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Abstract
In this present study, we investigate the solutions for fractional kinetic equations
involving k-Struve function using the Sumudu transform. The graphical
interpretations of the solutions involving k-Struve function and its comparison with
generalized Bessel function are given. The methodology and results can be
considered and applied to various related fractional problems in mathematical
physics.
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1 Introduction
The Struve function Hν(x) introduced by Hermann Struve in , defined for ν ∈C by

Hν(x) :=
∞∑

r=

(–)r

�(r + /)�(r + ν + 
 )

(
x


)r+ν+

, ()

is the particular solutions of the non-homogeneous Bessel differential equations, given by

xy′′(x) + xy′(x) +
(
x – ν)y(x) =

( x
 )ν+

√
π�(ν + /)

. ()

The homogeneous version of () has Bessel functions of the first kind, denoted as Jν(x), for
solutions, which are finite at x = , when ν is a positive fraction and all integers [], while
they tend to diverge for negative fractions ν . The Struve functions occur in certain areas
of physics and applied mathematics, for example, in water-wave and surface-wave prob-
lems [, ], as well as in problems of unsteady aerodynamics []. The Struve functions are
also important in particle quantum dynamical studies of spin decoherence [] and nan-
otubes []. For more details about Struve functions, their generalizations and properties,
the esteemed reader is invited to consider the references [–]. Recently, Nisar et al. []
introduced and studied various properties of k-Struve function Skν,c defined by

Skν,c(x) :=
∞∑

r=

(–c)r

�k(rk + ν + k
 )�(r + 

 )

(
x


)r+ ν
k+

. ()
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The Sumudu transform was introduced by Watugala (see [, ]). For more details
about the Sumudu transform, see ([, –]). The Sumudu transform over the set of func-
tions

A =
{

f (t) | ∃ M, τ, τ > ,
∣∣f (t)

∣∣ < Me|t|/τj , if t ∈ (–)j × [,∞)
}

is defined by

G(u) = S
[
f (t); u

]
=

∫ ∞


f (ut)e–t dt, u ∈ (–τ, τ). ()

The Sumudu transform of k-Struve function is given by

S
[
Skν,c(x)

]
=

∫ ∞


e–tSkν,c(ut) dt

=
∫ ∞


e–t
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Now, using

�k(γ ) = k
γ
k –�

(
γ

k

)
, ()

we have the following:

S
[
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]
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Denoting the left-hand side by G(u), we have

G(u) = S
[
Skν,c(t); u

]

=
(

u


) ν
k+

k– 
 – ν

k �

[
( ν
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Now, using the formula

S–{uv; t
}

=
tv–

�(v)
, �(v) > , ()

we get the inverse Sumudu transform of k-Struve function as

S–[Skν,c(x)
]

= S–
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Applying () in (), we get

S–[Skν,c(x)
]
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In the field of mathematics, many techniques are used to solve various types of problems
[–]. In this paper, we use the Sumudu transform technique to obtain the solutions of
fractional kinetic equations by considering (). The applications of fractional order cal-
culus are found in many papers (see [–]), and it has attracted researchers’ attention
in various fields [–] because of its importance and efficiency. The fractional differ-
ential equation between a chemical reaction or a production scheme (such as in birth-
death processes) was established and treated by Haubold and Mathai [] (also see [,
, ]).

2 Solution of generalized fractional kinetic equations for k-Struve function
Let the arbitrary reaction be described by a time-dependent quantity N = (Nt). The rate of
change dN

dt is a balance between the destruction rate d and the production rate p of N, that
is, dN

dt = –d + p. Generally, destruction and production depend on the quantity N itself,
that is,

dN
dt

= –d(Nt) + p(Nt), ()

where Nt is described by Nt(t∗) = N(t – t∗), t∗ > . Another form of () is

dNi

dt
= –ciNi(t), ()

with Ni(t = ) = N, which is the number of density of species i at time t =  and ci > .
The solution of () is

Ni(t) = Ne–cit . ()

Integrating () gives

N(t) – N = –c · D–
t N(t), ()

where D–
t is the particular case of the Riemann-Liouville integral operator and c is a

constant. The fractional form of () due to [] is

N(t) – N = –cυ
 D–υ

t N(t), ()
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where D–υ
t is defined as

D–υ
t f (t) =


�(υ)

∫ t


(t – s)υ–f (s) ds, �(υ) > . ()

Suppose that f (t) is a real- or complex-valued function of the (time) variable t >  and s is
a real or complex parameter. The Laplace transform of f (t) is defined by

F(p) = L
[
f (t) : p

]
=

∫ ∞


e–ptf (t) dt, �(p) > . ()

The Mittag-Leffler functions Eρ(z) (see []) and Eρ,λ(x) [] are defined respectively as
follows:

Eρ(z) =
∞∑

n=

zn

�(ρn + )
(
z,ρ ∈ C; |z| < ,�(ρ) > 

)
. ()

Eρ,λ(x) =
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n=

xn

�(ρn + λ)
(
z,ρ,λ ∈C;�(ρ) > ,�(λ) > 

)
. ()

Theorem  If d > ,ν > ,μ, c, t ∈ C and μ > – 
k, then the solution of the generalized

fractional kinetic equation

N(t) = N S
k
μ,c

(
dνtν

)
– dν

D–ν
t N(t) ()

is given by the following formula:

N(t) = N
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k )+
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)
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where Eν,ν(r+ μ
k )+(–dνtν) is given in ().

Proof The Sumudu transform of Riemann-Liouville fractional integral operators is given
by

S
{

D–ν
t f (t); u

}
= uνG(u), ()

where G(u) is defined in (). Now, applying the Sumudu transform to both sides of ()
and applying the definition of k-Struve function given in (), we have
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[
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]
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)
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]
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– dνuνN∗(u), ()

where

S
{

tμ–} = uμ–�(μ). ()

By rearranging terms, we get
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Taking the inverse Sumudu transform of () and by using
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×
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which is the desired result. �

Corollary  If we put k =  in (  ), then we get the solution of involving the classical Struve
function as follows: If d > ,ν > ,μ, c, t ∈C and μ > – 

 , then the equation

N(t) = N S

μ,c

(
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)
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D–ν
t N(t) ()
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Theorem  If a > , d > ,ν > , c,μ, t ∈ C,a 	= d and μ > – 
k, then the solution of equa-

tion

N(t) = N S
k
μ,c

(
dνtν

)
– a

ν
D–ν

t N(t) ()

is given by

N(t) = N
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)
, ()

where Eν,ν(r+ μ
k )+(·) is given in ().

Proof Theorem  can be proved in parallel with the proof of Theorem . So the details of
proofs are omitted. �

Corollary  By putting k =  in Theorem , we get the solution of fractional kinetic equa-
tion involving classical Struve function: If a > , d > ,ν > , c,μ, t ∈ C,a 	= d and μ > – 

 ,
then the equation

N(t) = N S

μ,c

(
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)
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ν
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t N(t) ()

is given by the following formula:
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Theorem  If d > ,ν > , c,μ, t ∈ C and μ > – 
k, then the solution of

N(t) = N S
k
μ,c

(
tν

)
– dν

D–ν
t N(t) ()

is given by

N(t) = N

∞∑

r=
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)
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where Eν,ν(r+ μ
k )+(·) is given in ().

Proof The proofs of Theorem  would run parallel to those of Theorem . �

Corollary  If we set k = , then () is reduced as follows: If d > ,ν > , c,μ, t ∈ C and
μ > – 

 , then the solution of the following equation

N(t) = N S

μ,c

(
tν

)
– dν
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t N(t) ()
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N(t) = N

∞∑
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(
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)
. ()

3 Graphical interpretation
In this section, first we plot the graphs of our solutions of the fractional kinetic equa-
tion, which is established in (). In each graph, we give three solutions of the results
on the basis of assigning different values to the parameters. In Figure , we take k = 
and ν = ., ., ., , .. Similarly, Figures ,  are plotted respectively by taking k = 
and . Figures , ,  are plotted by considering the solution given in () by taking
ν = ., ., ., , . and k = , , . Other than ν and k, all other parameters are fixed
by . Observing these figures, we see that N(t) >  for t >  and the behavior of the solu-
tions for different parameters and time interval can be studied and observed very easily.
In this study, we choose first  terms of Mittag-Leffler function and first  terms of
our solutions to plot the graphs. Also, the comparison between solutions of generalized
fractional kinetic equations involving generalized Bessel function (solid green line) and
k-Struve function (dashed red line) are shown in Figure .

4 Conclusion
In this work, we have established the solution of fractional kinetic equation involving k-
Struve function with the help of the Sumudu transform and provided its graphical inter-
pretations. From the close relationship of the k-Struve function with other special func-
tions, one can easily construct various known and new fractional kinetic equations.
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Figure 1 Solution (22) for N(t),k = 1.

Figure 2 Solution (22) for N(t),k = 2.

Figure 3 Solution (22) for N(t),k = 3.
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Figure 4 Solution (35) for N(t),k = 1.

Figure 5 Solution (35) for N(t),k = 2.

Figure 6 Solution (35) for N(t),k = 3.
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Figure 7 Comparison between solutions (22) and (18) of [51].
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