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Abstract
We apply the Chebyshev polynomial-based differential quadrature method to the
solution of a fractional-order Riccati differential equation. The fractional derivative is
described in the Caputo sense. We derive and utilize explicit expressions of weighting
coefficients for approximation of fractional derivatives to reduce a Riccati differential
equation to a system of algebraic equations. We present numerical examples to verify
the efficiency and accuracy of the proposed method. The results reveal that the
method is accurate and easy to implement.
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1 Introduction
The fractional differential equations have received considerable interest in recent years.
In many applications, fractional derivatives and fractional integrals provide more accu-
rate models of the systems than ordinary derivatives and integrals do. Many applications
of fractional differential equations in the areas of solid mechanics and modeling of vis-
coelastic damping, electrochemical processes, dielectric polarization, colored noise, bio-
engineering, and various branches of science and engineering could be found, among oth-
ers, in [].

The existence and uniqueness of solutions of fractional differential equations have been
investigated in [, ]. In general, most of the fractional differential equations have no ex-
act solutions. Therefore, there has been significant interest in developing approximate
methods for solving this kind of equations. Several methods have recently been proposed
to solve these equations. These methods include the Adomian decomposition method
[], the homotopy analysis method [], the Adams-Bashforth-Moulton method [, ], the
Laplace transform method [], the Bessel function method [–], and so on. However,
few papers reported applications of the differential quadrature method to solve fractional-
order differential equations.

The differential quadrature method was introduced by Richard Bellman and his asso-
ciates in the early s, following the idea of integral quadrature []. The basic idea of
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the differential quadrature method is that any derivative at a mesh point can be approx-
imated by a weighted linear sum of all the functional values along a mesh line. The key
procedure in the differential quadrature method is the determination of weighting coef-
ficients. Fung [] introduced a modified differential quadrature method to incorporate
initial conditions. He also discussed at length the stability of various grid patterns in the
differential quadrature method.

In this study, we use the differential quadrature method to numerically solve the
fractional-order Riccati differential equation

Dαy = B(x) + C(x)y + D(x)y, x ∈ [, ], ()

with initial condition

y() = c, ()

where  < α ≤ , B(x), C(x), and D(x) are known functions, and c is a constant. When
α = , the fractional-order Riccati equation is the classic Riccati differential equation. The
importance of the equation usually arises in the optimal control problems.

2 Preliminaries and notation
In this section, we present some notation, definitions, and preliminary facts.

2.1 Basic definitions of fractional integration and differentiation
There are various definitions of fractional integration and derivatives. The widely used
definition of a fractional integral is the Riemann-Liouville definition, and that of a frac-
tional derivative is the Caputo definition.

Definition  The Riemann-Liouville fractional integral operator of order α >  of a func-
tion y ∈ Cμ, μ ≥ –, is defined as

Jαy(x) =


Γ (α)

∫ x


(x – s)α–f (s) ds, α > .

Definition  The fractional derivative Dα of y(x) in the Caputo sense is defined as

Dαy(x) =


Γ (n – α)

∫ x


(x – τ )n–α–f (n)(τ ) d(τ ) ()

for n –  < α ≤ n, n ∈ N , t > , and y(x) ∈ Cn
–.

For the Caputo derivative, we have

Dαxβ =

⎧⎨
⎩

 for β ∈ N and β < �α�;
Γ (β+)

Γ (β+–α) xβ–α for β ∈ N and β ≥ �α� or for β /∈ N and β > �α�.
()

We use the ceiling function �α� to denote the smallest integer greater than or equal to
α and the floor function �α� to denote the largest integer less than or equal to α. Also,
N = {, , , . . . }.
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2.2 Chebyshev polynomials and their properties
The well-known Chebyshev polynomials are defined on the interval [–, ] and are ob-
tained by expanding the formulae

Tn(x) = cos
(
n arccos(x)

)
, n = , , . . . ; x ∈ [–, ].

They have the following properties:
• The three-term recurrence relation

Tk+(x) = xTk(x) – Tk–(x)

with T(x) =  and T(x) = x.
• The expression of Tn(x) in terms of x is given by []

Tn(x) =
�n/�∑
k=

c(n)
k xn–k , ()

where

c(n)
k = (–)kn–k– n

n – k

(
n – k

k

)

and

c(k)
k = (–)k (k ≥ ).

• Discrete orthogonality relation with the extrema of Tn(x) as nodes. Let n > , r, s ≤ n,
and xi = – cos(iπ/n), i = , , . . . , n. Then

n∑′′

i=

Tr(xi)Ts(xi) = Krδrs, ()

where K = Kn = n and Kr = 
 n for  ≤ r ≤ n – . The double prime indicates that the

terms with suffixes i =  and i = n are to be halved.
This discrete orthogonality property leads us to a very efficient interpolation formula. For
later use, we write the interpolation polynomial IN y(x) interpolating y(x) at the points
xi = – cos(iπ/N), i = , , . . . , N , as a sum of Chebyshev polynomials in the form

IN y(x) =
N∑′′

k=

ckTk(x). ()

The coefficients ck in () are given by the explicit formula []

ck =

N

n∑′′

i=

y(xi)Tk(xi), i = , , . . . , N . ()
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3 Calculation of weighting coefficients of fractional-order derivatives
To apply the Chebyshev polynomials in the interval [, ], we used the shifted Chebyshev
polynomials T∗

n (x) defined in terms of the Chebyshev polynomials Tn(x) by the relation

T∗
n (x) = Tn(x – ). ()

Applying (), (), and (), a function y(x) ∈ L[, ] is approximated by means of the
shifted Chebyshev polynomials as

y(x) = T∗(x) · P · Y , ()

where

T∗(x) =
[
T∗

 (x), T∗
 (x), . . . , T∗

N–, T∗
N (x)

]
,

P =

⎡
⎢⎢⎢⎢⎣


N T∗

 (x) 
N T∗

 (x) 
N T∗

 (x) · · · 
N T∗

 (xN )

N T∗

 (x) 
N T∗

 (x) 
N T∗

 (x) · · · 
N T∗

 (xN )
... · · · · · · . . .

...


N T∗
N (x) 

N T∗
N (x) 

N T∗
N (x) · · · 

N T∗
N (xN )

⎤
⎥⎥⎥⎥⎦ ,

Y =
[

y(x), y(x), . . . , y(xN )
]T

,

and xi = 
 [ – cos(iπ/N)], i = , , , . . . , N . According to the definition of the Caputo frac-

tional derivative, we can write

Dαy(x) = DαT∗(x) · P · Y , ()

where α > .
The Caputo fractional derivative of the vector T∗(x) in () can be expressed as

DαT∗(x) = DαX · N , ()

where

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 –  – · · · (–)N

  –  · · · (–)N–N

   – · · · (–)N– 
 N(N – )

...
...

...
...

. . .
...

   · · · · · · N–

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

X =
[
, x, x, . . . , xN]

.

Using () with  < α < , we have

DαX =
[
, cx–α , cx–α , . . . , cN xN–α

]
, ()
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where

c =
Γ ()

Γ ( – α)
, c =

Γ ()
Γ ( – α)

, . . . , cN =
Γ (N + )

Γ (N +  – α)
.

Employing () and (), we get

Y α = Γ · N · P · Y , ()

where

Y α =
[
Dαy(x), Dα(x), . . . , Dαy(xN )

]T

and

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 cx–α
 cx–α

 · · · cN xN–α


 cx–α
 cx–α

 · · · cN xN–α


 cx–α
 cx–α

 · · · cN xN–α


... · · · ...
...

...
. . .

...
 cx–α

N cx–α
N · · · cN xN–α

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the weighting coefficient of the fractional derivative can be written in the matrix
form

D∗(α) = Γ · N · P. ()

The weighting coefficients can be written collectively in the matrix form as

D∗(α) =

⎡
⎢⎢⎢⎢⎣

d(α)
 d(α)

 · · · d(α)
N

d(α)
 d(α)

 · · · d(α)
N

...
...

. . .
...

d(α)
N d(α)

N · · · d(α)
NN

⎤
⎥⎥⎥⎥⎦ . ()

4 Applications to fractional differential equation
To show the fundamental importance of weighting coefficients of fractional-order deriva-
tives in the last section, we apply it for solving fractional-order Riccati differential equa-
tions. To solve the problem, we first consider incorporation of initial conditions. With the
weighting coefficients D∗(α),  < α ≤ , the initial condition is incorporated easily into the
differential quadrature adopting the strategy of []:

Dαy(xi) =
N∑

j=

d(α)
ij y(xj) = d(α)

i y() +
N∑
j=

d(α)
ij y(xj).
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This equation can be rewritten in the matrix form as follows:

⎡
⎢⎢⎢⎢⎣

y(α)(x)
y(α)(x)

...
y(α)(xN )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

d(α)


d(α)

...

d(α)
N

⎤
⎥⎥⎥⎥⎦ · y() +

⎡
⎢⎢⎢⎢⎣

d(α)
 d(α)

 · · · d(α)
N

d(α)
 d(α)

 · · · d(α)
N

...
...

. . .
...

d(α)
N d(α)

N · · · d(α)
NN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y(x)
y(x)

...
y(xN )

⎤
⎥⎥⎥⎥⎦ . ()

In equation (), the initial condition is naturally incorporated into the differential quadra-
ture rule. By substituting the approximation () into () and using the initial condition ()
we get the system of algebraic equations

⎡
⎢⎢⎢⎢⎣

d(α)


d(α)

...

d(α)
N

⎤
⎥⎥⎥⎥⎦ · y() +

⎡
⎢⎢⎢⎢⎣

d(α)
 d(α)

 · · · d(α)
N

d(α)
 d(α)

 · · · d(α)
N

...
...

. . .
...

d(α)
N d(α)

N · · · d(α)
NN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y(x)
y(x)

...
y(xN )

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

B(x)
B(x)

...
B(xN )

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

C(x)y(x)
C(x)y(x)

...
C(xN )y(xN )

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

D(x)y(x)
D(x)y(x)

...
D(xN )y(xN )

⎤
⎥⎥⎥⎥⎦ . ()

Solving the system of algebraic equations, we can obtain the vector [yi]. Then, using (),
we can get the approximate solutions

yN (x) = T∗(x) · P · Y . ()

5 Some useful lemmas
In this section, we give some useful lemmas, which later play a significant role in the con-
vergence analysis. We first introduce some notation. Let I := (–, ), and let L

ωα,β (I) be
the space of measurable functions whose square is Lebesgue integrable in I relative to the
weight function ωα,β (x). The inner product and norm of L

ωα,β (I) are defined by

(u, v)ωα,β ,I =
∫ 

–
u(x)v(x)ωα,β dx, u, v ∈ L

ωα,β (I),

and

‖u‖ωα,β ,I = (u, u)


ωα,β ,I .

For a nonnegative integer m, define

Hm
ωα,β , I :=

{
v : ∂k

x v ∈ L
ωα,β (I),  ≤ k ≤ m

}

with the seminorm and the norm

|v|m,ωα,β =
∥∥∂m

x v
∥∥

ωα,β , ‖v‖m,ωα,β =

( m∑
k=

|v|k,ωα,β

) 


()
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and

|v|Hm;N
ωα,β I =

( m∑
k=min(m,N+)

∥∥∂k
x v

∥∥
L
ωα,β (I)

) 


. ()

To measure the truncation error, we introduce the nonuniformly weighted Sobolev space

Bm
α,β (I) :=

{
v : ∂k

x v ∈ L
ωα+k,β+k (I),  ≤ k ≤ m

}
, m ∈ N ,

equipped with the norm and seminorm

‖v‖Bm
α,β

=

( m∑
k=

∥∥∂k
x v

∥∥
ωα+k,β+k

) 


and |v|Bm
α,β

=
∥∥∂k

x v
∥∥

ωα+m,β+m .

Particularly, let

ωc(x) = ω– 
 ,– 

 (x)

be the Chebyshev weight function.
For a given positive integer N , we denote by {xi}N

i= the set of N +  Gauss-Lobatto points
corresponding to the weight ωα,β (x). By PN we denote the space of all polynomials of de-
gree not exceeding N . For all v ∈ C[–, ], we define the Lagrange interpolating polynomial
Iα,β

N v ∈ PN satisfying

Iα,β
N v(xi) = v(xi).

The Lagrange interpolating polynomial can be written in the form

Iα,β
N v(x) =

N∑
i=

v(xi)Fi(x),  ≤ i ≤ N ,

where Fi(x) is the Lagrange interpolation basis function associated with {xi}N
i=.

Lemma  ([]) Assume that v ∈ Hm
ωc and denote by IN v its interpolation polynomial as-

sociated with the Gauss-Lobatto points {xi}N
i=, namely,

IN v(xi) = v(xi).

Then we have the estimates

‖v – IN v‖L
ωc

≤ CN–m|v|Hm;N
ωc (I).

6 Convergence analysis
In this section, we provide an error estimate of the applied method for the smooth so-
lutions of fractional Riccati differential equations. To simplify the notation, without loss
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of generality, we let C(x) =  and use the change of variables to convert () and the initial
conditions to the form


Γ ( – α)

∫ x

–
(x – t)αu′(t) dt = b(x) + c(x)u(x) + d(x)u(x), – ≤ x ≤ , ()

with initial conditions

u(–) = c,

where

u(x) = y
(




( + x)
)

, b(x) = B
(




( + x)
)

, d(x) = D
(




( + x)
)

.

Theorem  Let u(x) be the exact solution of the Riccati differential equation (), which
is assumed to be sufficiently smooth. Let the approximate solution uN (x) be obtained by
using the differential quadrature method together with a polynomial interpolation. If u(x) ∈
Hm

ωc (I), then, for sufficiently large N , we have the error estimate

∥∥e(x)
∥∥

ωc ≤ CN–m(|u|Hm;N
ωc

+
∣∣u∣∣

Hm;N
ωc

)
+ CN –m|u|Bm

ωc . ()

Proof Firstly, equation () holds at the Gauss-Lobatto points {xi}N
i= on [–, ]:


Γ ( – α)

∫ xi

–
(xi – t)αu′(t) dt = b(xi) + u(xi) + d(xi)u(xi), u(–) = c. ()

We use ui,  ≤ i ≤ N , to approximate the function value u(xi),  ≤ i ≤ N , and use

uN (x) =
N∑

i=

uiFi(x) ()

to approximate the function u(x), namely, u(xi) ≈ ui and u(x) ≈ uN (x). Then, the numerical
scheme () can be rewritten as


Γ ( – α)

∫ xi

–
(xi – t)αu′

N (t) dt = b(xi) + ui + d(xi)u
i . ()

Subtracting () from () gives the error equations

u(xi) – ui =


Γ ( – α)

∫ xi

–
(xi – t)α

(
u′(t) – u′

N (t)
)

dt + d(xi)
(
u(xi) – u

i (x)
)
. ()

Multiplying by Fi(x) both sides of () and summing up from i =  to i = N yield

u(x) – uN (x) = u(x) – IN u(x) +


Γ ( – α)
IN

(∫ x

–
(x – t)α

(
u′(t) – u′

N (t)
)

dt
)

+ IN
(
d(x)

[
u(x) – u

N (x)
])

. ()
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Let e(x) = u(x) – uN (x) denote the error function. Then, () can be written as

e(x) = J + J + J, ()

where

J = u(x) – IN u(x),

J = IN
(
Dαe(x)

)
,

J = IN
(
d(x)

[(
u(x) – u

N (x)
)])

.

Then we can write

∥∥e(x)
∥∥

ωc ≤ ‖J‖ωc + ‖J‖ωc + ‖J‖ωc . ()

Applying Lemma  to u(x), we have

‖J‖ωc =
∥∥u(x) – IN u(x)

∥∥
ωc ≤ CN–m|u|Hm;N

ωc
. ()

Now we begin to estimate ‖J‖ωc . Also, from [, ] we can conclude that

‖J‖ωc ≤ CN –m∥∥u(m)∥∥
ω

– 
 +m,– 

 +m = CN –m|u|Bm
ωc . ()

We now estimate the third term ‖J‖ωc . By () we have

J ≤ max
x∈[–,]

∣∣b(x)
∣∣IN

((
u(x) – u

N (x)
))

. ()

By simple calculation we can rewrite J as

J ≤ max
x∈[–,]

∣∣b(x)
∣∣(u(t) – u

N (t) + IN u(t) – u(t)
)
.

Therefore

‖J‖ωc ≤ max
x∈[,]

∣∣b(x)
∣∣(∥∥u(x) – u

N (x)
∥∥

ωc +
∥∥u(t) – IN u(t)

∥∥
ωc

)
.

Since u(t) – u
N (t) = u(t)e(t) – e(t), we have

∥∥u(t) – u
N (t)

∥∥
ωc ≤ C

∥∥u(t)e(t)
∥∥

ωc +
∥∥e(t)∥∥

ωc .

As in [], applying Banach algebra theory, we can obtain

∥∥u(t) – u
N (t)

∥∥
ωc ≤ C

∥∥u(t)
∥∥

ωc

∥∥e(t)
∥∥

ωc +
∥∥e(t)

∥∥
ωc .

Due to Lemma , we have

∥∥u(t) – IN u(t)
∥∥

ωc ≤ CN–m∣∣u∣∣
Hm;N

ωc
.
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Consequently,

‖J‖ωc ≤ CN–m∣∣u∣∣
Hm;N

ωc
. ()

Therefore, a combination of (), (), and () yields estimate (). �

7 Illustrative examples
To illustrate the effectiveness of the proposed method, we carry out some test examples.
The results obtained by this method reveal that it is very effective and convenient for
fractional differential equations.

Example  As the first example, we consider the fractional Riccati differential equation

D

 y(x) = –x( + x



)

+



√

π
x


 + y(x) +

√
xy(x), y() = . ()

The exact solution of the problem is y(x) = x. Applying the differential quadrature method
with N = , we approximate D 

 y(x) as

⎡
⎢⎣

y( 
 )(x)

y( 
 )(x)

y( 
 )(x)

⎤
⎥⎦ =

⎡
⎢⎣

  
–. . .
–. –. .

⎤
⎥⎦

⎡
⎢⎣

y(x)
y(x)
y(x)

⎤
⎥⎦ , ()

where x = , x = /, and x = . Therefore, using () and (), we obtain

[
. .

–. .

][
y(x)
y(x)

]
=

[
.

–.

]
+

[
y(x)
y(x)

]
+

[√
/y(x)
y(x)

]
. ()

Finally, by solving () we get

y(x) = ., y(x) = ..

Then, using (), we have y(x) = x, which is the exact solution.

Example  In this example, we consider the equation

Dαy =  – y,  < α ≤ ,

subject to the initial condition y() = . In general, the exact solution of the problem is not
known. The exact solution for α =  is

y(x) =
ex – 
ex + 

.

The problem is considered in [–]. We applied the differential quadrature method to
solving the problem with N = , ,  and various values of α. The numerical solutions
obtained by the present method and some other numerical methods such as the wavelet
method [, ] and the artificial neural networks [] are given in Tables , , and .
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Table 1 Comparison of the numerical solutions with the other methods for α = 1/4 of
Example 2

x Present method
N = 8

Method in [21] Adams method in [21]

0.1 0.526735 0.458224 0.487151
0.2 0.515880 0.532957 0.540879
0.3 0.560879 0.563197 0.571773
0.4 0.608031 0.588243 0.593261
0.5 0.612075 0.606988 0.609616
0.6 0.611336 0.620195 0.622749
0.7 0.631897 0.630670 0.633677
0.8 0.648453 0.640302 0.643005
0.9 0.647655 0.649310 0.651121
1.0 0.657946 0.656773 0.658290

Table 2 Comparison of the numerical solutions with the other methods for α = 2/4 of
Example 2

x Present method
N = 8

Method in [19]
k = 6, m = 2

Method in [21]

0.1 0.330148 0.330159 0.303073
0.2 0.429343 0.436737 0.423370
0.3 0.498133 0.504842 0.495336
0.4 0.553348 0.553802 0.546941
0.5 0.590546 0.591265 0.585991
0.6 0.617818 0.621026 0.616680
0.7 0.643355 0.645480 0.641789
0.8 0.665723 0.666016 0.662967
0.9 0.682298 0.683560 0.681065
1.0 0.697835 0.696506

Table 3 Comparison of the numerical solutions with the other methods for α = 3/4 of
Example 2

x Present method
N = 8

Method in [19]
k = 6, m = 2

Method in [21]

0.1 0.185553 0.190108 0.178692
0.2 0.305933 0.309886 0.301614
0.3 0.400771 0.404552 0.397897
0.4 0.478985 0.481638 0.476155
0.5 0.543038 0.545178 0.540568
0.6 0.595789 0.597790 0.594017
0.7 0.640095 0.641801 0.638671
0.8 0.677553 0.678835 0.676201
0.9 0.709031 0.710182 0.707923
1.0 0.735843 0.734913

Clearly, the approximations obtained by the differential quadrature method are in agree-
ment with those obtained with the above-mentioned numerical methods. Table  shows
the approximate solutions obtained by using the present method for α = , the Cheby-
shev wavelet operational matrix of the fractional integration [] for k = , m = , and the
Bernoulli wavelet method for k = , m = . Also, the numerical results with N =  and
α = /, /, /,  are plotted in Figure . The approximate solutions using the present
method are in high agreement with the exact solutions for α = .
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Table 4 Absolute errors for α = 1 using N = 4, 12 for Example 2

x N = 4 N = 12 Method in [20]
k = 1, M = 5

Method in [19]
k = 6, M = 2

0.1 2.5206× 10–4 8.3141× 10–11 1.9995× 10–5 1.9000× 10–5

0.2 2.4144× 10–4 9.1576× 10–11 4.1680× 10–5 5.9000× 10–5

0.3 8.3597× 10–5 7.5812× 10–11 3.3875× 10–6 2.7000× 10–5

0.4 7.1204× 10–5 1.1151× 10–10 3.6962× 10–5 3.4000× 10–5

0.5 1.2313× 10–4 5.5890× 10–11 3.4157× 10–5 8.9000× 10–5

0.6 5.8666× 10–5 7.8642× 10–11 7.4330× 10–6 9.0000× 10–6

0.7 5.9751× 10–5 6.2746× 10–11 3.7223× 10–5 6.7000× 10–5

0.8 1.3955× 10–4 5.3920× 10–11 1.5230× 10–5 4.3000× 10–5

0.9 1.2508× 10–4 4.8389× 10–11 3.3870× 10–5 3.6000× 10–5

Figure 1 Comparison of y(x) for N = 8 and with
α = 1/4, 2/4, 3/4, 1 for Example 2.

8 Conclusion
A general formulation for the Chebyshev polynomial-based weighting coefficient matrix
for approximation of fractional derivatives has been derived. The fractional derivatives
are described in the Caputo sense. The matrix is used to get approximate numerical solu-
tions of fractional Riccati differential equations. Our numerical results are compared with
the solutions obtained by the wavelet and artificial neural network methods. The solu-
tion obtained using the present method shows that this approach can effectively solve the
problem.
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