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Abstract
One class of singular integral equations of convolution type with Hilbert kernel is
studied in the space L2[–π ,π ] in the article. Such equations can be changed into
either a system of discrete equations or a discrete jump problem depending on some
parameter via the discrete Laurent transform. We can thus solve the equations with
an explicit representation of solutions under certain conditions.
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1 Introduction
It is well known that singular integral equations and boundary value problems for ana-
lytic functions are the main branches of complex analysis and have a lot of applications,
e.g., in elasticity theory, fluid dynamics, shell theory, underwater acoustics, and quantum
mechanics. The theory is well developed by many authors [–]. Integral equations of
convolution type are closely related to boundary value problem for an analytic function.
There have been many papers studying integral equations with convolution type or sin-
gular type, see, for example, Litvinchuc [], Li [, ], De-Bonis [], Du [], Jiang [],
among which a series of valuable achievements have been obtained. In recent years, the
author [] discussed some kinds of singular integral equations of convolution type with
reflection and translation shifts. Subsequently, the author [] studied one class of gener-
alized boundary value problems for analytic functions and obtained the general solutions
and the conditions of solvability.

The purpose of this article is to extend further the theory to a periodic singular inte-
gral equation of convolution type with Hilbert kernel. We remark that integral equations
with periodicity have important applications in the elastic theory. Such equations can be
changed into either a system of discrete equations or a discrete jump problem (that is, dis-
crete boundary value problems) depending on some parameter via the discrete Laurent
transform. We can thus solve the equations with an explicit representation of solutions in
L[–π ,π ] under certain conditions. This paper improves some results for the references
[–].
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We shall consider the following singular integral equation of convolution type with
Hilbert kernel and periodicity:

af + bHf + K ∗ f + M ∗ Hf + ξ (af + bHf + K ∗ f + M ∗ Hf )

= (c + cξ )G, (.)

where Kj, Mj, G ∈ L[–π ,π ] are given functions, aj, bj, cj ∈ R for any j = , , and f ∈
L[–π ,π ] is an unknown function. We denote by ∗ the convolution operator and by Hf
the Hilbert type singular integral of f , that is,

Hf =

π

∫ π

–π

f (τ ) cot
τ – θ


dτ .

Assumption A We shall make the following assumption:
(i) a

 + a
 �= , b

 + b
 �= .

(ii) There exist constants a, b, c, d ∈R and some m ∈N such that

ξ (θ ) =
a + b tan m

 θ

c + d tan m
 θ

whenever ad – bc �= ; otherwise we have ξ (θ ) = C (constant). We shall also
represent ξ (θ ) as

ξ (θ ) =
α+ + α–eimθ

β+ + β–eimθ
,

where

α± = a ± ib, β± = c ± id.

Let L,L– be the discrete Laurent transform and the inverse transform, respectively. We
denote

S± = (aa + ac) ± i(ab + ad),

T± = (bc + ba) ± i(bd + bb),

B(j)
k = L

–Kj, C(j)
k = L

–Mj

and

wk =
�–

k–m
�+

k
,

where

�±
k = S± + β±B()

k + α±B()
k + i sgn k

(
T± + β±C()

k + α±C()
k

)
.
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Assumption B To assure the solvability of Eq. (.), we need to make the assumption

∑
k∈Z

(
log

S+

S– wk

)
eikθj = , (.)

where

θj =
j
m

π

for any j = ,±, . . . ,±[ m
 ]. Via using the method of complex analysis, we can take a con-

tinuous branch of log( S+

S– wk) such that {log( S+

S– wk)}k∈Z ∈ l.

There exist constants ε ∈ (, ) and k ∈N such that when |k| > k we have

∣∣�+
k
∣∣ > ε,

∣∣�–
k–m

∣∣ > ε.

We can thus introduce the equalities

Ak =


S–�+
k

{
β–S+B()

k–m – β+S–B()
k + α–S+B()

k–m – α+S–B()
k

+ i
[(

β–S+C()
k–m + α–S+C()

k–m
)

sgn(k – m) –
(
β+S–C()

k + α+S–C()
k

)
sgn k

]}
. (.)

We may make ηk such that

ηk = ( + Ak)ηk–m. (.)

Assumption C To assure the solvability, we need also

∑
k∈Z

Hk

ηk
eikθ ′

j = , (.)

where ηk is determined by (.),

Hk =


�+
k

(
E+gk + E–gk–m

)
, {gk}k∈Z = L

–G

and

E± = (cc + ca) ± i(cb + cd).

In order to illustrate that Eq. (.) has a solution, at the end of Section , we shall present
an example and satisfy the above conditions (Assumptions A-C), then we can conclude
that a solution set of (.) is not empty.

Now we can state our main result, and we will prove it in Section .

Theorem . Under Assumptions A-C, Eq. (.) has a solution in L[–π ,π ].
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(i) When �+
k �= , �–

k–m �=  for any k ∈ Z, the solution of Eq. (.) is given by

f (θ ) =
+∞∑

k=–∞
fkeikθ ,

and the coefficients fk are determined uniquely by the formula

�+
k fk + �–

k–mfk–m = E+gk + E–gk–m. (.)

(ii) When �+
nj

= , �–
nj–m =  (|nj| ≤ k; j = , , . . . , p), then

E+gnj + E–gnj–m = 

must be satisfied, and fnj can be taken to be an arbitrary constant cnj ( ≤ j ≤ p),
then the solution of Eq. (.) is

f (θ ) =
p∑
j=

cnj e
injθ +

+∞∑
k=–∞,k �=nj

fkeikθ .

(iii) When �+
n′

j
= , �–

n′
j–m �=  (|n′

j| ≤ k; j = , , . . . , p), fn′
j

are given by the following
formula:

fn′
j

=


�–
n′

j

(
E+gn′

j+m + E–gn′
j

)
, (.)

then the solution of Eq. (.) is

f (θ ) =
p∑
j=

fn′
j
ein′

jθ +
+∞∑

k=–∞,k �=n′
j

fkeikθ .

(iv) When �+
n′′

j
�= , �–

n′′
j –m =  (|n′′

j | ≤ k; j = , , . . . , p), fn′′
j

are given by the following
formula:

fn′′
j

=


�+
n′′

j

(
E+gn′′

j
+ E–gn′′

j –m
)
, (.)

then the solution of Eq. (.) is

f (θ ) =
p∑
j=

fn′′
j
ein′′

j θ +
+∞∑

k=–∞,k �=n′′
j

fkeikθ . (.)

In (ii)-(iv), when k �= n, n, . . . , np , n′
, n′

, . . . , n′
p , n′′

 , n′′
, . . . , n′′

p , the coefficients fk are
determined uniquely by (.).
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2 Hilbert transform and its discrete Laurent transform
The crucial tool to study the Hilbert transform is to calculate its discrete Laurent trans-
form.

For any f ∈ L[–π ,π ], its Hilbert transform is defined as

Hf (θ ) =

π

∫ π

–π

f (τ ) cot
τ – θ


dτ .

Associated to the operator H is the operator H̃ defined by

H̃f (θ ) =

π

∫ π

–π

f (τ ) cot
τ + θ


dτ ,

that is,

H̃f (θ ) = Hf (–θ ).

It is well known that the Hilbert transform H as well H̃ is a self-map of the space L[–π ,π ]
in virtue of the Riesz theorem (see, e.g., []).

Let l(Z) be a linear space consisting of sequences {fk}k∈Z for which

+∞∑
k=–∞

|fk| < +∞.

Definition . The discrete Laurent transform

L : l(Z) −→ L[–π ,π ]

is defined by

L{fk}k∈Z =
+∞∑

k=–∞
fkeikθ =: f (θ ) (.)

for any f = {fk}k∈Z ∈ l(Z). Its inverse transform is clearly given by

L
–[f ]k = {fk}k∈Z (.)

with

fk =


π

∫ π

–π

f (θ )e–ikθ dθ , ∀k ∈ Z. (.)

Now we come to calculate the inverse discrete Laurent transform of a function which is
a Hilbert transform of a given function. The result shall be crucial to studying the singular
integral equations.

Lemma . Let f (θ ) ∈ L[–π ,π ] with its discrete Laurent transform

{fk}k∈Z = L
–f (θ ).
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Then we have

L
–(Hf (θ )

)
= {ifk sgn k}k∈Z,

L
–(H̃f (θ )

)
= {–if–k sgn k}k∈Z.

Proof Since

cot
τ – θ


=

eiτ

eiτ – eiθ –
e–iτ

e–iτ – e–iθ ,

by Definition . we have

Hf (θ ) =
i
π

∫ π

–π

f (τ )
(

eiτ

eiτ – eiθ –
e–iτ

e–iτ – e–iθ

)
dτ .

For any f (θ ) ∈ L[–π ,π ], we already know that Hf (θ ) ∈ L[–π ,π ] so that L–(Hf (θ )) ∈
l(Z). We denote

L
–(Hf (θ )

)
= {gk}k∈Z.

Then

gk =


π

∫ π

–π

Hf (θ )e–ikθ dθ

=
i

π

∫ π

–π

∫ π

–π

f (τ )
eiτ e–ikθ

eiτ – eiθ dτ dθ –
i

π

∫ π

–π

∫ π

–π

f (τ )
e–iτ e–ikθ

e–iτ – e–iθ dτ dθ

=: I – I.

For the first term, we have

I =
i

π

∫ π

–π

(∫ π

–π

e–ikθ

eiτ – eiθ dθ

)
f (τ )eiτ dτ .

By a change of variable t = exp(iθ ), the inner integral above becomes

M(τ ) :=
∫ π

–π

e–ikθ

eiτ – eiθ dθ =
∫

|t|=

t–k

(eiτ – t)it
dt.

Applying the extended residue theory, we thus obtain

M(τ ) =

⎧⎨
⎩

π

ei(k+)τ , k ≥ ,

– π

ei(k+)τ , k < .

Therefore, when k ≥ , we have

I =
i

π

∫ π

–π

π

ei(k+)τ f (τ )eiτ dτ =
i

π

∫ π

–π

f (τ )e–ikτ dτ = ifk
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and similarly

I = –ifk , k < .

In other words,

I = ifk sgn k, ∀k ∈ Z.

Similarly, we have

I = –ifk sgn k, ∀k ∈ Z.

As a result,

gk = I – I = ifk sgn k, ∀k ∈ Z.

The other equality can be proven similarly. �

Lemma . Let f (θ ) =
∑∞

k=–∞ fkeikθ and f ∈ l, then f (θ ) ∈ L[–π ,π ] if and only if f ∈ l.

Proof Since f (θ ) ∈ L[–π ,π ] and f ∈ l, then
∑∞

k=–∞ fk is convergent absolutely and uni-
formly. It is easy to see that

∫ π

–π

∣∣f (θ )
∣∣ dθ =

∫ π

–π

f (θ )f (θ ) dθ =
∫ π

–π

∑
fkeikθ

∑
f̄je–ijθ dθ

=
∫ π

–π

∞∑
k,j=–∞

fk f̄jei(k–j)θ dθ = π

∞∑
k=–∞

|fk|. (.)

The proof of Lemma . is complete. �

Finally, we remark that

L
–[f ∗ g(θ )

]
= {fkgk}k∈Z

for any f , g ∈ L[–π ,π ] with the discrete Laurent transforms {fk}k∈Z and {gk}k∈Z, respec-
tively. Here the convolution in L[–π ,π ] is defined by

(f ∗ g)(θ ) =


π

∫ π

–π

f (θ – τ )g(τ ) dτ . (.)

3 Problem presentation and solution
In this section, we study the method of solution for Eq. (.). By Euler’s formula eimθ =
cos mθ + i sin mθ , Eq. (.) can be written as

S+f + T+Hf + β+K ∗ f + α+K ∗ f + β+M ∗ Hf + α+M ∗ Hf – E+G

+ eimθ
(
S–f + T–Hf + β–K ∗ f + α–K ∗ f + β–M ∗ Hf + α–M ∗ Hf – E–G

)

= . (.)
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In view of Lemma ., by applying L
– to both sides of (.), we see that (.) is readily

reduced to the equation

�+
k fk – E+gk + �–

k–mfk–m – E–gk–m = , (.)

where

{fk}k∈Z = L
–f , {gk}k∈Z = L

–G,
{

B(j)
k

}
k∈Z = L

–Kj,
{

C(j)
k

}
k∈Z = L

–Mj

with any j = , ; k ∈ Z.
Since by assumption, for each j = , ,

{
B(j)

k
}

k∈Z ∈ l(Z),
{

C(j)
k

}
k∈Z ∈ l(Z),

it follows that

lim
k→∞

B(j)
k = , lim

k→∞
C(j)

k = .

Therefore,

lim
k→∞

�+
k = S+ ± iT+ �= , lim

k→∞
�–

k = S– ± iT– �= ,

which means that for any ε sufficiently small, there exists k >  such that when |k| > k

we have

∣∣�+
k
∣∣ > ε,

∣∣�–
k–m

∣∣ > ε.

Case : |k| > k.
Since |�+

k | > ε, |�–
k–m| > ε for |k| > k, it follows from (.) that

fk = –
�–

k–m
�+

k
fk–m +


�+

k

(
E+gk + E–gk–m

)
, ∀|k| > k, (.)

so that Eq. (.) can be rewritten as

fk = –wkfk–m + Hk , ∀|k| > k. (.)

Denote

ρ =
S–

S+ , wk = ρ( + Ak).

When |k| is large enough, we see that sgn(k – m) and sgn k equal  or – simultaneously
so that

S+T– sgn(k – m) – S–T+ sgn k = .
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Consequently,

Ak =


S–�+
k

{
β–S+B()

k–m – β+S–B()
k + α–S+B()

k–m – α+S–B()
k

+ i
[(

β–S+C()
k–m + α–S+C()

k–m
)

sgn(k – m) –
(
β+S–C()

k + α+S–C()
k

)
sgn k

]}
. (.)

Therefore, (.) becomes a discrete jump problem

fk = –ρ( + Ak)fk–m + Hk , ∀|k| > k. (.)

In order to solve (.), we may make ηk such that

ηk = ( + Ak)ηk–m (.)

with

ε < |ηk| < ε–
 .

First, we need to construct ηk . By taking logarithms on both sides of (.) and denoting

Mk = log( + Ak), ok = logηk ,

we get

ok = ok–m + Mk , (.)

where we have taken a continuous branch of log(+Ak) so that {log(+Ak)}k∈Z ∈ l. Taking
the Laurent transform L on both sides of (.) yields

O(θ ) = eimθ O(θ ) + M̃(θ ), (.)

that is,

(
 – eimθ

)
O(θ ) = M̃(θ ),

where

O(θ ) = Lo, M̃(θ ) = LM, o = {ok}k∈Z, M = {Mk}k∈Z.

Notice that when M̃(θj) �= , Eq. (.) is not solvable. This means M̃(θj) =  or, equiva-
lently, Assumption B becomes the solvability conditions of Eq. (.), where θj are  + [ m

 ]
roots on [–π ,π ] for equation  – eimθ = .

Finally, from (.) we get

ηk = exp ok , ok = L
– M̃(θ )

 – eimθ
. (.)
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Now we come to solve Eq. (.). Denote

pk =

ηk

fk , qk =

ηk

Hk

and rewrite (.) as

pk = –ρpk–m + qk . (.)

Due to {Hk}k∈Z ∈ l(Z), {ηk}k∈Z ∈ l(Z), we can know that {pk}k∈Z ∈ l(Z), {qk}k∈Z ∈
l(Z). Taking the Laurent transform L on both sides of (.), we thus obtain

P(θ ) = –ρeimθ P(θ ) + Q(θ ), (.)

where P(θ ) = Lp and Q(θ ) = Lq with p = {pk}k∈Z and q = {qk}k∈Z.
Owing to |ρ| = , we know that  + ρeimθ has a finite number of zero points, say

θ ′
, θ ′

, . . . , θ ′
n in [–π ,π ].

The same approach as in the discussion of Eq. (.) shows that (.) is not solvable if
Q(θ ′

j ) �= . Therefore, Q(θ ′
j ) =  (j = , , . . . , n), or equivalently, Assumption C becomes the

solvability conditions of Eq. (.).
Under Assumption C, (.) becomes

P(θ ) =
Q(θ )

 + ρeimθ
. (.)

This determines pk so does fk = pkηk .
Case : |k| ≤ k.
We split the situation into four cases.
(a) �+

k =  and �–
k–m =  for some |k| ≤ k. By (.), we have

E+gk = –E–gk–m (.)

and fk can be taken to be any constant.
(b) �+

k =  and �–
k–m �=  for some |k| ≤ k. By (.), we get

fk =


�–
k

(
E+gk+m + E–gk

)
. (.)

(c) �+
k �=  and �–

k–m =  for some |k| ≤ k. By (.), we get

fk =


�+
k

(
E+gk + E–gk–m

)
. (.)

(d) �+
k �=  and �–

k–m �=  for some |k| ≤ k.
In this situation, fk can be determined as in the proof of Case (i).
In the following, we give the proof of Theorem ..

Proof of Theorem . From the above discussion, we only need to prove that the function
f (θ ) obtained by (.) belongs to L[–π ,π ]. Obviously, Eqs. (.), (.) and (.) are equiv-
alent to each other. Since {Ak}, {Bk}, {Ck}, {gk} ∈ l, then {�±

k } ∈ l and �±
k �= . It follows
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from (.) that {fk} ∈ l is a bounded sequence and
∑∞

k=–∞ fkeikθ is convergent. Thus, by
Lemma ., Eq. (.) has a unique solution f (θ ) = Lf , and f (θ ) ∈ L[–π ,π ].

Finally, in order to illustrate that Eq. (.) has a solution, we shall present an example.
For example, suppose that

a = b = c = a = b = c = , a = d = , b = c,

K(θ ) = K(θ ) = sin θ , M(θ ) = M(θ ) = , G(θ ) = sin θ – cos θ ,

then ξ (θ ) = tan m
 θ , and Eq. (.) can be transformed into

f (θ ) +

π

∫ π

–π

f (t) cot
t – θ


dt +

√
π

∫ π

–π

sin(t – θ )f (t) dt

= sin θ – cos θ , θ ∈ [–π ,π ]. (.)

Equation (.) is often used in engineering mechanics. It is easy to verify that Eq. (.)
satisfies the above conditions (Assumptions A-C). Via using the methods of Section , we
can obtain the exact solution of Eq. (.):

f (θ ) =
√




(
π – θ

π + θ

) 


sin θ , θ ∈ [–π ,π ]. (.)

As for the solving method of (.), we will not elaborate. We can verify that (.) is indeed
the solution of (.). Therefore, we conclude that a solution set of (.) is non-empty. �

4 Homogenous equation and some specific equation
In this section we consider the homogenous equation and some specific equation. First
we consider the homogenous equation (that is, G(θ ) ≡ )

af + bHf + K ∗ f + M ∗ Hf + ξ (af + bHf + K ∗ f + M ∗ Hf ) = . (.)

Via the Laurent transform, it can be reduced to the equation

�+
k fk + �–

k–mfk–m = . (.)

That is,

fk = –wkfk–m, wk =
�–

k–m
�+

k
. (.)

Again we apply the same approach as the discussion for Eq. (.) to deduce that fk ≡ 
for all k so that f (θ ) ≡ . As a result, the homogeneous equation (.) has only a trivial
solution.

Next we consider the specific case that ξ (θ ) is a constant. Since ad – bc = , Eq. (.) can
be expressed in the form

a′f + b′Hf + K ∗ f + M ∗ Hf = G. (.)
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Via transform L
–, (.) can be written as

(
a′ + ib′ sgn k + Bk + i sgn kCk

)
fk = gk , (.)

where a′, b′ are constants and {fk}k∈Z = L
–f , {Bk}k∈Z = L

–K , {Ck}k∈Z = L
–M, {gk}k∈Z =

L
–G.
One can solve out fk from (.) and get the solution f (θ ) =

∑+∞
k=–∞ fkeikθ .

5 Conclusions
In this paper, we first proposed one class of singular integral equations of convolution
type with Hilbert kernel and periodicity. Applying the discrete Laurent transform and
its properties, such an equation can be changed into a discrete boundary value problem
depending on some parameter, here we call it ‘a discrete jump problem’. In this article,
our method is different from the ones of the classical boundary value problem, and it is
novel and simple. The exact solution, denoted by series, of Eq. (.) and the conditions
of solvability are obtained. We remark that our approach is also effective to some other
classes of equations such as the equations of dual type with periodicity and Hilbert kernel,
the Wiener-Hopf type equations, and the equations with periodicity and cosecant kernel.
Thus, this paper generalizes the classical theory of boundary value problems and singular
integral equations.

One can also consider a similar problem in the setting of Clifford analysis (see, e.g., [–
]).
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