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Abstract
In this paper, the H∞ performance analysis and switching control of uncertain
discrete switched systems with time delay and linear fractional perturbations are
considered via a switching signal design. Lyapunov-Krasovskii type functional and
discrete Wirtinger inequality are used in our approach to improve the
conservativeness of the past research results. Less LMI variables and shorter program
running time are provided than our past proposed results. Finally, two numerical
examples are given to show the improvement of the developed results.
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1 Introduction
In recent years, the dynamical systems have often been characterized by both continuous
and discrete dynamics. Such systems are usually confronted in many engineering practical
processes and are referred to as hybrid systems [–]. Hybrid systems may have the prop-
erty that several discrete states are possible for some x(t) []. A switched system may be
obtained from hybrid systems with only one discrete state for some x(t) [, , ]. This dis-
crete state is called the switching signal. Hence the system dynamics of switched systems
are comprised of a family of continuous or discrete subsystems and a signal handling the
switching among the subsystems. This class of systems is usually called switched systems.
Switched linear systems provide a framework that bridges the linear control systems and
the complex or uncertain feedback systems []. Switching among systems may produce
many complicated nonlinear system behaviors, such as multiple limit cycles and chaos
[, ]. Switched systems include automated highway systems, automotive engine control
systems, chemical process, constrained robotics, mutli-rate control, power systems and
power electronics, robot manufacture, water quality control, and stepper motors [, –
]. It is also well known that the existence of delay in a system may cause instability or
bad performance in closed loop control systems [–]. The phenomena of time delay are
usually confronted in many engineering systems, such as chemical engineering systems,
hydraulic systems, inferred grinding model, neural network, nuclear reactor, and rolling
mill. Hence stability and control for continuous and discrete switched systems with time
delay have been investigated in recent years [, , , –].
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The first interesting fact in a switched system is that the stability of overall system un-
der arbitrary switching cannot be guaranteed with all stable subsystems [, , , –].
Another fact is that the stability of a switched system can be achieved by choosing an
appropriate switching signal even when each subsystem is unstable [, , –]. Hence
the issue of a suitable switching signal design is important and interesting for the stabil-
ity and performance of switching systems. In [], the switching signal is identified to
guarantee the stability of a discrete switched time-delay system. In [–], some switch-
ing signal design techniques are proposed to guarantee the stability and performance of
discrete switched systems with time delay. Hence it is interesting to develop a simple de-
sign scheme for switching signal which is suitable for continuous-time and discrete-time
switched systems. In this paper, the design scheme for switching signal is more flexible
than that in some recently published reports [–].

In recent years, the H∞ performance criterion has been usually used to achieve this
minimization for regulated output under various disturbance inputs. In [, ], H∞ con-
trols are investigated for discrete switched systems with perturbations under arbitrary
switching signal. H∞ controls were proposed to identify the switching signal via dwell
time approach in []. In order to achieve better H∞ performance of switched systems,
designs for switching signal and control will be a good choice []. In our past results in
[], the developed switching signal design would depend on the parameters of a system.
The used nonnegative inequality approach in our past results in [–, ] is efficient,
but this approach has more LMI variables and longer program running time. In this pa-
per, less LMI variables and shorter program running time will be achieved. In the past,
Wirtinger inequality approach was developed to improve the conservativeness of the pro-
posed results in []. It is interesting to note that Wirtinger-based inequality approach is
also less conservative than Jensen inequality one []. In this paper, Wirtinger-based in-
equality combined with some free-weighting variables is used to estimate the allowable
bounds of time delay and minimize the H∞ performance.

On the other hand, some perturbations of switched systems are also included in this
paper. A more general perturbed form than parameter perturbations in [, , ] is con-
sidered as linear fractional perturbations in [–, ]. Hence a simple method to design
the switching signal in H∞ performance and switching control is proposed for discrete
switched systems with time delay and linear fractional perturbations. Some numerical ex-
amples are shown to demonstrate the use of proposed results. From the simulations, our
proposed approach illustrates those less conservative results.

Notations For a matrix A, we denote the transpose by AT , symmetric positive (nega-
tive) definite by A >  (A < ). A ≤ B (A < B) means that matrix B – A is symmetric
positive semi-definite (definite). I denotes the identity matrix. Define N̄ = {, , . . . , N},
A\B = {x|x ∈ A and x /∈ B}, L(,∞) = {w(k)|∑∞

k= wT (k)w(k) < ∞}.

2 Problem formulation and the main results
Consider the following uncertain discrete switched time-delay system:

x(k + ) =
[
Aσ + �Aσ (k)

]
x(k) +

[
Aτσ + �Aτσ (k)

]
x(k – τ )

+
[
Dσ + �Dσ (k)

]
w(k), k ≥ , (a)
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z(k) =
[
Azσ + �Azσ (k)

]
x(k) +

[
Azτσ + �Azτσ (k)

]
x(k – τ )

+
[
Dzσ + �Dzσ (k)

]
w(k), k ≥ , (b)

x(θ ) = ϕ(θ ), θ = –τ , –τ + , . . . , , (c)

where x(k) ∈ �n, xk is the state defined by xk(θ ) := x(k + θ ), ∀θ ∈ {–τ , –τ + , . . . , },
w(k) ∈ �m is the disturbance input, z(k) ∈ �q is the regulated ouput, σ is a switching sig-
nal in the finite set {, , . . . , N} and will be designed to preserve the performance of the
system, ϕ(k) ∈ �n is an initial state function, delay τ is a given positive integer. Matrices
Ai, Aτ i, Di, Azi, Azτ i, Dzi, i = , , . . . , N , are constant with appropriate dimensions. �Ai(k),
�Aτ i(k), �Di(k), �Azi(k), �Azτ i(k), and �Dzi(k) are some perturbed matrices satisfying
the following conditions:

[
�Ai(k) �Aτ i(k) �Di(k)

]
= Mi · �i(k) ·

[
NAi NAτ i NDi

]
, (d)

[
�Azi(k) �Azτ i(k) �Dzi(k)

]
= Mzi · �zi(k) ·

[
NzAi NzAτ i NzDi

]
, (e)

�i(k) =
[
I – �i(k)�i

]–
�i(k), �i�

T
i < I, (f)

�zi(k) =
[
I – �zi(k)�zi

]–
�zi(k), �zi�

T
zi < I, (g)

where Mi, Mzi, NAi, NAτ i, NDi, NzAi, NzAτ i, and NzDi, i = , , . . . , N , �i and �zi are some
given constant matrices of appropriate dimensions. �i(k) and �zi(k) are some matrices
representing the perturbations which satisfy

�T
i (k)�i(k) ≤ I, �T

zi(k)�zi(k) ≤ I. (h)

Define switching domains as

	i(Ui) =
{

x ∈ �n : xT Uix ≥ 
}

, i = , , . . . , N , (a)

where matrices Ui = UT
i will be selected from the proposed results in this paper and

	̄ = 	, 	̄ = 	\	̄, 	̄ = 	\	̄\	̄, . . . , and

	̄N = 	N\	̄\ · · · \	̄N–.
(b)

From the above definition, the switching signal can be chosen by

σ
(
x(k)

)
= i, ∀x(k) ∈ 	̄i, (c)

where 	̄i is defined in (b).
The following lemmas will be used to derive the main proposed results in this paper.

Lemma  ([]) If there exist some constants  ≤ αi ≤ , i ∈ N̄ ,
∑N

i= αi = , some matrices
Ui = UT

i , i ∈ N̄ , such that

N∑

i=

αi · Ui > ,
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we have

N⋃

i=

	̄i = �n and 	̄i ∩ 	̄j = �, ∀i 	= j,

where � is an empty set of �n and 	̄i is defined in (a)-(c).

Lemma  ([], Schur complement) For a matrix S =
[ S S

∗ S

]
with S = ST

, S = ST
, the

following conditions are equivalent:
() S < ;
() S < , S – SS–

ST
 < .

Lemma  ([]) Suppose that the matrix �i(k) is defined in (f) and satisfies (h), then the
following statements are equivalent for real matrices Ui, Wi, and Xi with Xi = XT

i :
(I) The inequality is satisfied

Xi + Ui�i(k)Wi + W T
i �T

i (k)UT
i < ;

(II) There exists a scalar εi >  such that

⎡

⎢
⎣

Xi Ui εi · W T
i

∗ –εi · I εi · �T
i

∗ ∗ –εi · I

⎤

⎥
⎦ < ,

where the matrix �i is defined in (f).

Lemma  ([], Discrete Wirtinger inequality) For a matrix R > , a positive integer τ ,
and a vector function x(k) ∈ �n, the following inequality is satisfied:

–τ ·
k–∑

i=k–τ

yT (i)Ry(i) ≤ –
[
x(k) – x(k – τ )

]T R
[
x(k) – x(k – τ )

]
–

(τ – )
(τ + )

η(k)T Rη(k)

=

[
x(k) – x(k – τ )

η(k)

]T [
–R 
 –δ(τ ) · R

][
x(k) – x(k – τ )

η(k)

]

,

where y(i) = x(i + ) – x(i), η(k) = x(k) + x(k – τ ) – ε(τ ) · ∑k–
i=k–τ+ x(i),

ε(τ ) =

⎧
⎨

⎩

/(τ – ), τ > ,

, τ = ,
δ(τ ) = (τ – )/(τ + ).

Proof For any positive integer τ > , this proof is provided by []. For τ = , it is a trivial
result. �

Definition  ([]) Consider system (a)-(h) with the switching signal in (c). Assume
the following:
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(i) With w(k) = , system (a)-(h) is asymptotically stable by the switching signal in
(c).

(ii) With zero initial conditions (i.e., ϕ(k) = , –rM ≤ k ≤ ), the signals w(k) and z(k)
satisfy

�∑

k=

zT (k)z(k) ≤ γ  ·
�∑

k=

wT (k)w(k), ∀w 	= ,

for all integers � >  and constant γ > . Then we say that system (a)-(h) is
asymptotically stablizable with H∞ performance γ by switching signal in (c). If the
parameter � is selected as ∞, the disturbance input w should be constrained in
L(,∞).

A delay-dependent condition is now provided to guarantee the H∞ performance of the
considered switched system by the design of switching signal.

Theorem  Suppose that there exist some constants  ≤ αi ≤ , i ∈ N̄ , and
∑N

i= αi = , the
following LMI optimization problem:

minimize γ̄ ,

subject to

R + W > , P =

[
P P

∗ P

]

> ,

[
Q W
∗ Q

]

> , (a)

�j =

[
�j �j

∗ �j

]

< , j = , , . . . , N , (b)

N∑

i=

αi · Ui > , (c)

where �j, �j, �j are defined by

�j =

[
�j �j

∗ �j

]

, ε(τ ) =

⎧
⎨

⎩

/(τ – ), τ > ,

, τ = ,
δ(τ ) = (τ – )/(τ + ),

�j =

⎡

⎢
⎢
⎢
⎣

–P + S + τ · W + τ  · Q + Uj   
   
  –(S + τ · W ) 
   –γ̄ · I

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

AT
j


AT

τ j

DT
j

⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

PT


⎡

⎢
⎢
⎢
⎣

AT
j


AT

τ j

DT
j

⎤

⎥
⎥
⎥
⎦

T
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–

⎡

⎢
⎢
⎢
⎣

I




⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

PT


⎡

⎢
⎢
⎢
⎣

I




⎤

⎥
⎥
⎥
⎦

T

+

[
I  –I 
I –ε(τ ) · I I 

]T [
–R 
 –δ(τ ) · R

][
I  –I 
I –ε(τ ) · I I 

]

,

�j =

⎡

⎢
⎢
⎢
⎣

�j �j �j

  
�j �j �j

�j �j �j

⎤

⎥
⎥
⎥
⎦

, �j =

⎡

⎢
⎣

�j  
 �j 
  �j

⎤

⎥
⎦ ,

�j =

⎡

⎢
⎢
⎢
⎣

�T
j �T

j   �T
j �T

j 
      �T

j

�T
j  �T

j �T
j   

�T
j  �T

j �T
j   

⎤

⎥
⎥
⎥
⎦

T

,

�j =

⎡

⎢
⎢
⎢
⎣

–εj · I  εj · �T
j 

 –εj · I  εj · �T
zj

εj · �j  –εj · I 
 εj · �zj  –εj · I

⎤

⎥
⎥
⎥
⎦

,

� = τ  · (Q + R), �j = (Aj – I)T�, �j = AT
j P, �j = AT

zj ,

�j = PT
Mj, �j = εj · NT

Aj, �j = εj · NT
zAj, �j = PT

Mj,

�j = AT
τ j�, �j = AT

τ jP, �j = AT
zτ j, �j = εj · NT

Aτ j,

�j = εj · NT
zAτ j, �j = –γ̄ · I, �j = DT

j �, �j = DT
j P,

�j = DT
zj , �j = εj · NT

Dj, �j = εj · NT
zDj, �j = –�,

�j = �T Mj, �j = –P, �j = PMj, �j = –I, �j = Mzj,

ε(τ ) =

⎧
⎨

⎩

/(τ – ), τ > ,

, τ = ,
δ(τ ) = (τ – )/(τ + ), (d)

has a feasible solution with a n × n matrix P > , some n × n matrices Q > , Q > ,
R > , S > , Uj = UT

j , W = W T, and constants γ̄ > , εj > , j = , , . . . , N . Then system
(a)-(h) is asymptotically stablizable with H∞ performance γ =

√
γ̄ by switching signal in

(c).

Proof Define the following Lyapunov-Krasovskii type functional:

V (xk) = ςT (k)Pς (k) + τ ·
∑

j=–τ+

k–∑

i=k–+j

zT (i)Q̂z(i)

+ τ ·
∑

j=–τ+

k–∑

i=k–+j

yT (i)Ry(i) +
k–∑

i=k–τ

xT (i)Sx(i), ()
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where P > , Q̂ = diag[Q Q] > , R > , S > , y(i) = x(i + ) – x(i), ς (k) =
[x(k)T ∑k–

i=k–τ x(i)T ]T , and z(i) = [x(i)T y(i)T ]T . The difference of the functional in () along
the solutions of system (a)-(h) has the form

�V (xk) = V (xk+) – V (xk)

=
[
ςT (k + )Pς (k + ) – ςT (k)Pς (k)

]
+ τ  · zT (k)Q̂z(k)

– τ ·
k–∑

i=k–τ

zT (i)Q̂z(i) + τ  · yT (k)Ry(k) – τ ·
k–∑

i=k–τ

yT (i)Ry(i)

+ xT (k)Sx(k) – xT (k – τ )Sx(k – τ ). ()

By the definitions y(i) = x(i + ) – x(i) and z(i) = [x(i)T y(i)T ]T , we have

–τ ·
k–∑

i=k–τ

zT (i)Q̂z(i) = –τ ·
k–∑

i=k–τ

[
x(i)
y(i)

]T [
Q 
 Q

][
x(i)
y(i)

]

, (a)

λ =
[
xT (k)Wx(k) – xT (k – τ )Wx(k – τ )

]
–

k–∑

i=k–τ

[
yT (i)Wy(i) + xT (i)Wy(i)

]
= . (b)

From the previous derivations, we can obtain the following result:

�V (xk) + τ · λ +
[
zT (k)z(k) – γ  · wT (k)w(k)

]

= xT (k + )Px(k + ) + xT (k)
[
–P + S + τ · W + τ  · Q

]
x(k)

+ xT (k + )P

k∑

i=k+–τ

x(i) +

[ k∑

i=k+–τ

xT (i)

]

P

[ k∑

i=k+–τ

x(i)

]

– xT (k)P

k–∑

i=k–τ

x(i) –

[ k–∑

i=k–τ

xT (i)

]

P

[ k–∑

i=k–τ

x(i)

]

+
[
x(k + ) – x(k)

]T[
τ  · (Q + R)

][
x(k + ) – x(k)

]
– τ ·

k–∑

i=k–τ

yT (i)[R + W ]y(i)

– xT (k – τ )[S + τ · W ]x(k – τ ) – τ ·
k–∑

i=k–τ

[
x(i)
y(i)

]T [
Q W
∗ Q

][
x(i)
y(i)

]

+
[
zT (k)z(k) – γ  · wT (k)w(k)

]
()

with

XT (k) =
[
xT (k)

∑k–
i=k–τ+ xT (i) xT (k – τ ) wT (k)

]
, (a)

and from (a)-(h) and Lemma , we have

x(k + ) =
[
Aσ + �Aσ (k)  Aτσ + �Aτσ (k) Dσ + �Dσ (k)

]
X(k), (b)

x(k + ) – x(k) =
[
Aσ – I + �Aσ (k)  Aτσ + �Aτσ (k) Dσ + �Dσ (k)

]
X(k), (c)
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z(k) =
[
Azσ + �Azσ (k)  Azτσ + �Azτσ (k) Dzσ + �Dzσ (k)

]
X(k), (d)

k∑

i=k+–τ

x(i) =
[
I I  

]
X(k), (e)

k–∑

i=k–τ

x(i) =
[
 I I 

]
X(k), (f)

–τ ·
k–∑

i=k–τ

yT (i)Ry(i) ≤
[

x(k) – x(k – τ )
η(k)

]T [
–R 
 –δ(τ ) · R

][
x(k) – x(k – τ )

η(k)

]

= XT (k)

[
I  –I 
I –ε(τ ) · I I 

]T [
–R 
 –δ(τ ) · R

]

×
[

I  –I 
I –ε(τ ) · I I 

]

X(k), (g)

where η(k) = x(k) + x(k – τ ) – ε(τ ) · ∑k–
i=k–τ+ x(i). Assume σ (x(k)) = j ∈ N̄ and from (a)-

(b), (d), and (a)-(g), the following result can be derived:

�V (xk) + τ · λ +
[
zT (k)z(k) – γ  · wT (k)w(k)

]

≤ –xT (k)Ujx(k) + XT (k) · �̂j · X(k), (a)

where

�̂j = �̄j –

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

�–
j

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

T

, (b)

�̄j =

⎡

⎢
⎢
⎢
⎣

–P + S + τ · W + τ  · Q + Uj   
   
  –(S + τ · W ) 
   –γ  · I

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

(Aj + �Aj)T


(Aτ j + �Aτ j)T

(Dj + �Dj)T

⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

PT


⎡

⎢
⎢
⎢
⎣

(Aj + �Aj)T


(Aτ j + �Aτ j)T

(Dj + �Dj)T

⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣

I




⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

PT


⎡

⎢
⎢
⎢
⎣

I




⎤

⎥
⎥
⎥
⎦

T
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+

[
I  –I 
I  I –ε(τ ) · I

]T [
–R 
 –δ(τ ) · R

][
I  –I 
I  I –ε(τ ) · I

]

,

�̄j = (Aj + �Aj – I)T�, �̄j = (Aj + �Aj)T P, �̄j = (Azj + �Azj)T ,

�̄j = (Aτ j + �Aτ j)T�, �̄j = (Aτ j + �Aτ j)T P, �̄j = (Azτ j + �Azτ j)T ,

�̄j = (Dj + �Dj)T�, �̄j = (Dj + �Dj)T P, �̄j = (Dzj + �Dzj)T ,

� = τ  · (Q + R).

Define

�̄j =

[
�̄j �̄j

∗ �j

]

=

[
�j �j

∗ �j

]

+ Kj�̄j(k)�T
j + �j�̄

T
j (k)KT

j , (c)

where

�j =

⎡

⎢
⎢
⎢
⎣

–P + S + τ · W + τ  · Q + Uj   
   
  –(S + τ · W ) 
   –γ  · I

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

AT
j


AT

τ j

DT
j

⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

PT


⎡

⎢
⎢
⎢
⎣

AT
j


AT

τ j

DT
j

⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣

I




⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

PT


⎡

⎢
⎢
⎢
⎣

I




⎤

⎥
⎥
⎥
⎦

T

+

[
I  –I 
I –ε(τ ) · I I 

]T [
–R 
 –δ(τ ) · R

][
I  –I 
I –ε(τ ) · I I 

]

,

�̄j =

⎡

⎢
⎢
⎢
⎣

�̄j �̄j �̄j

  
�̄j �̄j �̄j

�̄j �̄j �̄j

⎤

⎥
⎥
⎥
⎦

, �j =

⎡

⎢
⎢
⎢
⎣

�j �j �j

  
�j �j �j

�j �j �j

⎤

⎥
⎥
⎥
⎦

,

�j =

⎡

⎢
⎣

�j  
 �j 
  �j

⎤

⎥
⎦ , Kj =

[
�T

j �T
j   �T

j �T
j 

      �T
j

]T

,

�̄j(k) =

[
�j(k) 

 �zj(k)

]

=

[
I – �j(k)�j 

 I – �zj(k)�zj

]– [
�i(k) 

 �zi(k)

]

=

{[
I 
 I

]

–

[
�j(k) 

 �zj(k)

][
�j 
 �zj

]}– [
�i(k) 

 �zi(k)

]

, (d)
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�j =

[
NAj  NAτ j NDj   
NzAj  NzAτ j NzDj   

]T

.

By condition (b) with Lemma  and switching signal in (c), the following results can be
guaranteed from (a):

σ
(
x(k)

)
= j ∈ N̄ and xT (k)(Uj)x(k) ≥ , ∀x(k) ∈ 	̄j,

�V (xk) +
[
zT (k)z(k) – γ  · wT (k)w(k)

] ≤ XT (k) · �̂j · X(k).
()

By Lemmas  and  with (d), the condition �j <  in (b) will imply �̄j <  in (c). �̄j < 
in (c) will also imply �̂j <  in (a)-(b) and (). Since �̂j <  in (), we can guarantee
that system (a)-(h) with the switching signal in (c) and w(k) =  is asymptotically stable.
Summing equation () from  to �, we have

V (x�) – V (ϕ) +
�∑

k=

[
zT (k)z(k) – γ  · wT (k)w(k)

] ≤ .

With zero initial condition (ϕ(k) = , –τ ≤ k ≤ ), we have

V (ϕ) = .

By the definition of V (xk) in (), we have

V (x�) ≥ .

From the previous derivations, the following condition can be guaranteed:

�∑

k=

zT (k)z(k) ≤ γ  ·
�∑

k=

wT (k)w(k), ∀w 	= .

By Definition , system (a)-(h) is asymptotically stabilizable with H∞ performance γ by
switching signal in (c). This completes the proof. �

3 Robust H∞ switching control for switched time-delay system
In this section, we will consider the following uncertain discrete switched time-delay sys-
tem with control input:

x(k + ) =
[
Aσ + �Aσ (k)

]
x(k) +

[
Aτσ + �Aτσ (k)

]
x(k – τ ) +

[
Dwσ + �Dwσ (k)

]
w(k)

+
[
Duσ + �Duσ (k)

]
u(k), k = , , , . . . , k ≥ , (a)

z(k) =
[
Azσ + �Azσ (k)

]
x(k) +

[
Azτσ + �Azτσ (k)

]
x(k – τ )

+
[
Dzwσ + �Dzwσ (k)

]
w(k), k ≥ , (b)

x(θ ) = ϕ(θ ), θ = –τ , –τ + , . . . , , (c)

where x(k) ∈ �n, xk is the state defined by xk(θ ) := x(k + θ ), ∀θ ∈ {–τ , –τ + , . . . , }, w(k) ∈
�m is the disturbance input, u(k) ∈ �υ is the control input, z(k) ∈ �q is the regulated
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ouput, σ is a switching signal in the finite set {, , . . . , N} and will be designed to achieve
the performance requirement of the system. ϕ(k) ∈ �n is an initial state function, delay τ

is a given positive integer. Matrices Ai, Aτ i, Dwi, Dui, Azi, Azτ i, Dzwi, i = , , . . . , N , are con-
stant of appropriate dimensions. �Ai(k), �Aτ i(k), �Dwi(k), �Dui(k), �Azi(k), �Azτ i(k),
and �Dzwi(k) are some matrices satisfying the following conditions:

[
�Ai(k) �Aτ i(k) �Dwi(k) �Dui(k)

]

= Mi · �i(k) ·
[

NAi NAτ i NDwi NDui

]
, (d)

[
�Azi(k) �Azτ i(k) �Dzwi(k)

]
= Mzi · �zi(k) ·

[
NzAi NzAτ i Nzwi

]
, (e)

�i(k) =
[
I – �i(k)�i

]–
�i(k), �i�

T
i < I, (f)

�zi(k) =
[
I – �zi(k)�zi

]–
�zi(k), �zi�

T
zi < I, (g)

where Mi, Mzi, NAi, NAτ i, NDwi, NDui, NzAi, NzAτ i, and Nzwi, i = , , . . . , N , �i, and �zi are
some given constant matrices of appropriate dimensions. �i(k) and �zi(k) are some ma-
trices representing the perturbations which satisfy

�T
i (k)�i(k) ≤ I, �T

zi(k)�zi(k) ≤ I. (h)

Define the switching domains as

	i(Ui) =
{

x ∈ �n : xT Uix ≥ 
}

, i = , , . . . , N , (a)

where matrices Ui = UT
i will be selected from our proposed results in this paper and

	̄ = 	, 	̄ = 	\	̄, 	̄ = 	\	̄\	̄, . . . ,

	̄N = 	N\	̄\ · · · · · · \	̄N–.
(b)

From the above domain definition, the switching signal can be designed by

σ
(
x(k)

)
= i, ∀x(k) ∈ 	̄i, (c)

where 	̄i is defined in (b). The following state feedback switching control is used to
achieve the stabilization and H∞ performance for the switched system in (a)-(h):

u(k) = –Kix(k) – Kτ ix(k – τ ), when σ
(
x(k)

)
= i, ()

where the state feedback gains Ki, Kτ i ∈ �υ×n will be designed from our proposed result.

Lemma  ([]) For some matrices X, Y , and Z with X = XT and Z = ZT , the following
conditions are equivalent:

(a) The inequality is satisfied

S =

[
X Y
∗ –Z–

]

< .
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(b) There exists a scalar η >  such that

⎡

⎢
⎣

X η · Y 
∗ –η · I Z
∗ ∗ –Z

⎤

⎥
⎦ < .

Lemma  ([]) Suppose that �i(k) is defined in (f) and satisfies (h), then for real
matrices Vi, Wi, and Xi with Xi = XT

i , the following statements are equivalent:
(a) The inequality is satisfied

Xi + Vi�i(k)Wi + W T
i �T

i (k)V T
i < .

(b) There exists a scalar εi >  such that

⎡

⎢
⎣

Xi εi · Vi W T
i

∗ –εi · I εi · �T
i

∗ ∗ –εi · I

⎤

⎥
⎦ < ,

where the matrix �i is defined in (f).

Definition  ([]) Consider the switched system (a)-(h) with switching signal in (c)
and switching control in (). Assume

(i) With w(k) = , system (a)-(h) with switching signal in (c) and switching
control in () is asymptotically stable.

(ii) With zero initial conditions (i.e., ϕ(k) = , –rM ≤ k ≤ ), the signals w(k) and z(k)
satisfy

�∑

k=

zT (k)z(k) ≤ γ  ·
�∑

k=

wT (k)w(k), ∀w 	= ,

for all integers � >  and constant γ > .
Then we say that system (a)-(h) is asymptotically stablizable with H∞ performance γ by
switching signal in (c) and switching control in (). If the parameter � is selected as ∞
in (ii), the disturbance input w should be constrained in L(,∞).

Theorem  Suppose that there exist some constants  ≤ αi ≤ , i ∈ N , and
∑N

i= αi = , the
following LMI optimization problem:

minimize γ̄ ,

subject to

R + W > ,

[
Q W
∗ Q

]

> , (a)

�̃j =

[
�̃j �̃j

∗ �̃j

]

< , i = , , . . . , p, j = , , . . . , N , (b)
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N∑

i=

αi · Ui > , (c)

where

�̃j =

⎡

⎢
⎢
⎢
⎣

–P + S + τ · W + τ  · Q + Uj   
   
  –(S + τ · W ) 
   –γ̄ · I

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣

I
I



⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

P

⎡

⎢
⎢
⎢
⎣


I
I


⎤

⎥
⎥
⎥
⎦

T

+

[
I  –I 
I –ε(τ ) · I I 

]T [
–R 
 –δ(τ ) · R

][
I  –I 
I –ε(τ ) · I I 

]

, (d)

�̃j =

⎡

⎢
⎢
⎢
⎣

�j �j �j      �j �j

         
�j �j �j      �j �j

�j �j �j      �j �j

⎤

⎥
⎥
⎥
⎦

,

�̃j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�j   �j   �j   
∗ �j   �j  �j   
∗ ∗ �j   �j  �j  
∗ ∗ ∗ �j      
∗ ∗ ∗ ∗ �j     
∗ ∗ ∗ ∗ ∗ �j    
∗ ∗ ∗ ∗ ∗ ∗ �j  �j 
∗ ∗ ∗ ∗ ∗ ∗ ∗ �j  �j

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �j 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� = τ  · (Q + R), �j = (ηj · Aj – DujK̂j – ηj · I)T , �j = (ηj · Aj – DujK̂j)T ,

�j = ηj · AT
zj , �j = ηj · NT

Aj – K̂T
j NT

Duj, �j = ηj · NT
zAj,

�j = ηj · AT
τ j – K̂T

τ jD
T
uj, �j = ηj · AT

τ j – K̂T
τ jD

T
uj, �j = ηj · AT

zτ j,

�j = ηj · NT
Aτ j – K̂T

τ jN
T
Duj, �j = ηj · NT

zAτ j, �j = –γ̄ · I,

�j = ηj · DT
wj, �j = ηj · DT

wj, �j = ηj · DT
zj , �j = ηj · NT

Dwj,

�j = ηj · NT
zwj, �j = �j = �j = –ηj · I, �j = �,

�j = εj · Mj, �j = P, �j = εj · Mj, �j = I,

�j = εj · Mzj, �j = –�, �j = –P, �j = –I,

�j = �j = �j = �j = –εj · I, �j = εj · �T
j , �j = εj · �T

zj ,
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ε(τ ) =

⎧
⎨

⎩

/(τ – ), τ > ,

, τ = ,
δ(τ ) = (τ – )/(τ + ),

has a feasible solution with some n×n matrices P > , P > , Q > , Q > , R > , S > ,
Uj = UT

j , W = W T, matrices K̂j ∈ �υ×n, K̂τ j ∈ �υ×n, j = , , . . . , N , and constants γ̄ > ,
εj > , ηj > , j = , , . . . , N . Then system (a)-(h) is asymptotically stablizable with H∞
performance γ =

√
γ̄ by the designed switching signal in (c) and switching control in ()

with control gains Ki = K̂i/ηi and Kτ i = K̂τ i/ηi.

Proof With P =
[ P 

 P

]
in the Lyapunov-Krasovskii type functional of (), the following

results can be provided in the derivations of ()-():

�V (xk) + τ · λ +
[
zT (k)z(k) – γ  · wT (k)w(k)

]

= xT (k + )Px(k + ) + xT (k)
[
–P + S + τ · W + τ  · Q

]
x(k)

+

[ k∑

i=k+–τ

xT (i)

]

P

[ k∑

i=k+–τ

x(i)

]

–

[ k–∑

i=k–τ

xT (i)

]

P

[ k–∑

i=k–τ

x(i)

]

+
[
x(k + ) – x(k)

]T[
τ  · (Q + R)

][
x(k + ) – x(k)

]
– τ ·

k–∑

i=k–τ

yT (i)Ry(i)

– xT (k – τ )[S + τ · W ]x(k – τ ) – τ ·
k–∑

i=k–τ

[
x(i)
y(i)

]T [
Q W
∗ Q

][
x(i)
y(i)

]

+
[
zT (k)z(k) – γ  · wT (k)w(k)

]

≤ –xT (k)Ujx(k) + XT (k) · �̂j · X(k), (a)

where X(k) is defined in (a)-(b), and

�̂j = �̄j –

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

�̄–
j

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

�̄–
j

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

T

–

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

�̄–
j

⎡

⎢
⎢
⎢
⎣

�̄j


�̄j

�̄j

⎤

⎥
⎥
⎥
⎦

T

= �̄j –

⎡

⎢
⎢
⎢
⎣

�̄j �̄j �̄j

  
�̄j �̄j �̄j

�̄j �̄j �̄j

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

�̄j  
 �̄j 
  �̄j

⎤

⎥
⎦

–

×

⎡

⎢
⎢
⎢
⎣

�̄j �̄j �̄j

  
�̄j �̄j �̄j

�̄j �̄j �̄j

⎤

⎥
⎥
⎥
⎦

T

, (b)
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�̄j = �̃j is defined in (d),

Āj = Aj – DujKj, �Āj = �Aj – �DujKj,

Āτ j = Aτ j – DujKτ j, �Āτ j = �Aτ j – �DujKτ j,

�̄j = (Āj + �Āj – I)T , �̄j = (Āj + �Āj)T , �̄j = (Azj + �Azj)T ,

�̄j = (Āτ j + �Āτ j)T , �̄j = (Āτ j + �Āτ j)T , �̄j = (Azτ j + �Azτ j)T ,

�̄j = (Dwj + �Dwj)T , �̄j = (Dwj + �Dwj)T , �̄j = (Dzj + �Dzj)T ,

�̄j = –�–, �̄j = –P–
 , �̄j = –I, � = τ  · (Q + R).

Define

�̄j =

[
�̄j �̄j

∗ –�̄–
j

]

, ()

where �̄j is defined in (b),

�̄j =

⎡

⎢
⎢
⎢
⎣

�̄j �̄j �̄j

  
�̄j �̄j �̄j

�̄j �̄j �̄j

⎤

⎥
⎥
⎥
⎦

, �̄j =

⎡

⎢
⎣

�  
 P 
  I

⎤

⎥
⎦ =

⎡

⎢
⎣

–�j  
 –�j 
  –�j

⎤

⎥
⎦ .

Consider the following matrices with constants ηj > , j = , , . . . , N :

˜̃
�j =

⎡

⎢
⎣

�̄j ηj · �̄j 
∗ �j �̄j

∗ ∗ –�̄j

⎤

⎥
⎦ =

⎡

⎢
⎣

�j �j 
∗ �j –�j

∗ ∗ �j

⎤

⎥
⎦ + �j�̂j(k)�T

j + �j�̂
T
j (k)�T

j ,

where

�j = ηj · �̄j =

⎡

⎢
⎢
⎢
⎣

�j �j �j

  
�j �j �j

�j �j �j

⎤

⎥
⎥
⎥
⎦

,

�j =

⎡

⎢
⎣

– · ηj · I  
 – · ηj · I 
  – · ηj · I

⎤

⎥
⎦ , �j = –�̄j =

⎡

⎢
⎣

–�  
 –P 
  –I

⎤

⎥
⎦ ,

�j =

[
    MT

j MT
j    

      MT
zj   

]T

,

�̂j(k) =

[
�j(k) 

 �zj(k)

]

=

[
I – �j(k)�j 

 I – �zj(k)�zj

]– [
�i(k) 

 �zi(k)

]

=

{[
I 
 I

]

–

[
�j(k) 

 �zj(k)

][
�j 
 �zj

]}– [
�i(k) 

 �zi(k)

]

,
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�j =

[
ηj · NAj – NDujK̂j  ηj · NAτ j – NDujK̂τ j ηj · NDwj      

ηj · NzAj  ηj · NzAτ j ηj · Nzwj      

]T

,

K̂j = ηj · Kj, K̂τ j = ηj · Kτ j.

From Lemmas , , and , the conditions in (b)-(c) should be imposed to achieve the
asymptotic stablization with H∞ performance of the considered system in Definition .
This completes the proof. �

Remark  The matrix uncertainties in (d)–(h) are often called linear fractional pertur-
bations [–, ]. The parametric perurbations in [, , ] are the special conditions
of the considered perturbations with �i = , �zi = , i ∈ N̄ .

Remark  In recent years, there have been some schemes proposed to define the switch-
ing domains as listed in the following:

(a) In [], the switching domains are selected as:

	i(P, U , Ai) =
{

x ∈ �n : xT[
(rM – rm) · U – AT

i P – PAi
]
x < 

}
, i = , , . . . , N ,

where matrices P > , U > , 	̄ = 	, 	̄ = 	\	̄, . . . , and 	̄N = 	N\(
⋃N–

i= 	̄i).
(b) In [], the switching domains are selected as:

	i(P, U , Ai) =
{

x ∈ �n : xT(
AT

i PAi
)
x ≤ xT Ux

}
, i = , , . . . , N ,

where matrices P > , U > , 	̄ = 	, 	̄ = 	\	̄, . . . , 	̄N = 	N\	̄\ · · · \	̄N–.
(c) In [], the switching domains are selected as:

	i(P, U , Ai) =
{

x ∈ �n : xT(
AT

i PAi
)
x ≤ xT Uix

}
, i = , , . . . , N ,

where matrices P > , Ui > , i = , , . . . , N , and 	̄i is defined in (b).
In this paper, the switching domains are defined in (a)-(b) and (a)-(b) with

	i(Ui) =
{

x ∈ �n : xT Uix ≥ 
}

,

where matrices Ui = UT
i , i = , , . . . , N . The proposed approach in this paper is

simple and more flexible. This approach can be applied to continuous switched
systems to design the switching signal in our future research.

Remark  For a given constant γ , the H∞ performance results in Theorems  and  can
be guaranteed by setting γ̄ = γ  in LMI conditions in (a)-(d) and (a)-(d), respec-
tively.
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4 Illustrative examples
Example  Consider system (a)-(h) with the following parameters:

A =

[
 .
 

]

, A =

[
 .

. .

]

, Aτ =

[
 .
 –.

]

,

Aτ =

[
. 
. .

]

, D =

[
. 
 .

]

, D =

[
. 
. .

]

,

Az =

[
. 

 .

]

, Az =

[
. 

 .

]

, Azτ =

[
. 

 .

]

,

Azτ =

[
. 

 .

]

, Dz =

[
. .
 .

]

, Dz =

[
. 
 .

]

,

M = M =

[
. 
 .

]

, Mz = Mz =

[
. 
 .

]

,

NA = NA =

[
. 

 .

]

, NAτ = NAτ =

[
. 

 .

]

,

ND = ND =

[
. 

 .

]

, NzA = NzA = NAτ, NzAτ = NzAτ = NA,

NzD = NzD = ND, � = � = �z = �z = . · I.

()

With τ =  and α = α = ., the optimization problem in Theorem  is feasible with
(some solutions for LMI variables are not shown here)

γ̄ = ., U =

[
–. .

. .

]

, U =

[
. –.
–. –.

]

.

System (a)-(h) with () is asymptotically stabilizable with H∞ performance γ =
√

γ̄ =
. by the switching signal given by

σ =

⎧
⎨

⎩

, x(k) ∈ 	̄

, x(k) ∈ �\	̄
, ()

where 	̄ = {[x x]T ∈ � : –.x
 + .xx + .x

 ≥ }.
Under the disturbance inputs w(k) = [× (–.)k –× (.)k]T shown in Figure  and

zero initial conditions, the regulated outputs z(k) ∈ � of switched system (a)-(h) with
()-() and without perturbations are shown in Figure . Under zero disturbance, the ini-
tial state function ϕ(θ ) = [– ]T , θ = –, . . . , –, –, , and without perturbations, state
trajectories x(k) ∈ � of switched system (a)-(h) with ()-() are shown in Figure .
Good disturbance attenuation effect is shown in these simulation figures.

The delay upper bound and switching signal in () that guarantee the asymptotic sta-
bility and H∞ performance for system (a)-(h) with () are provided in Table  for
α = α = .. From these comparisons in Table , our proposed results may be less con-
servative than some published ones.
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Figure 1 Disturbance inputs of the system (solid line: w1(k), dashed line: w2(k)).

Figure 2 Regulated outputs of the system (solid line: z1(k), dashed line: z2(k)).

Example  Consider system (a)-(h) with the following parameters:

A =

[
. .
 

]

, A =

[
 .

. .

]

, Aτ =

[
 .
 –.

]

,

Aτ =

[
. 
. 

]

, Du =

[
 .
 

]

, Du =

[
 

. 

]

,
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Figure 3 State trajectories for the system (solid line: x1(k), dashed line: x2(k)).

Table 1 Comparing our results in this paper with some published ones: The delay upper
bound and H∞ performance for switched system (1a)-(1h) with (17)

Results Number of LMI
variable
elements

[4] Fail to justisfy the stability (when zero state feedback and
perturbations)

–

[16] Fail to justisfy the stability (when zero state feedback and �i = 0,
�zi = 0, i = 1, 2)

–

[21] Fail to justisfy the stability (when zero state feedback and �i = 0,
�zi = 0, i = 1, 2)

–

[18] τ = 12, H∞ performance γ = 0.2546,
	̄1 = {[x1 x2]T ∈ R2 : 0.244x21 – 0.0038x1x2 – 0.4426x

2
2 ≤ 0}

339 (Program
running time
about 1 minute)

Our results
(Theorem 1)

τ = 12, H∞ performance γ = 0.2512,
	̄1 = {[x1 x2]T ∈ �2 : –0.0327x21 + 0.000594x1x2 + 0.07687x22 ≥ 0}

31 (Program
running time
about 1 second)τ = 316, H∞ performance γ = 0.254,

	̄1 = {[x1 x2]T ∈ �2 : –0.0487x21 – 0.00194x1x2 + 0.0865x22 ≥ 0}

Dw =

[
. 
 .

]

, Dw =

[
. 
. .

]

, Az =

[
. 

 .

]

,

Az =

[
. 

 .

]

, Azτ =

[
. 

 .

]

, Azτ =

[
. 

 .

]

,

Dzw =

[
. .
 .

]

, Dzw =

[
. 
 .

]

, M = M =

[
. 
 .

]

, ()

Mz = Mz =

[
. 
 .

]

, NA = NA =

[
. 

 .

]

,

NAτ = NAτ =

[
. 

 .

]

, NDu = NDu =

[
. 

 .

]

,
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NDw = NDw = NDu, NzA = NzA = NAτ, NzAτ = NzAτ = NA,

Nzw = Nzw = NDw, � = � = �z = �z = . · I.

With τ =  and α = α = ., the optimization problem in Theorem  is feasible with
(some solutions for LMI variables are not shown here)

γ̄ = ., η = ., η = .,

U =

[
. –.

–. .

]

, U =

[
. –.

–. .

]

,

K̂ =

[
. .

–. –.

]

, K̂ =

[
–. –.
. .

]

,

K̂τ =

[
. .
. –.

]

, K̂τ =

[
. –.
. .

]

.

System (a)-(h) with () is asymptotically stabilizable with H∞ performance γ =
√

γ̄ =
. by switching signal in (c) and switching control in (). In this example, the gains
of switching control in () are given by

K = K̂/η =

[
. .

–. –.

]

, K = K̂/η =

[
–. –.
. .

]

,

Kτ = K̂τ/η =

[
. .
. –.

]

,

Kτ = K̂τ/η =

[
. –.
. .

]

.

()

The switching signal in (c) is given by

σ =

⎧
⎨

⎩

, x ∈ 	̄,

, x ∈ �\	̄,
()

where

	̄ =
{

x ∈ � : xT Ux ≥ 
}

=
{[

x x

]T ∈ R : .x
 – .xx + .x

 ≥ 
}

.

Some delay upper bounds for the design of switching control and switching signal that
guarantee the stabilization and H∞ performance for system (a)-(h) with ()-() are
provided in Table  for α = α = .. From these comparisons in Table , our result pro-
vides major improvement on some previous published literature.

5 Conclusions
In this paper, the design scheme of switching signal for H∞ performance analysis and
switching control has been investigated for uncertain discrete switched systems with time
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Table 2 Comparing our results in this paper with some published ones: Some results to
guarantee the stabilization and H∞ performance of system (11a)-(11h) with (19)

Results Number of LMI
variable
elements

[16, 18] τ = 15, fail to guarantee the H∞ performance by switching signal design –
[19] τ = 1, H∞ performance γ = 0.3048

(Switching signal design + switching control)
460 (Program
running time
about 1 minute)

Our result τ = 15, H∞ performance γ = 0.2951 (Theorem 2)
(Switching signal design + switching control)

45 (Program
running time
about 1 second)

delay and linear fractional perturbations. The Lyapunov-Krasovskii type functional and
Wirtinger inequality approach are used to improve the conservativeness of the proposed
results. The obtained results are shown to be less conservative and more useful via numeri-
cal examples. The major improvements in this paper compared to [–] are summarized
as follows:

. A Lyapunov-Krasovskii type functional in () is proposed to derive the main results.
. Discrete Wirtinger inequality approach is used instead of nonnegative inequality

approach in [–]. Less LMI variables and shorter program running time are
proposed in the approach of this paper.

. Simple design scheme in (a)-(c) and (a)-(c) for switching signal is more flexible
than that in [–].
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