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Abstract
By constructing two scaling matrices, i.e., a function matrix�(t) and a constant matrix
W which is not equal to the identity matrix, a kind ofW –�(t) synchronization
between fractional-order and integer-order chaotic (hyper-chaotic) systems with
different dimensions is investigated in this paper. Based on the fractional-order
Lyapunov direct method, a controller is designed to drive the synchronization error
convergence to zero asymptotically. Finally, four numerical examples are presented to
illustrate the effectiveness of the proposed method.
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1 Introduction
The fractional calculus theory, which is a generalization of the traditional integer-order
calculus, can date back to  years ago. However, until recent  years, it has attracted
increasing attention due to its popular use in the scientific fields and the engineering-
oriented fields. Compared with the integer calculus, the fractional one can explain and
handle many challenging problems more adequately and effectively [–].

Chaos synchronization is the dynamical process which means making two or more os-
cillators keep the same rhythms under a weak interaction []. Since Pecora and Carroll
[] proposed a pioneering method to synchronize two identical chaotic systems, synchro-
nization of fractional-order chaotic dynamical systems has gained a lot of popularity for
its potential applications in secure communication and cryptography, telecommunica-
tion, signal and control processing, chaos synchronization [–]. Several types of syn-
chronization techniques and methods, such as adaptive control, sliding mode control [,
], complete synchronization, projective synchronization (PS), and function projective
synchronization (FPS) [–], have been proposed for fractional-order dynamical sys-
tems. Among those existing synchronization methods, FPS, which has been introduced
by Chen and Li [, ], was widely employed for synchronizing chaotic systems. Some
scaling function matrices, which can be given with one’s need, are used in FPS. In fact,
the scaling function matrix usually exhibits flexibility and unpredictability. By using error
feedback control scheme, FPS of complex dynamical networks with or without external
disturbances was discussed in []. Ref. [] investigated adaptive switched modified FPS
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between two complex nonlinear hyper-chaotic systems with unknown parameters. Ref.
[] discussed modified function projective combination synchronization of hyperchaotic
systems.

It should be pointed out that in the above mentioned literature, synchronization of
fractional-order or integer-order chaotic systems was mainly discussed. Synchronization
between fractional-order and integer-order chaotic systems is widely perceived as con-
tributing to generating hybrid chaotic transient signals, which are quite difficult to be de-
crypted in communication. Up to now, only a few works have been given to investigate
this problem, for instance, by using the stability theory of fractional-order linear system,
Ref. [] investigated modified general functional projective synchronization between a
class of integer-order and fractional-order chaotic systems. Ref. [] discussed the dual
projective synchronization between integer-order and fractional-order chaotic systems
(one can refer to [–] for more details). Actually, some dynamical systems usually
have non-identical dimensions. However, papers which have discussed the synchroniza-
tion between fractional-order and integer-order chaotic (hyper-chaotic) systems with dif-
ferent dimensions are not common. Ref. [] investigated adaptive generalized function
matrix projective lag synchronization between fractional-order and integer-order com-
plex networks with delayed coupling and different dimensions. However, the controller in
[] has a very complicated form. Note that two scaling matrices (a function matrix and a
non-unit constant matrix), which are more general than other scaling factors in FPS, have
not been used to discuss the synchronization between fractional-order and integer-order
chaotic (hyper-chaotic) systems with different dimensions. Besides, it is well known that
the quadratic Lyapunov functions provide an important tool for stability analysis in the
integer-order nonlinear systems. Therefore, how to use quadratic Lyapunov functions in
the stability analysis of fractional-order systems is meaningful.

Motivated by the aforementioned interesting literature, based on the Lyapunov direct
method, we consider employing two scaling matrices to synchronize fractional-order and
integer-order chaotic (hyper-chaotic) systems with different dimensions. Our method is
more general than FPS. With the help of two scaling matrices, we can optimize the design
of the synchronization controller. Our main contributions of this paper can be roughly
summarized as follows:

• Based on the Lyapunov direct method, the synchronization of fractional-order and
integer-order chaotic (hyper-chaotic) systems with different dimensions is discussed
by using a constant matrix and a function matrix.

• With respect to different systems with non-identical dimensions, different controllers
are constructed to achieve W – �(t) synchronization.

The rest of this paper is arranged as follows. In Section , some necessary theories and
the mathematical models of fractional-order and integer-order systems are given. The
problem of W –�(t) synchronization of fractional-order and integer-order chaotic (hyper-
chaotic) systems is investigated in Section . In Section , the corresponding numerical
simulations are presented to demonstrate the effectiveness of the main results. Finally, the
conclusions are given in Section .

2 Preliminaries
2.1 Some related theories
Among several kinds of definitions of fractional-order derivatives, the Caputo definition
is the most frequently used one. The initial conditions for fractional differential equations
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with Caputo derivatives take on the same form as for integer-order differential equations.
The Caputo fractional derivative operator will be used in this paper, and the Caputo frac-
tional derivative is defined as

Dα
t f (t) =


�(n – α)

∫ t


(t – τ )n–α–f (n)(τ ) dτ , ()

where n –  ≤ α < n is the fractional order, �(·) denotes the gamma function.
Some necessary lemmas and properties of the Caputo fractional derivative operator are

listed below. For convenience, we always assume that  < α <  in the rest of our paper.

Property  ([]) Let f (t), g(t) ∈ C′[, T](T > ), then we have

Dα
t
(
af (t) + bg(t)

)
= aDα

t f (t) + bDα
t g(t), ()

where a, b are two arbitrary real constants.

Theorem  ([]) Let x =  be an equilibrium point for the following fractional-order
nonautonomous system:

Dα
t x(t) = f

(
t, x(t)

)
, ()

where x(t) ∈ Rn is the system state vector, f : [t,∞) × � → Rn is a real-valued continuous
function in t and locally Lipschitz in x on [t,∞) × �, and � ∈ Rn is the domain that
contains the region x = . Suppose there exists a Lyapunov function V (t, x(t)) and three
positive constants h, h, h such that

h
∥∥x(t)

∥∥ ≤ V
(
t, x(t)

) ≤ h
∥∥x(t)

∥∥, ()

Dα
t V

(
t, x(t)

) ≤ –h
∥∥x(t)

∥∥, ()

then system () is asymptotically stable.

Lemma  ([]) Let x(t) ∈ Rn be a continuously differentiable function, then for arbitrary
t > , it holds




Dα
t
(
xT (t)x(t)

) ≤ xT (t)Dα
t x(t). ()

Lemma  ([]) Let V (t) = 
 xT (t)x(t) + 

 yT (t)y(t), where x(t), y(t) ∈ Rn are continuously
differentiable functions. Assume that there exists a positive constant k satisfying

Dα
t V (t) ≤ –kxT (t)x(t), ()

where  < α ≤ , then ‖x(t)‖ and ‖y(t)‖ remain bounded, and x(t) converges to zero asymp-
totically. The symbol ‖ · ‖ denotes the Euclidean norm.
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2.2 Problem description
In this section, two cases will be considered.

Case : Let an integer-order chaotic system be the drive system and a fractional-order
hyper-chaotic system be the response system, which are respectively expressed as

⎧⎨
⎩

D: ẋ(t) = Ax(t) + f (x(t)),

R: Dα
t y(t) = By(t) + g(y(t)) + U(t),

()

where A ∈ Rm×m, B ∈ Rn×n (m < n) are linear parts of the drive system and the response
system, respectively. x(t) ∈ Rm, y(t) ∈ Rn are the state vectors of the drive system and the re-
sponse system, respectively. f : Rm → Rm, and g : Rn → Rn are continuous nonlinear parts
of the drive system and the response system, respectively, and U(t) ∈ Rn is a controller to
be designed.

Case : Considering the drive system and the response system of the form:

⎧⎨
⎩

D: Dα
t x(t) = Ax(t) + f (x(t)),

R: ẏ(t) = By(t) + g(y(t)) + U(t),
()

where A ∈ Rm×m, B ∈ Rn×n (m < n) are linear parts of the drive system and the response
system, respectively. x(t) ∈ Rm, y(t) ∈ Rn are the state vectors of the drive system and the re-
sponse system, respectively. f : Rm → Rm, and g : Rn → Rn are continuous nonlinear parts
of the drive system and the response system, respectively, and U(t) ∈ Rn is a controller to
be designed.

Remark  Generally speaking, dimension l is an integer satisfying  < l ≤ max(m, n). For
the convenience of our discussions, we will consider the conditions that l = m or l = n.

Definition  The drive-response systems () and () are said to be synchronized in l di-
mension, respectively, if there exists a controller U(t) ∈ Rn such that

lim
t→∞

∥∥e(t)
∥∥ = lim

t→∞
∥∥Wy(t) – �(t)x(t)

∥∥ = , ()

where W = (wij) ∈ Rl×n is a constant matrix, �(t) = (�ks(t)) ∈ Rl×m is a function matrix,
both wij (i = , . . . , l; j = , . . . , n) and �ks(t) (k = , . . . , l; s = , . . . , m) cannot be equal to zero
at the same time.

Assumption  Assume that the scaling matrices W and �(t) = (�ks(t)) ∈ Rl×m are
bounded, �ks(t) are continuously differentiable and bounded functions or constants, and
the derivatives of �ks(t) (k = , . . . , l; s = , . . . , m) are bounded.

Remark  Let I represent the identity matrix. Several points about Definition  are given
as follows:

() When l = n, W �= I .
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() When l = n, W = I ∈ Rn×n, and �(t) = (�ks(t)) ∈ Rn×m, our method is simplified to
be FPS.

() When l = n, W = I ∈ Rn×n, and �(t) = C ∈ Rn×m is a nonzero constant matrix, our
method is simplified to be PS.

() When m = n, W = I , �(t) = (�ks(t)) ∈ Rn×n, our method is simplified to be FPS of
chaotic systems with the same dimensions.

() When m = n, W = I , �(t) = I ∈ Rn×n, our method is simplified to be complete
synchronization.

() When m = n, W = I , �(t) = diag(d, . . . , d) ∈ Rn×n is a nonzero constant matrix, our
method is simplified to be PS of chaotic systems with the same dimensions.

() When m = n, W = I , �(t) = –I ∈ Rn×n, our method is simplified to be anti-phase
synchronization.

() Our method provides multiple selections. Both the drive system and the response
system are related to the dimension of e(t), that is to say, e(t) ∈ Rn and e(t) ∈ Rm can
be achieved simultaneously, and this will be shown in our simulation part.
Therefore, for some complex dynamical systems, we can choose the smaller
dimension to get better reduction results.

Remark  It follows from Remark  that the proposed synchronization method is more
general than other kinds of scaling synchronization, and our results are also effective for
synchronization between fractional-order and integer-order chaotic or hyper-chaotic sys-
tems with the same dimensions.

3 Synchronization controller design and stability analysis
In this section, we will construct the synchronization controllers with different dimen-
sions.

3.1 Synchronization under case 1
.. l = n
Under the given conditions, the synchronization error can be written as

e(t) = Wy(t) – �(t)x(t), ()

where W ∈ Rn×n and �(t) ∈ Rn×m are two scaling matrices. The synchronization error
system can be derived as

Dα
t e(t) = W

(
By(t) + g

(
y(t)

)
+ U(t)

)
– Dα

t
(
�(t)x(t)

)

= –(Q – B)e(t) + WU(t) + K(t)

= –Pe(t) + WU(t) + K(t), ()

where Q ∈ Rn×n is a feedback gain matrix which is chosen such that P = Q – B is a
positive definite matrix, and K(t) = Pe(t) + WBy(t) + Wg(y(t)) – Dα

t (�(t)x(t)). Then we
have the following theorem.
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Theorem  The drive-response system () is said to be synchronized in n dimension under
the control matrix Q if we design the following controller:

U(t) = –MPe(t) – By(t) – g
(
y(t)

)
+ u(t), ()

where M = W –, and u(t) = MDα
t (�(t)x(t)) is the compensation controller.

Proof Substituting Eq. () into Eq. () yields

Dα
t e(t) = –Pe(t). ()

Let the Lyapunov function candidate be V (t) = 
 eT (t)e(t), according to Lemma , we have

Dα
t V (t) ≤ eT (t)Dα

t e(t)

= –eT (t)Pe(t)

≤ –keT (t)e(t) < , ()

where k = min{p, . . . , pn} > , and pi >  (i = , . . . , n) is the eigenvalue of matrix P. It fol-
lows from Lemma  that the synchronization error system is asymptotically stable. �

.. l = m
When l = m, the synchronization error system can be expressed as

Dα
t e(t) = W

(
By(t) + g

(
y(t)

)
+ U(t)

)
– Dα

t
(
�(t)x(t)

)

= –(Q – A)e(t) + WU(t) + K(t)

= –Pe(t) + WU(t) + K(t), ()

where W ∈ Rm×n, �(t) ∈ Rm×m. Q ∈ Rm×m is a feedback gain matrix which is chosen
such that P = Q – A is a positive definite matrix, and K(t) = Pe(t) + WBy(t) + Wg(y(t)) –
Dα

t (�(t)x(t)).
To proceed, the following assumption is needed.

Assumption  The controller component Ui(t) of controller U(t) is  for i = m + , . . . , n.

By Assumption , it is obvious that WU(t) = Ŵ Û(t), where Ŵ = (Wij)m×m, Û(t) =
(U(t), U(t), . . . , Um(t))T . Let

Û(t) = M
[
–Pe(t) – WBy(t) – Wg

(
y(t)

)
+ u(t)

]
, ()

where M = Ŵ –, and u(t) = Dα
t (�(t)x(t)) is the compensation controller. Substituting the

control law () into () gives

Dα
t e(t) = –Pe(t). ()

Theorem  The drive-response system () will be synchronized in m dimension under As-
sumption  and the control matrix Q if the control law is designed as ().
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3.2 Synchronization under case 2
.. l = n
Under the given conditions, the synchronization error system can be described as

ė(t) = W
(
By(t) + g

(
y(t)

)
+ U(t)

)
– �̇(t)x(t) – �(t)ẋ(t)

= –(L – B)e(t) + WU(t) + S(t)

= –Te(t) + WU(t) + S(t), ()

where W ∈ Rn×n, �(t) ∈ Rn×m. L ∈ Rn×n is a feedback gain matrix which is chosen such
that T = L – B is a positive definite matrix , and S(t) = Te(t) + WBy(t) + Wg(y(t)) –
�̇(t)x(t) – �(t)ẋ(t).

Let

U(t) = N
(
–Te(t) + u(t)

)
– By(t) – g

(
y(t)

)
, ()

where N = W –, and u(t) = �̇(t)x(t) + �(t)ẋ(t) is the compensation controller. Substitut-
ing () into () yields

ė(t) = –Te(t). ()

Theorem  The drive-response system () is said to be synchronized in n dimension under
the control matrix L and controller ().

.. l = m
When l = m, the synchronization error system is

ė(t) = W
(
By(t) + g

(
y(t)

)
+ U(t)

)
– �̇(t)x(t) – �(t)ẋ(t), ()

where W ∈ Rm×n, �(t) ∈ Rm×m.
Let

U(t) = –By(t) – g
(
y(t)

)
+ H(t), ()

where H(t) = (H(t), . . . , Hn(t))T , and () becomes

ė(t) = WH(t) – �̇(t)x(t) – �(t)ẋ(t). ()

It indicates that the initial problem is transformed into the following problem: choose a
control law H(t) such that the error system () is asymptotically stable. Firstly, we give
an assumption.

Assumption  The control component Hi(t) of controller H(t) is  for i = m + , . . . , n.

By Assumption , it is easy to see that WH(t) = Ŵ Ĥ(t), where Ĥ(t) = (H(t), . . . , Hm(t))T ,
Ŵ = (Wij)m×m. Let

Ĥ(t) = N
[
–(L – A)e(t) + u(t)

]
, ()
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where N = Ŵ –, L is a feedback gain matrix which is chosen such that T = L – A is
a positive definite matrix, and u(t) = �̇(t)x(t) + �(t)ẋ(t) is the compensation controller.
Therefore, we obtain

ė(t) = –(L – A)e(t)

= –Te(t). ()

Theorem  The drive-response system () will be synchronized in m dimension under As-
sumption  and the control matrix L if we design the controller as () and ().

Remark  Since the proofs of Theorem , Theorem , and Theorem  are similar to that
of Theorem , the processes will be omitted here.

Remark  Specially, to simplify calculations, the above feedback gain matrices Q, Q,
L, and L can be chosen such that their corresponding matrices P, P, T, and T are
diagonally positive definite.

Remark  For the above cases, we know that the asymptotical stability of the synchro-
nization error systems is mainly decided by the above feedback gain matrices Q, Q, L,
and L. The scaling matrices W and �(t) have no effect on the selection of these feed-
back gain matrices; consequently, if Definition  and Assumption  are satisfied, the cor-
responding positive definite matrices P, P, T, and T will not change with the scaling
matrices W and �(t). Therefore, according to certain chaotic (hyper-chaotic) systems,
one can focus on optimizing the construction of the controller U(t) to build the scaling
matrices W and �(t). It should be pointed out that the continuously bounded functions
sin(t) and cos(t) will display more excellent properties than other functions in the process
of control. Based on Definition  and Assumption , for the purpose of getting better con-
trol performance, we usually employ functions sin(t) and cos(t) to construct the scaling
function matrix �(t).

4 Numerical simulation
In this section, four numerical examples are presented to verify the effectiveness of our
results.

4.1 Synchronization between integer-order Chen system and fractional-order
hyper-chaotic Chen system

Consider the following integer-order Chen system as the drive system:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = a(x(t) – x(t)),

ẋ(t) = (c – a)x(t) – x(t)x(t) + cx(t),

ẋ(t) = x(t)x(t) – bx(t),

where x = (x, x, x) is the system state vector, a, b, c ∈ R are parameters. When (a, b, c) =
(, , ), it exhibits chaotic attractor, which is shown in Figure .
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Figure 1 Chaotic attractor of the integer-order
Chen system.

Figure 2 Attractors of the fractional-order
hyper-chaotic Chen system.

Let the following fractional-order hyper-chaotic Chen system be the response system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
t y(t) = a(y(t) – y(t)) + U(t),

Dα
t y(t) = dy(t) – y(t)y(t) + cy(t) + U(t),

Dα
t y(t) = y(t)y(t) – by(t) + U(t),

Dα
t y(t) = y(t)y(t) + ry(t) + U(t),

where y = (y, y, y, y) is the system state vector, Ui(t) (i = , . . . , ) is the controller,
a, b, c, d, r ∈ R are parameters. When α = ., (a, b, c, d, r) = (, , , , .), it ex-
hibits hyper-chaotic behavior, and the projections of the attractor are shown in Figure .

According to Theorem , the synchronization error is defined as e(t) = W (y, y, y, y)T –
�(t)(x, x, x)T . Let

W =

⎛
⎜⎜⎜⎝


   
   
  

 
   

⎞
⎟⎟⎟⎠ , Q =

⎛
⎜⎜⎜⎝

–   
   
   
   .

⎞
⎟⎟⎟⎠ ,

�(t) =

⎛
⎜⎜⎜⎝

 sin(t) 
. cos(t)  .

 . sin(t) 
  . cos(t)

⎞
⎟⎟⎟⎠ .
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Figure 3 Time series of the synchronization
error system.

Figure 4 Chaotic attractor of the integer-order
Rössler system.

Let α = ., the initial conditions of the drive system and the response system are
x() = (, ., .), y() = (., ., ., .). The numerical simulation of the synchroniza-
tion error system is presented in Figure .

4.2 Synchronization between integer-order Rössler system and fractional-order
hyper-chaotic Lorenz system

Consider the following integer-order Rössler system as the drive system:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = –(x(t) + x(t)),

ẋ(t) = x(t) + ax(t),

ẋ(t) = x(t)(x(t) – c) + b,

where x = (x, x, x) is the system state vector, a, b, c ∈ R are parameters. When
(a, b, c) = (., ., .), it exhibits chaotic attractor, which is shown in Figure .

Let the following fractional-order hyper-chaotic Lorenz system be the response system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
t y(t) = a(y(t) – y(t)) + y(t) + U(t),

Dα
t y(t) = cy(t) – y(t)y(t) – y(t) + U(t),

Dα
t y(t) = y(t)y(t) – by(t) + U(t),

Dα
t y(t) = –y(t)y(t) + ry(t) + U(t),

where y = (y, y, y, y) is the system state vector, Ui(t) (i = , . . . , ) is the controller, and
a, b, c, r ∈ R are parameters. When α = ., (a, b, c, r) = (, 

 , , –), it exhibits hyper-
chaotic behavior, and the projections of the attractor are shown in Figure .
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Figure 5 Attractors of the fractional-order
hyper-chaotic Lorenz system.

Figure 6 Time series of the synchronization
error system.

According to Theorem , the synchronization error is defined as e(t) = W (y, y, y, y)T –
�(t)(x, x, x)T . Let

W =

⎛
⎜⎝

   
   
   

⎞
⎟⎠ , Q =

⎛
⎜⎝

 – –
 . 
  –.

⎞
⎟⎠ ,

�(t) =

⎛
⎜⎝

sin(t)  .
 . cos(t) 
  cos(t)

⎞
⎟⎠ .

Let α = ., the initial conditions of the drive system and the response system are x() =
(, , ), y() = (, –, , –). The numerical simulation of the synchronization error system
is presented in Figure .

4.3 Synchronization between fractional-order Rössler system and integer-order
hyper-chaotic Chen system

The following fractional-order Rössler system describes the drive system:

⎧⎪⎪⎨
⎪⎪⎩

Dα
t x(t) = –(x(t) + x(t)),

Dα
t x(t) = x(t) + ax(t),

Dα
t x(t) = x(t)(x(t) – c) + b,
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Figure 7 Chaotic attractor of the
fractional-order Rössler system.

Figure 8 Attractors of the integer-order
hyper-chaotic Chen system.

where x = (x, x, x) is the system state vector, a, b, c ∈ R are parameters. When α = .,
(a, b, c) = (., ., ), it exhibits chaotic attractor, which is shown in Figure .

Let the following integer-order hyper-chaotic Chen system be the response system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẏ(t) = a(y(t) – y(t)) + y(t) + U(t),

ẏ(t) = dy(t) – y(t)y(t) + cy(t) + U(t),

ẏ(t) = y(t)y(t) – by(t) + U(t),

ẏ(t) = y(t)y(t) + ry(t) + U(t),

where y = (y, y, y, y) is the system state vector, Ui(t) (i = , . . . , ) is the controller,
and a, b, c, d, r ∈ R are parameters. When (a, b, c, d, r) = (, , , , .), it exhibits
hyper-chaotic behavior, and the projections of the attractor are shown in Figure .

According to Theorem , the synchronization error is defined as e(t) = W (y, y, y, y)T –
�(t)(x, x, x)T . Let

W =

⎛
⎜⎜⎜⎝

   
   
   
   

⎞
⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎝

–   
   
   
   .

⎞
⎟⎟⎟⎠ ,

�(t) =

⎛
⎜⎜⎜⎝

cos(t) . 
 sin(t) 
 . cos(t) 
  . sin(t)

⎞
⎟⎟⎟⎠ .



Yang et al. Advances in Difference Equations  (2017) 2017:344 Page 13 of 16

Figure 9 Time series of the synchronization
error system.

Figure 10 Attractors of the fractional-order
chaotic Lü system.

Let the initial conditions of the drive system and the response system be x() =
(., ., .), y() = (, , , ). The numerical simulation of the synchronization error sys-
tem is presented in Figure .

4.4 Synchronization between fractional-order Lü system and integer-order
hyper-chaotic Lorenz system

The following fractional-order Lü system describes the drive system:

⎧⎪⎪⎨
⎪⎪⎩

Dα
t x(t) = a(x(t) – x(t)),

Dα
t x(t) = –x(t)x(t) + cx(t),

Dα
t x(t) = x(t)x(t) – bx(t),

where x = (x, x, x) is the system state vector, a, b, c ∈ R are parameters. When α = .,
(a, b, c) = (, , ), it exhibits chaotic behavior, and the projections of the attractor are
shown in Figure .

Let the following integer-order hyper-chaotic Lorenz system be the response system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẏ(t) = a(y(t) – y(t)) + y(t) + U(t),

ẏ(t) = cy(t) – y(t)y(t) – y(t) + U(t),

ẏ(t) = y(t)y(t) – by(t) + U(t),

ẏ(t) = –y(t)y(t) + ry(t) + U(t),
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Figure 11 Attractors of the integer-order
hyper-chaotic Lorenz system.

Figure 12 Time series of the synchronization
error system.

where y = (y, y, y, y) is the system state vector, Ui(t) (i = , . . . , ) is the controller, and
a, b, c, r ∈ R are parameters. When (a, b, c, r) = (, 

 , , –), it exhibits hyper-chaotic be-
havior, and the projections of the attractor are shown in Figure .

According to Theorem , the synchronization error is defined as e(t) = W (y, y, y, y)T –
�(t)(x, x, x)T . Let

W =

⎛
⎜⎝

   
   
   

⎞
⎟⎠ , L =

⎛
⎜⎝

–  
  
  

⎞
⎟⎠ ,

�(t) =

⎛
⎜⎝

sin(t) . 
 . sin(t) 
  cos(t)

⎞
⎟⎠ .

Let the initial conditions of the drive system and the response system be x() =
(., ., .), y() = (, ., ., ). The numerical simulation of the synchronization error
system is presented in Figure .

5 Conclusions
In this paper, a kind of control approach about the synchronization of fractional-order
and integer-order chaotic (hyper-chaotic) systems with different dimensions is proposed.
To get new results, more simplified control schemes were designed by using two scaling
matrices, and a quadratic Lyapunov function is used in the stability analysis of the syn-
chronization error system. Finally, numerical simulations about the stabilization and syn-
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chronization problems of chaotic and hyper-chaotic dynamical systems are used to testify
the validity and usefulness of the proposed method.
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