
Bao and Zhang Advances in Difference Equations  (2017) 2017:352 
DOI 10.1186/s13662-017-1406-9

R E S E A R C H Open Access

Stationary distribution and extinction of a
stochastic SIRS epidemic model with
information intervention
Kangbo Bao and Qimin Zhang*

*Correspondence:
zhangqimin@nxu.edu.cn
School of Mathematics and
Statistics, Ningxia University,
Yinchuan, 750021, P.R. China

Abstract
In this paper, a new SIRS epidemic model which considers the influence of
information intervention and environmental noise is studied. The study shows that
information intervention and white noise have great effects on the disease. First, we
show that there is global existence and positivity of the solution. Then, we prove that
the stochastic basic production Rs is a threshold which determines the extinction or
persistence of the disease. When the intensity of noise is large, we obtain Rs < 1 and
the disease will die out. When the intensity of noise is small, then Rs > 1 and a
sufficient condition for the existence of stationary distribution is obtained, which
means the disease is prevalent. Finally, the main results are illustrated by numerical
simulations.
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1 Introduction
It is well known that diseases have a great effect on people’s health. For example, according
to the report, the HN bird flu, which is the world’s first new subtype of influenza virus
with symptoms of fever and fever in the early days of the virus, was discovered in Shanghai
and Anhui in . Until now, HN bird flu has caused many infections or deaths. When
the infectious disease appears, how to prevent and treat disease is one of the hot issues
that people care about. Awareness is raised by increasing media coverage and health ed-
ucation, which can prevent or delay disease occurrence to a certain extent. For instance,
since the outbreak of the HN flu, the public media has been reporting the daily number
of infected people, the number of deaths, the symptoms and prevention measures of the
disease. Media coverage has greatly reduced the rate of infection and has had a significant
impact on disease control. For treatment of the disease, in addition to the drug treatment,
combining with non-drug therapy can be effective in half the effort, and psychotherapy
is a very effective method. A large number of studies have shown that many diseases are
related to our thoughts in varying degrees []. Positive psychological suggestion will make
positive emotions generate, so as to avoid a negative effect of negative feelings caused by
negative emotion suggestion on the disease, which is of a great help in controlling disease
and restoring healthy life. Therefore, information intervention (media coverage, health
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education, psychological suggestion) as a kind of non-drug treatment is a very important
method for the prevention and treatment of diseases.

Currently, there have been many studies that considered taking information interven-
tion into series infectious diseases models including SIR, SEIR, SIRS, etc. For example,
Joshi et al. [] considered SIR infectious disease model which was based on information
intervention and found that information could reduce the level of infection. In addition,
Buonomo et al. [] studied the influence of information on vaccination at the time of new
birth in an SEIR model, and he found that information induced vaccination may trigger
oscillation which is different from others. Xiao et al. [] found that the impact of the me-
dia could not only delay the peak of disease, but also could reduce the severity of disease
outbreak. In further work, Joshi et al. [] studied the effects of information or education
on the dynamic control of disease. Recently, Kumar et al. [] combined treatment and
information influence as control intervention, as well as put forward the following SIRS
epidemic model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = � – βSI – μS – μmZS + δR,
dI
dt = βSI – (μ + δ + γ )I,
dR
dt = γ I + μmZS – (μ + δ)R,
dZ
dt = aI

+bI – aZ,

()

here S denotes the susceptible population, I denotes the infective population, R denotes
the removed population and Z denotes the density of information in the population. The
parameters in the model are summarized in the following list:

�: the birth or inflow rate of the susceptible population;
γ : the recovery rate of the infected population;
μ: the natural death rate;
δ: the disease caused mortality rate;
β : the contact transmission coefficient;
δ (= δ + δ): the rate of losing their total immunity including both the loss of natural

immunity (δ) and the loss of immunity of safeguard measure (δ);
m: the information interaction rate by which individuals change their behav-

ior;
μ ( ≤ μ ≤ ): response intensity;
a: the growth rate of information;
b: the saturation constant;
a: the natural degradation rate of information.

All parameters in model () are assumed to be non-negative.
We know the basic reproduction number R is a threshold which represents how many

secondary infections result from the introduction of one infected individual into a pop-
ulation of susceptible []. In model (), the basic reproduction number R = �β

μ(μ+δ+γ ) is
a threshold of extinction and persistence of disease. If R < , model () has a disease-
free equilibrium E = ( �

μ
, , , ) and it is globally stable in R̄


+ = {(S, I, R, Z) : S ≥ , I ≥

, R ≥ , Z ≥ , S + I + R ≤ �
μ
}, it means that the disease dies out. If R > , then E

is unstable and there exists a globally asymptotically stable endemic equilibrium E∗ =
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(S∗, I∗, R∗, Z∗), where S∗ = μ+δ+γ

β
, R∗ = 

μ+δ
(γ I∗ + μma(μ+δ+γ )I∗

aβ(+bI∗) ), Z∗ = aI∗
a(+bI∗) and I∗ is

the unique positive solution of equation AI + BI + C = , here A = b(μ + δ) + bμγ

μ+δ
,

B = b�( 
R

– ) + μ(μ+δ+γ )+δ(μ+δ)
μ+δ

+ μμma(μ+δ+γ )
βa(μ+δ) , C = �( 

R
– ), it means that the disease is

prevalent.
However, model () is just a deterministic model. In fact, ambient white noise has a big

impact on the infectious disease [–]. Many scholars have studied random infectious
disease models [–]. May [] pointed out that due to environmental fluctuation, the
birth rates, death rates, transmission coefficient and other parameters of a determinis-
tic system give a greater or lesser extent of random fluctuations. Dalal, Greenhalgh and
Mao [] found that the introduction of stochastic noise changes the basic reproduction
number of the disease.

In this paper, taking into account the effect of randomly fluctuating environment, we
assume that the rates m and γ are subject to random fluctuations, m → m + σ dB(t),
γ → γ + σ dB(t). Thus, deterministic model () is given by the following new stochastic
SIRS epidemic model with information intervention:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [� – βSI – μS – μmZS + δR] dt – σμZS dB(t),

dI = [βSI – (μ + δ + γ )I] dt – σI dB(t),

dR = [γ I + μmZS – (μ + δ)R] dt + σμZS dB(t) + σI dB(t),

dZ = [ aI
+bI – aZ] dt,

()

where B(t), B(t) are mutually independent Brownian motions (white noise) and σ 
 , σ 



are their intensities.
Now, on the basis of deterministic model (), we add the effect of white noise. As a

result, we get a new comprehensive model () which considers the influence of information
intervention and white noise. For model (), the following questions may be proposed:

(Q) What is the impact of environmental noise on the transmission of disease?
(Q) What role does information intervention play in the transmission of disease?
(Q) What conditions are required in the existence of stationary distribution?
This paper mainly solves the above mentioned problems, and the paper is organized as

follows. In Section , we show that model () has an existence and unique positive solu-
tion. In Section , we prove the extinction, and that the disease is prevalent in Section .
In Section , we conclude there is a sufficient condition of the existence of stationary dis-
tribution for model (). In Section , we make simulations to confirm our results. Finally,
we finish the paper with conclusions and future directions.

2 Existence and uniqueness of positive solution
First, consider the d-dimensional stochastic differential equation

dX(t) = f
(
X(t), t

)
dt + g

(
X(t), t

)
dB(t), for t ≥ t,

with the initial value X() = X ∈R
d . Define the differential operator L associated with the

above equation by

L =
∂

∂t
+

d∑

i=

fi(X, t)
∂

∂Xi
+




d∑

i,j=

[
gT (X, t)g(X, t)

]

ij
∂

∂Xi∂Xj
.
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If L acts on a function V ∈ C,(Rd × [t,∞];R+), then

LV (X, t) = Vt(X, t) + VX(X, t)f (X, t) +



trace
[
gT (X, t)VXX(X, t)g(X, t)

]
,

where Vt = ∂V
∂t , VX = ( ∂V

∂X
, . . . , ∂V

∂Xd
), VXX = ( ∂V

∂Xi∂Xj
)d×d . Using Itô’s formula [], if X(t) ∈R

d ,
then

dV
(
X(t), t

)
= LV

(
X(t), t

)
dt + VX

(
X(t), t

)
g
(
X(t), t

)
dB(t).

Next, we show that the solution of model () is global and positive by using the Lyapunov
analysis method [, ]. To get this result, define a bounded set � as follows:

� =
{

(S, I, R, Z) ∈R

+ :

�

μ + δ
≤ S + I + R ≤ �

μ
,  ≤ Z ≤ a�

a(μ + b�)

}

⊂R

+.

The main results of this section are given by the following two lemmas.

Lemma . For any initial value (S, I, R, Z) ∈R

+, there exists a unique positive solution

to system () on t ≥ , and the solution will remain in R

+ with probability one.

Proof Since the coefficients of system () satisfy the local Lipschitz condition [], then
for any initial value (S, I, R, Z) ∈ R


+, there is a unique local solution (S(t), I(t), R(t), Z(t))

on [, τe), where τe is the explosion time []. If we can prove τe = ∞ a.s., which means the
solution is global. Let k ≥  be sufficiently large so that S, I, R, and Z all lie within the
interval [ 

k
, k]. For each integer k ≥ k, define the following stopping time:

τk = inf

{

t ∈ [, τe) : min
{

S(t), I(t), R(t), Z(t)
} ≤ 

k
or max

{
S(t), I(t), R(t), Z(t)

} ≥ k
}

.

In this paper, we set inf∅ = ∞ (as usual ∅ is the empty set). By the definition, τk is increas-
ing as k → ∞. Let τ∞ = limk→∞ τk , then τ∞ ≤ τe a.s. In the following, we need to verify
τ∞ = ∞ a.s. If this assertion is false, then there exist a constant T >  and ε ∈ (, ) such
that P{τ∞ ≤ T} > ε. As a consequence, there exists an integer k ≥ k such that

P{τk ≤ T} ≥ ε, ∀k ≥ k.

For t ≤ τk and each k,

d(S + I + R) =
[
� – μ(S + I + R) – δI

]
dt ≤ [

� – μ(S + I + R)
]

dt.

Then

S(t) + I(t) + R(t) ≤
⎧
⎨

⎩

�
μ

if S + I + R ≤ �
μ

S + I + R if S + I + R > �
μ

,
:= M

where M = max[ �
μ

, S + I + R].
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Define a C-function V : R
+ → R̄+ by

V (S, I, R, Z) = (S –  – ln S) + (I –  – ln I) +
(




R + R
)

+ (Z –  – ln Z).

By Itô’s formula, we have

dV (S, I, R, Z) = LV (S, I, R, Z) dt + σ( + RS)μZ dB(t) + σ( + RI) dB(t),

where

LV =
(

 –

S

)

(� – βSI – μS – μmZS + δR) +
(

 –

I

)
(
βSI – (μ + δ + γ )I

)

+ ( + R)
(
γ I + μmZS – (μ + δ)R

)
+

(

 –

Z

)(
aI

 + bI
– aZ

)

+


σ 

 μ
 Z +



σ 

 μ
 ZS +



σ 


(
 + I)

= � + βI + μmZ + (μ + δ + γ ) + μ + γ RI + μmZSR +
aI

 + bI
+ a

+


σ 

 μ
 Z +



σ 

 μ
 ZS +



σ 


(
 + I) – μS –

�

S
–

δR
S

– μI – δI – βS – μR – (μ + δ)R – aZ –
aI

Z( + bI)

≤ � + μ + γ + δ + a +
a
b

+
μma
ab

+ βM +
(

γ +
μma
ab

)

M

+
σ 

 μ
 a

a
b

(
 + M) +



σ 


(
 + M)

:= K ,

where K is a positive constant which is independent of S, I , R, Z and t. This completes the
proof. �

Lemma . For any initial value (S, I, R, Z) ∈ R

+, the unique solution of epidemic

model () on t ≥  will enter � and will remain in � with probability one.

Proof From (), we obtain that the total size of population N = S + I + R, then

dN
dt

= � – μN – δI.

This implies that � – (μ + δ)N ≤ dN
dt ≤ � – μN , then we have

�

μ + δ
≤ lim inf

t→∞ N ≤ lim sup
t→∞

N ≤ �

μ
.

As we can see, all solutions S, I and R of epidemic model () are bounded by �
μ

. From
the last equation of model () and I ≤ �

μ
, we get lim supt→∞ Z ≤ a�

a(μ+b�) . Therefore, we
obtain that � is the positively invariant bounded set. Then the trajectories of all solutions
initiating anywhere of R

+ will enter � and then remain in � with probability one. �
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3 Extinction of disease
In model (), the value of the basic reproductive number R determines extinction and
persistence of disease. But for epidemic model (), we will show that the stochastic basic
reproduction number Rs is a condition for the extinction and persistence of disease, where
Rs is denoted

Rs = R –
σ 


(μ + δ + γ )

.

Theorem . Let (St , It , Rt , Zt) be the solution of epidemic model () with the initial value
(S, I, R, Z) ∈R


+. If

Rs < , ()

then the solution of epidemic model () obeys

lim sup
t→∞

log It

t
≤ –c < , a.s.,

lim sup
t→∞

Z(t) = , a.s.,

lim sup
t→∞


t

∫ t


Rs ds = , a.s.,

lim inf
t→∞


t

∫ t


Ss ds =

�

μ
, a.s.,

namely, the disease in epidemic model () will go to extinction with probability one, where
c = (μ + δ + γ )( – Rs) corresponding to condition ().

Proof Itô’s formula yields that

d log I =
(

βS – (μ + δ + γ ) –


σ 



)

dt – σ dB(t). ()

Integrating both sides from  to t and dividing by t, we have

log It – log I

t
=


t

∫ t



(

βSs – (μ + δ + γ ) –


σ 



)

ds –

t

∫ t


σ dB(s). ()

According to the large number theorem for local martingales [], we can get

lim sup
t→∞


t

∫ t


σ dB(s) = , a.s.

Since S(t) ≤ �
μ

for all t ≥ , we have

βS – (μ + δ + γ ) –


σ 

 ≤ β�

μ
– (μ + δ + γ ) –



σ 



= (μ + δ + γ )(Rs – ).
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Therefore, we obtain

lim sup
t→∞

log It

t
≤ (μ + δ + γ )(Rs – ) < , a.s. ()

Denote � = {ω ∈ � : lim supt→∞ I(ω, t) = }. In view of (), we have

P(�) = . ()

It means, for any given ε > , there exists a constant T = T(ω, ε) such that I(t) < ε, a.s.
for t > T.

From the last equation of epidemic model (), we obtain

dZ(ω, t) =
[

aI(ω, t)
 + bI(ω, t)

– aZ(ω, t)
]

dt

≤ [
aε – aZ(ω, t)

]
dt for ω ∈ �, t ≥ T. ()

According to the comparison theorem [], one can get that

Z(ω, t) ≤ e–at ·
(

Z(T) +
∫ t

T

aε · eas ds
)

≤ Z(T)e–at +
aε

a
for ω ∈ �, t ≥ T.

Then

lim sup
t→∞

Z(ω, t) ≤ aε

a
for ω ∈ �, t ≥ T. ()

By the arbitrariness of ε, we have lim supt→∞ Z(ω, t) ≤ . On the other hand,
lim supt→∞ Z(ω, t) ≥ . Therefore, lim supt→∞ Z(t) = , a.s. Let � = {ω ∈ � :
lim supt→∞ Z(ω, t) = } ⊂ �, then for any given ε > , there exists a constant T =
T(ω, t) ≥ T such that Z(t) < ε, a.s. for t > T.

For the third equation of (), integrating both sides from  to t and dividing by t, we
have

(μ + δ)
t

∫ t


Rs ds ≤ γ

t

∫ t


Is ds +

μm�

μt

∫ t


Zs ds –

Rt – R

t
+


t

∫ t


σμZsSs dB(s)

+

t

∫ t


σIs dB(s)

=
γ

t

∫ T


Is ds +

μm�

μt

∫ T


Zs ds +

γ

t

∫ t

T

Is ds +
μm�

μt

∫ t

T

Zs ds

–
Rt – R

t
+


t

∫ t


σμZsSs dB(s) +


t

∫ t


σIs dB(s)

≤ γ�T

μt
+

aμm�T

aμ(μ + b�)t
+ γ ε +

μm�

μ
ε –

γ εT

t
–

μm�εT

μt

–
Rt – R

t
+


t

∫ t


σμZsSs dB(s) +


t

∫ t


σIs dB(s).
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Since S(t) ≤ �
μ

and Z(t) ≤ a�
a(μ+b�) for all t ≥ , according to the large number theorem

for local martingales, we get

lim sup
t→∞


t

∫ t


σμZsSs dB(s) = lim sup

t→∞

t

∫ t


σIs dB(s) = , a.s.

Then, according to the arbitrariness of ε and ε, we have

lim sup
t→∞


t

∫ t


Rs ds ≤ , a.s.

Thus, from the fact that R(t) ≥ , we can get that lim supt→∞

t
∫ t

 Rs ds = , a.s. Let � =
{ω ∈ � : lim supt→∞ R(ω, t) = } ⊂ �, then for any given ε ≥ , there exists a constant
T = T(ω, t) ≥ T such that R(t) < ε, a.s. for t > T.

From the first three equations of epidemic model (), for any ω ∈ �, we have

d(St + It + Rt) =
[
� – μ(St + It + Rt) – δIt

]
dt.

Integrating this from  to t and dividing by t yield


t

∫ t


Ss ds =

�

μ
–


t

∫ t


Is ds –

δ

μt

∫ t


Is ds –


t

∫ t


Rs ds – φ(t)

=
�

μ
–

μ + δ

μt

∫ t

T

Is ds –

t

∫ t

T

Rs ds –

t

∫ T



(
μ + δ

μ
Is + Rs

)

ds – φ(t)

≥ �

μ
–

μ + δ

μ
ε – ε +

(
μ + δ

μ
ε + ε

)
T

t
–

(
�(μ + δ)

μ +
�

μ

)
T

t
– φ(t),

where φ(t) = 
μ

( St+It+Rt
t – S+I+R

t ), and limt→∞ φ(t) =  a.s. By the arbitrariness of ε and
ε, we obtain

lim inf
t→∞


t

∫ t


Ss ds ≥ �

μ
, a.s.

Note that S ≤ �
μ

. Thereby,

lim inf
t→∞


t

∫ t


Ss ds =

�

μ
, a.s.

This completes the proof. �

Remark . It is worthy to note that if R > , the disease will be persistent, while the
disease dies out whenever R <  in deterministic model (). However, we can easily find
an example that R >  but Rs < , which implies that the disease in stochastic model ()
dies out since Rs = R – σ


(μ+δ+γ ) . Then we obtain that environmental noises can suppress

the outbreak of disease.

4 Persistence of disease
In this section, we will give a condition for the persistence of disease in epidemic model
(), and our main result is presented by the following theorem.
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Theorem . Let (St , It , Rt , Zt) be the solution of epidemic model () with the initial value
(S, I, R, Z) ∈R


+. If Rs > , then

lim inf
t→∞


t

∫ t


Ss ds ≥ �

�β

μ
+ μ + μma�

a(μ+b�)

> , a.s.,

lim inf
t→∞


t

∫ t


Is ds ≥ aμ

(μ + δ + γ )(Rs – )
β�(aβ + aμm)

≡ H > , a.s.,

lim inf
t→∞


t

∫ t


Rs ds ≥ γ H

(μ + δ)
> , a.s.,

lim inf
t→∞


t

∫ t


Zs ds ≥ aμH

a(μ + b�)
> , a.s.

Proof For the first equation of epidemic model (), we have

dSt ≥
[

� –
(

�β

μ
+ μ +

μma�

a(μ + b�)

)

St

]

dt – σμZtSt dB(t).

Integrating this from  to t, we get

[
�β

μ
+ μ +

μma�

a(μ + b�)

]

t

∫ t


Ss ds ≥ � –

St – S

t
–

μσ

t

∫ t


ZsSs dB(s). ()

Since S(t) ≤ �
μ

and I(t) ≤ �
μ

, an application of the strong law of large numbers gives

lim sup
t→∞


t

∫ t


ZsSs dB(s) = , a.s.

Therefore

lim inf
t→∞


t

∫ t


Ss ds ≥ �

�β

μ
+ μ + μma�

a(μ+b�)

> , a.s.

From the first and third equations of epidemic model (), we can obtain

d
(

μ + δ

μ
St +

δ

μ
Rt

)

=
[

μ + δ

μ
(� – βStIt – μSt – μmZtSt + δRt) dt +

δ

μ

(
γ It + μmZtSt

– (μ + δ)Rt
)
]

dt – σμZtSt dB(t) +
δ

μ
σIt dB(t)

=
[

(μ + δ)
(

�

μ
– St

)

–
μ + δ

μ
βStIt –

μm(μ + δ)
μ

ZtSt

+
μmδ

μ
ZtSt +

γ δ

μ
It

]

dt – σμZtSt dB(t) +
δ

μ
σIt dB(t)

≥
[

(μ + δ)
(

�

μ
– St

)

–
�β(μ + δ)

μ It –
�μm(μ + δ)

μ Zt

]

dt

– σμZtSt dB(t) +
δ

μ
σIt dB(t). ()
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By the last equation of model (), we have

Zt dt =
aIt dt

a( + bIt)
–


a

dZt ≤ a
a

It dt –


a
dZt .

Substituting the above inequality into (), we have

d
(

μ + δ

μ
St +

δ

μ
Rt

)

≥
[

(μ + δ)
(

�

μ
– St

)

–
�(μ + δ)(aβ + aμm)

aμ It

]

dt

+
�μm(μ + δ)

aμ dZt – σμZtSt dB(t) +
δ

μ
σIt dB(t). ()

Integrating both sides from  to t, we can get that

∫ t



(
�

μ
– Ss

)

ds

≤ 
μ

(St – S) +
δ

μ(μ + δ)
(Rt – R) +

�(aβ + aμm)
aμ

∫ t


Is ds

–
�μm
aμ (Zt – Z) +

σμ

μ + δ

∫ t


ZsSs dB(s) –

σδ

μ(μ + δ)

∫ t


Is dB(s). ()

From Theorem ., let h(S) = βS – (μ + δ + γ ) – 
σ 

 , we can obtain

h(S) – h
(

�

μ

)

=
[

βS – (μ + δ + γ ) –


σ 



]

–
[

�β

μ
– (μ + δ + γ ) –



σ 



]

= β

(

S –
�

μ

)

.

This implies that

h(S) ≥ (μ + δ + γ )(Rs – ) – β

(
�

μ
– S

)

. ()

Substituting () into (), we have

log It ≥ log I + (μ + δ + γ )(Rs – )t – β

∫ t



(
�

μ
– Ss

)

ds –
∫ t


σ dB(s). ()

Then substituting () into (), we can get that

log It ≥ log I + (μ + δ + γ )(Rs – )t –
β�(aβ + aμm)

aμ

∫ t


Is ds

–
β

μ
(St – S) –

βδ

μ(μ + δ)
(Rt – R) +

β�μm
aμ (Zt – Z)

–
βσμ

(μ + δ)

∫ t


ZsSs dB(s) +

βσδ

μ(μ + δ)

∫ t


Is dB(s) – σ

∫ t


dB(s).
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Let

ϕ(t) = log I –
β

μ
(St – S) –

βδ

μ(μ + δ)
(Rt – R) +

β�μm
aμ (Zt – Z),

ϕ(t) = –
βσμ

(μ + δ)

∫ t


ZsSs dB(s) +

βσδ

μ(μ + δ)

∫ t


Is dB(s) – σ

∫ t


dB(s).

So

log It ≥ (μ + δ + γ )(Rs – )t –
β�(aβ + aμm)

aμ

∫ t


Is ds + ϕ(t) + ϕ(t).

Since St , It , Rt all have positive upper bound �
μ

and Zt ≤ a�
a(μ+b�) , according to the large

number theorem for local martingales, we can obtain that

lim
t→∞

ϕ(t)
t

= lim
t→∞

ϕ(t)
t

= , a.s.

Therefore, dividing by t of the above inequality and letting t → ∞, we have

lim inf
t→∞


t

∫ t


Is ds ≥ (μ + δ + γ )(Rs – )

β�(aβ+aμm)
aμ

≡ H > , a.s. ()

Then, for any ξ >  (ξ < H), there exists a constant T(ω) >  such that


t

∫ t


Is ds ≥ H – ξ for t ≥ T . ()

From the third equation of (), we have

dRt ≥ [
γ It – (μ + δ)Rt

]
dt + σμZtSt dB(t) + σIt dB(t). ()

Integrating both sides from  to t and dividing by t, we can get that for t > T ,


t

∫ t


Rs ds ≥ γ

(μ + δ)t

∫ t


Is ds –

Rt – R

(μ + δ)t
+


(μ + δ)t

∫ t


σμZsSs dB(s)

+


(μ + δ)t

∫ t


σIs dB(s)

≥ γ

(μ + δ)
(H – ξ ) –

Rt – R

(μ + δ)t
+


(μ + δ)t

∫ t


σμZsSs dB(s)

+


(μ + δ)t

∫ t


σIs dB(s).

Since S ≤ �
μ

, I ≤ �
μ

, R ≤ �
μ

and Z ≤ a�
a(μ+b�) , according to the large number theorem for

local martingales, we can obtain that

lim sup
t→∞


(μ + δ)t

∫ t


σμZsSs dB(s) = lim sup

t→∞


(μ + δ)t

∫ t


σIs dB(s) = .
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Then, by the arbitrariness of ξ , we have

lim inf
t→∞


t

∫ t


Rs ds ≥ γ H

(μ + δ)
> , a.s.

Integrating both sides from  to t and dividing by t of the last equation of (), we have

Zt – Z

t
≥ aμ

(μ + b�)t

∫ t


Is ds –

a

t

∫ t


Zs ds.

This implies that for t > T


t

∫ t


Zs ds ≥ aμ

a(μ + b�)
(H – ξ ) –

Zt – Z

at
.

By the arbitrariness of ξ , we obtain

lim inf
t→∞


t

∫ t


Zs ds ≥ aμH

a(μ + b�)
> , a.s.

This completes the proof. �

Remark . The results of Theorem . mean that when the noise is small, then the value
of Rs = R – σ


(μ+δ+γ ) > , which implies that the disease is prevalent. Therefore, from

Theorem . and Theorem ., we can see that Rs is a threshold which determines the
extinction or persistence of the disease.

5 Stationary distribution and ergodicity
In this section, based on the known result of Has’minskii (see [], Theorem ., p.
and Lemma ., p.), we prove that there is an ergodic stationary distribution for the
solution of epidemic model (), which shows that the disease will prevail.

Let X(t) be a regular time-homogeneous Markov process in R
d described by

dX(t) = b(X) dt +
k∑

r=

σr(X) dBr(t). ()

The diffusion matrix is defined as follows:

A(x) =
(
aij(x)

)
, aij(x) =

k∑

r=

σ i
r (x)σ j

r (x).

Lemma . The Markov process X(t) has a unique ergodic stationary distribution π (·) if
there exists a bounded open domain U ⊂ R

d with regular boundary Ū and the following
hold:

(i) There is a positive number � such that
∑d

i,j= aij(x)ξiξj ≥ � |ξ |, x ∈ U , ξ ∈R
d (see

[] and Rayleigh’s principle in []).
(ii) There exists a non-negative C-function V such that LV is negative for every

x ∈R
d \ U (see[]). Let ρ(·) be a function integrable with respect to the measure
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π (·), then for all x ∈R
d \ U

P

{

lim
T→∞


T

∫ T


ρ
(
X(t)

)
dt =

∫

Rd
ρ(x)π (dx)

}

= .

The following result is concerned with the stationary distribution and ergodicity.

Theorem . Consider epidemic model () with the initial value (S, I, R, Z) ∈ R

+. If

Rs > , then there exists a stationary distribution π (·), and it has the ergodic property.

Proof Let α and α be sufficiently large numbers. Let

U =
{

(x, x, x, x) ∈ � :

α

< x, x, x <
�

μ
–


α

,

α

< x <
a�

a(μ + b�)
–


α

}

.

We can write system () as the form of system () []:

d

⎛

⎜
⎜
⎜
⎝

S
I
R
Z

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

� – βSI – μS – μmZS + δR
βSI – (μ + δ + γ )I

γ I + μmZS – (μ + δ)R
aI

+bI – aZ

⎞

⎟
⎟
⎟
⎠

dt +

⎛

⎜
⎜
⎜
⎝

–σμZS


σμZS


⎞

⎟
⎟
⎟
⎠

dB(t)+

⎛

⎜
⎜
⎜
⎝


–σI
σI


⎞

⎟
⎟
⎟
⎠

dB(t).

The diffusion matrix associated to epidemic model () is given by

A(S, I, R, Z) =

⎛

⎜
⎜
⎜
⎝

σ 
 μ

 ZS  –σ 
 μ

 ZS 
 σ 

 I –σ 
 I 

–σ 
 μ

 ZS –σ 
 I σ 

 μ
 ZS + σ 

 I 
   

⎞

⎟
⎟
⎟
⎠

.

Since Ū ⊂ R

+ and ξ ∈ R


+ \ {(ξ, ξ, ξ) ∈ R


+ : ξ = ξ = ξ}, then there is a positive number

C such that

∑

i,j=

aijξiξj = σ 
 μ

 ZSξ 
 + σ 

 Iξ 
 +

(
σ 

 μ
 ZS + σ 

 I)ξ 


– σ 
 μ

 ZSξξ – σ 
 Iξξ

= σ 
 μ

 ZS(ξ – ξ) + σ 
 I(ξ – ξ)

≥ C.

Then condition (i) of Lemma . holds.
Consider the positive function V(I), V(S, I) and V(S, R, Z) defined for (S, I, R, Z) ∈ R


+

by

V(I) =

q

I–q,

V(S, I) =

q

I–q
(

�

μ
– S

)

,
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V(S, R, Z) =

S

+ R +

Z

,

where q is a positive number to be determined later. Hence we define the Lyapunov func-
tion

V (S, I, R, Z) = V(I) + V(S, I) + V(S, R, Z)

=

q

I–q +

q

I–q
(

�

μ
– S

)

+
(


S

+ R +

Z

)

.

By Itô’s formula and system (), we have

LV(I) = –I–q(βS – (μ + δ + γ )
)

+



(q + )σ 
 I–q

= I–q
(

–(μ + δ + γ )(Rs – ) +
q

σ 



)

+ I–qβ

(
�

μ
– S

)

. ()

Then we compute LV(S, I)

LV(S, I) = I–q
(

�

μ
– S

)(

μ + δ + γ – βS +



(q + )σ 


)

–

q

I–q(� – βSI – μS – μmZS + δR)

≤ I–q
(

�

μ
– S

)(

μ + δ + γ –
μ

q
+




(q + )σ 


)

+

q
μmZSI–q +

β�

qμ
I–q. ()

For the function V(S, R, Z), we obtain that

LV(S, R, Z) = –
�

S +
βI
S

+
μ

S
+

μmZ
S

–
δR
S +

σ 
 μ

 Z

S
+ γ I + μmZS

– (μ + δ)R –
aI

( + bI)Z +
a

Z

≤ –
�

S +
(

β�

μ
+ μ +

μma�

a(μ + b�)
+

σ 
 μ

 a�

a
(μ + b�)

)

S

+
γ�

μ

+
μma�

aμ(μ + b�)
–

aμI
(μ + b�)Z +

a

Z
. ()

Combining ()-(), we have

LV ≤ I–q
(

–(μ + δ + γ )(Rs – ) +
q

σ 



)

+ I–q
(

�

μ
– S

)(

μ + δ + γ + β –
μ

q
+




(q + )σ 


)

–
�

S +
(

β�

μ
+ μ +

μma�

a(μ + b�)
+

σ 
 μ

 a�

a
(μ + b�)

)

S

+

q
μmZSI–q +

β�

qμ
I–q

+
γ�

μ
+

μma�

aμ(μ + b�)
–

aμI
(μ + b�)Z +

a

Z
. ()
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According to Theorem ., for all t ≥ T , there exists a constant T(ω) >  such that I(t) > H


a.s. Therefore, rearranging the terms of (), we get

LV ≤ I–q
(

–(μ + δ + γ )(Rs – ) +
q

σ 



)

+ I–q
(

�

μ
– S

)(

μ + δ + γ + β –
μ

q
+




(q + )σ 


)

–
�

S –
aμH

(μ + b�)Z + λ, ()

where

λ = sup
(S,I,R,Z)∈�

{

–
�

S +
(

β�

μ
+ μ +

μma�

a(μ + b�)
+

σ 
 μ

 a�

a
(μ + b�)

)

S

+
γ�

μ

+
β

q

(
�

μ

)–q

+
μma�

aμ(μ + b�)

(

 +
q

qHq

)

–
aμH

(μ + b�)Z +
a

Z

}

.

Since Rs >  , and choose q sufficiently small such that

–(μ + δ + γ )(Rs – ) +
q

σ 

 < ,

μ + δ + γ + β –
μ

q
+




(q + )σ 
 < .

On the other hand, �
μ+δ

≤ S + I + R ≤ �
μ

,  ≤ Z ≤ a�
a(μ+b�) , then for (S, I, R, Z) ∈ � \ U ,

either S < 
α

, I < 
α

, R < 
α

or Z < 
α

. It is easy to see from () that for sufficiently large
α or α,

LV ≤ – for (S, I, R, Z) ∈ � \ U .

Thus, the conditions of Lemma . are met. As a consequence, epidemic model () admits
a unique ergodic invariant distribution π (·). By the ergodicity of (St , It , Rt , Zt), we have

P

{

lim
t→∞


t

∫ t


χ(Ss ,Is ,Rs ,Zs)∈� ds =

∫

R
χ�π (dx)

}

= , ()

where χ� is the characteristic function of �. This completes the proof of Theorem .. �

6 Numerical simulation
We have finished investigating the extinction and persistence of a disease. In order to il-
lustrate the effectiveness of our results, now we will perform some numerical simulations.
The numerical simulations are given by the Milstein scheme []. Consider the discretiza-
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tion equation of model ():

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+ = Sk + [� – βSkIk – μSk – μmZkSk + δRk]�t

– σμZkSk
√

�tτk – σ

 μZkSk(τ 

k – )�t,

Ik+ = Ik + [βSkIk – (μ + δ + γ )Ik]�t – σIk
√

�tτk – σ

 Ik(τ 

k – )�t,

Rk+ = Rk + [γ Ik + μmZkSk – (μ + δ)Rk]�t

+ σμZkSk
√

�tτk + σ

 μZkSk(τ 

k – )�t + σIk
√

�tτk + σ

 Ik(τ 

k – )�t,

Zk+ = Zk + [ aIk
+bIk

– aZk]�t,

where τk (k = , , . . .) are N(, )-distributed independent random variables. In Figures
-, we choose the parameter values in model () as follows:

� = ., β = ., μ = ., δ = ., δ = ., γ = .,

μ = . to ., m = ., a = ., a = ., b = ..

Figure 1 The path of S(t), I(t), R(t) for deterministic model (1)
with initial (S0, I0, R0, Z0) = (479.0, 20.0, 1.0, 10.0).

Figure 2 The path of S(t), I(t), R(t) for model (2) and the histogram of the probability density function
of I(150) with initial (S0, I0, R0, Z0) = (479.0, 20.0, 1.0, 10.0) under different noise intensities.
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Figure 3 The path of S(t), I(t), R(t) for model (2) with initial (S0, I0, R0, Z0) = (479.0, 20.0, 1.0, 10.0) under
different noise intensities.

Figure 4 The path of I(t) for model (2) with initial (S0, I0, R0, Z0) = (479.0, 20.0, 1.0, 10.0) under different
noise intensities

The initial population size as: S() = , I() = , R() = , Z() = . We calcu-
late the basic reproduction number R = �β

μ(μ+γ +δ) = . > , the disease-free equi-
librium E = (., ., ., .) and the infected equilibrium E∗ =
(., ., ., .). For a clear comparison with the path of epidemic
model (), we show the path of S(t), I(t), R(t) for deterministic model () in Figure .

Example . (Stochastic endemic dynamics) In Figure , we choose σ = ., σ = .,
note that Rs = . > . By Theorem ., the disease will prevail, and we give the simula-
tions to support our results in Figure . Comparing the first picture, with the noise getting
smaller, the fluctuation of the solution of model () is getting weaker. If we increase σ and
σ to . (Rs = . > ) and . (Rs = . > ), the amplitude of fluctuation becomes
stronger. Running , numerical simulations, we get the histogram of probability den-
sity function for I(). As we can see, with σ and σ increasing, the distribution of I(t)
becomes skew. That is to say, noise intensities have great effect on the solution of I(t).

Example . (Stochastic disease-free dynamics) Throughout the paper we shall assume
that the unit of time is one day and the population sizes are measured in units of  mil-
lion. We choose σ = ., σ = ., then by Theorem ., Rs = . < . Then I(t) will
tend to zero exponentially with probability one, we give the simulations shown in Figure 
to support our results. We increase σ to . and ., σ to . (Rs = . < ) and
. (Rs = . < ), respectively. As a result, I(t) will tend to zero exponentially with
probability one. That is to say, large noises can lead the disease to extinction, which is a
phenomenon different from its corresponding deterministic model ().
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Running , numerical simulations, we obtain the average extinction time of I(t).
The average extinction time for different noise intensities is ., . and
., respectively. Therefore, we can assert that the average extinction time of disease
decreases with the increase of noises.

Example . (Effect of various parameter μ) In the following, we consider the effect of
response intensity μ. Choosing σ = , σ = , from Figure , μ has large influence on
I(t), we can see that the number of infected individuals decreases with the increase of μ.
Increase σ to . and ., σ to . and ., make , numerical simulation runs,
then calculate mean value. Similarly, the increase μ can reduce the peak value of I(t).
Therefore, we can assert that information intervention can help in reducing the peak of
infective population.

7 Concluding remarks
In this paper, we have investigated the dynamic behavior of a new SIRS epidemic model
which considers the influence of information intervention and environmental noise. It has
been found that information intervention and white noise have great effects on the disease.
Our main results can be stated as follows:

(i) We have considered the effects of environmental white noise on the disease. Denote
stochastic reproduction number Rs = R – σ


(μ+δ+γ ) , we have proved that the Rs is a

threshold of model () for the disease to die out or persist, and noise intensities can
change the value of the stochastic reproduction number Rs. If Rs < , the disease
will die out with probability one. On the other hand, if Rs > , there is a stationary
distribution for model (), which means the disease will prevail.

(ii) As an important non-pharmaceutical measure, the information intervention has a
great impact on the spread of disease. It can be seen from the constant
H = aμ(μ+δ+γ )(Rs–)

β�(aβ+aμm) (see Theorem .) and it can help reduce the peak of infective
population (see Figure ). At the end of the paper, we have illustrated that
information intervention can help reduce the peak of infective population and large
noises can lead the disease to extinction by numerical simulations.

There are still a lot of interesting issues that we are going to deal with later. For example,
the sudden climate change, weather warming or cooling, wetting or drying may affect
the spread of the disease. Therefore, when the discontinuous random process is added to
model (), such as Lévy noise, how does it impact the spread of disease, we will study this
issue later.
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