

= αzd–f ( + o()
)
,

(.)

where α ∈ C \ {}. As z → ∞, by (.) and (.) we can deduce

–b
r zr( + o()

)
= αzd–f ( + o()

)
. (.)

Relation (.) implies that

h – k = r =
d – f


.

If d = f , then, as z → ∞, we obtain

D(z)
F(z)

= α
(
 + o()

)
,

where α ∈ C \ {}. If h < k, then using the similar method as before, we can obtain a con-
tradiction. If h > k, then br �=  (r ≥ ). By (.), as z → ∞, we obtain

–b
r zr( + o()

)
= αzd–f ( + o()

)
= α

(
 + o()

)
, (.)

a contradiction. Hence h = k, that is,

h – k =  =
d – f


.

(ii) We next consider the case d < f . Suppose that h > k. Then br �=  (r ≥ ). Using the
similar method as before, as z → ∞, by (.) we obtain that

b
r zr( + o()

)
= ,

a contradiction.
If h = k, then using the similar method as before, we obtain

D(z)
F(z)

=
(

H(z + c)
K(z + c)

–
H(z)
K(z)

)

–
H(z + c)
K(z + c)

H(z)
K(z)

→ β �=  as z → ∞,
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which is a contradiction, since D(z)
F(z) →  as z → ∞. Hence h < k. Substituting g(z) = H(z)

K (z)
into (.), we have

F(z)H(z + c)K(z) – F(z)H(z)H(z + c)K(z)K(z + c) + F(z)H(z)K(z + c)

= D(z)K(z)K(z + c). (.)

Since

deg
(
F(z)H(z + c)K(z) – F(z)H(z)H(z + c)K(z)K(z + c) + F(z)H(z)K(z + c)

)

= f + h + k,

deg
(
D(z)K(z)K(z + c)

)
= d + k.

From this and from (.) we have

h – k =
d – f


.
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