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Abstract
In this paper, we derive a discretized multi-group epidemic model with time delay by
using a nonstandard finite difference (NSFD) scheme. A crucial observation regarding
the advantage of the NSFD scheme is that the positivity and boundedness of
solutions of the continuous model are preserved. Furthermore, we show that the
discrete model has the same equilibria, and the conditions for their stability are
identical in case of both the discrete and the corresponding continuous models.
Specifically, ifR0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically
stable; ifR0 > 1, then the infection equilibrium P∗ is globally asymptotically stable.
The results imply that the discretization scheme can efficiently preserve the global
dynamics of the original continuous model.
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1 Introduction
The main essential assumption in classical compartmental epidemic models is that indi-
viduals are homogeneously mixed, which implies that each individual has the same chance
to get infected. However, the chance for each individual to get infected may differ from
their diversities in disease transmission such as age, communities, education levels, geo-
graphic distributions, and so on. Thus, more realistic models should divide the host pop-
ulation into groups to consider the disease transmission in heterogeneous cases, which
means that the host population should be classified into different groups and the vital epi-
demic parameters vary among different population groups. Therefore, multi-group mod-
els are more reasonable when constructing epidemic models. One of the earliest works of
multi-group models is investigated by Lajmanovich and Yorke [] for gonorrhea in a non-
homogeneous population. Motivated by [], Chen et al. studied the following multi-group
epidemic model with time delay []:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S′
k(t) = �k –

∑m
j= βkjSkIj(t – τj) – dS

k Sk ,

E′
k(t) =

∑m
j= βkjSkIj(t – τj) – (dE

k + δk)Ek ,

I ′
k(t) = δkEk – (dI

k + γk)Ik ,

R′
k(t) = γkIk – dR

k Rk .

()
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Here Sk , Ek , Ik and Rk (k = , , . . . , m) denote the numbers of susceptible, exposed, infec-
tious and recovered individuals at time t in the kth group, respectively. The parameters dS

k ,
dE

k , dI
k , dR

k are the natural death rates of Sk , Ek , Ik and Rk compartments in the kth group,
respectively. �k represents influx of individuals into the kth group; δk is the rate of be-
coming infectious after a latent period; γk denotes per capita recovery rate in kth group.
The nonnegative constant βkj is the transmission rate due to the contact of susceptible
individuals in the kth group with infectious individuals in the jth group. τj ≥  denotes
the time delay. For more details on model (), one can refer to []. The global stability of
the equilibria of system () is investigated in [] by making use of the method of Lyapunov
functionals [–]. For more information on multi-group models, one can refer to [–]
and the references therein.

However, as an important part of epidemiology, the studies on discrete-time epidemic
models have never been stopped up to now. Since the infection data of infectious diseases
were often reported daily, monthly or yearly, discrete-time epidemic models represent a
more realistic situation than continuous ones. Over the last century, much attention has
been paid to discrete-time epidemic models, and many literature works on discrete-time
epidemic models have been carried out to analyze the spread and control of infectious
diseases [–]. One of the important ways to construct discrete models is to discretized
the continuous models by numerical methods. But traditional schemes like forward Euler,
Runge-Kutta and others sometimes fail and generate oscillations, bifurcations, chaos and
false steady states []. Recently, the nonstandard finite difference schemes have been de-
veloped by Mickens [] and received much attention (see [–]). Different from the tra-
ditional schemes, Mickens’s method can be more efficient in preserving the global asymp-
totic stability for equilibria of the corresponding continuous models (see [–]). To our
knowledge, there is no investigation for a discrete multi-group model with time delay.
Hence, motivated by [, ], we construct a discrete multi-group epidemic model with
time delay by utilizing Mickens’s nonstandard finite difference methods to the continuous
model ()

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Skn+ –Skn
h = �k –

∑m
j= βkjSkn+ Ijn–mj

– dS
k Skn+ ,

Ekn+ –Ekn
h =

∑m
j= βkjSkn+ Ijn–mj

– (dE
k + δk)Ekn+ ,

Ikn+ –Ikn
h = δkEkn+ – (dI

k + γk)Ikn+ ,
Rkn+ –Rkn

h = γkIkn+ – dR
k Rkn+ ,

()

where h >  is the time step size and the other parameters are the same as in model ().
Assume that there exist m integers mj with τj = mjh ( ≤ j ≤ m). The discrete initial con-
ditions of system () are given as

Sks = φk(s), Eks = φk(s), Iks = φk(s), Rks = φk(s),

φik(s) ≥ , φik() > , s = –l, –l + , . . . , , l = max{mj :  ≤ j ≤ m},
i = , , , , k = , , . . . , m.

()

The global asymptotic stability of the equilibria for the continuous model () can be ob-
tained by constructing Lyapunov functionals []. Thus, a natural question is whether the
discrete model () can efficiently preserve the global asymptotic stability of the equilibria
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for the corresponding continuous model. In this paper, we will deal with this problem.
The organization of the paper is as follows. We present some preliminaries including the
positivity and boundedness of the solution of model () in Section . In Section , we estab-
lish the global stability of the equilibria of model () by constructing Lyapunov functions.
A brief conclusion ends the paper.

2 Preliminaries
Rearranging the equations of () gives

Skn+ =
Skn + h�k

 + h(dS
k +

∑m
j= βkjIjn–mj

)
, Ekn+ =

Ekn + h
∑m

j= βkjSkn+ Ijn–mj

 + h(dE
k + δk)

,

Ikn+ =
Ikn + hδkEkn+

 + h(dI
k + γk)

, Rkn+ =
Rkn + hγkIkn+

 + hdR
k

.

()

It follows from () that all solutions of system () subject to initial condition () remain
nonnegative for all n ∈N.

For each k, denote Nkn = Skn + Ekn + Ikn + Rkn . It then follows from the equations in model
() that

Nkn+ – Nkn

h
= �k – dS

k Skn+ – dE
k Ekn+ – dI

kIkn+ – dR
k Rkn+

≤ �k – dk(Skn+ + Ekn+ + Ikn+ + Rkn+ )

= �k – dkNkn+ ,

where dk = min{dS
k , dV

k , dI
k , dR

k }. Then we have lim supn→∞ Nkn ≤ �k
dk

. Similarly, it can be
easily obtained from the first equation in system () that lim supn→∞ Skn ≤ �k

dS
k

. Thus, we
can establish the following result.

Theorem . All solutions of system () subject to initial condition () remain nonnegative
and bounded for all n ∈N.

Notice that the last equation of system () is independent of the others. Therefore, it is
sufficient to consider the following reduced system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Skn+ –Skn
h = �k –

∑m
j= βkjSkn+ Ijn–mj

– dS
k Skn+ ,

Ekn+ –Ekn
h =

∑m
j= βkjSkn+ Ijn–mj

– (dE
k + δk)Ekn+ ,

Ikn+ –Ikn
h = δkEkn+ – (dI

k + γk)Ikn+ .

()

It is easy to see that system () always has a disease-free equilibrium

P =
(
S

 , , , . . . , S
m, , 

)
with S

k =
�k

dS
k

,  ≤ k ≤ m.

As in [], the basic reproduction number R is given as

R = ρ(M), with M =
(

βkjδkS
k

(dE
k + δk)(dI

k + γk)

)

m×m
,
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where ρ denotes the spectral radius. An equilibrium P∗ = (S∗
 , E∗

 , I∗
 , . . . , S∗

m, E∗
m, I∗

m) of sys-
tem () shares the same endemic equilibrium as the corresponding continuous model,
where S∗

k , E∗
k and I∗

k are positive and satisfy the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

�k = dS
k S∗

k +
∑m

j= βkjS∗
k I∗

j ,
∑m

j= βkjS∗
k I∗

j = (dE
k + δk)E∗

k ,

δkE∗
k = (dI

k + γk)I∗
k .

()

The existence and global asymptotic stability of the equilibria for the corresponding
continuous model of () can be directly deduced from the obtained results in []. Partic-
ularly, if R >  and B = (βkj)m×m is irreducible, then model () has at least one endemic
equilibrium.

3 Global stability
In this section, we establish the global stability of the equilibria of system () by construct-
ing Lyapunov functions.

Theorem . Assume that B = (βkj)m×m is irreducible. For any h > , if R ≤ , then the
disease-free equilibrium P is globally asymptotically stable.

Proof Since B = (βkj)m×m is irreducible, we know that matrix M is also irreducible and
has a positive left eigenvector ω = (ω, . . . ,ωm) corresponding to the spectral radius R =
ρ(M) > . Let In = (In , . . . , Imn ), S = (S

 , . . . , S
m) and ck = ωkδk

(dE
k +δk )(dI

k +γk )
.

Define

Vn =

h

m∑

k=

ck

{

Skn – S
k – S

k ln
Skn

S
k

+ Ekn +
(
 + h

(
dI

k + γk
))dE

k + δk

δk
Ikn

+ h
m∑

j=

n–∑

s=n–mj

βkjS
k Ijs

}

. ()

Since,  + ln x ≤ x (x > ) and together with (), then we have

Vn+ – Vn =

h

m∑

k=

ck

{

Skn+ – Skn + S
k ln

Skn

Skn+
+ Ekn+ – Ekn

+
(
 + h

(
dI

k + γk
))dE

k + δk

δk
(Ikn+ – Ikn )

+ h
m∑

j=

βkjS
k

( n∑

s=n–mj+

Ijs –
n–∑

s=n–mj

Ijs

)}

≤ 
h

m∑

k=

ck

{

(Skn+ – Skn )
(

 –
S

k
Skn+

)

+ Ekn+ – Ekn

+
(
 + h

(
dI

k + γk
))dE

k + δk

δk
(Ikn+ – Ikn )

+ h
m∑

j=

βkjS
k

( n∑

s=n–mj+

Ijs –
n–∑

s=n–mj

Ijs

)}
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=
m∑

k=

ckdS
k S

k

(

 –
S

k
Skn+

)(

 –
Skn+

S
k

)

+
m∑

k=

ωk

( m∑

j=

δkβkjS
k Ijn

(dE
k + δk)(dI

k + γk)
– Ikn

)

=
m∑

k=

ckdS
k S

k

(

 –
S

k
Skn+

)(

 –
Skn+

S
k

)

+ (ω, . . . ,ωm)
[
M

(
S

k
)
In – In

]

=
m∑

k=

ckdS
k S

k

(

 –
S

k
Skn+

)(

 –
Skn+

S
k

)

+ (ω, . . . ,ωm)
(
ρ(M) – 

)
In.

Thus, if R ≤ , then Vn+ – Vn ≤ . Then Vn is a monotone decreasing sequence. Due
to Vn ≥ , there is a limit limn→∞ Vn ≥ , which implies that limn→∞(Vn+ – Vn) = . Thus,
we know

(i) if R < , limn→∞(Vn+ – Vn) =  is equivalent to limn→∞ Skn = S
k , limn→∞ Ikn = . It

follows from () that limn→∞ Ikn =  for all  ≤ k ≤ m.
(ii) if R = , limn→∞(Vn+ – Vn) =  is equivalent to limn→∞ Skn = S

k . By (), it can be
shown that limn→∞ Ekn = , limn→∞ Ikn =  for all  ≤ k ≤ m.

By the above discussion, it is concluded that if R ≤ , the disease-free equilibrium P

is globally asymptotically stable. This completes the proof. �

Theorem . Assume that B = (βkj)m×m is irreducible. For any h > , if R > , then there
exists a unique endemic equilibrium P∗ which is globally asymptotically stable.

Proof In this part, we show that the endemic equilibrium P∗ is globally asymptotically
stable when R > . The method is based on the graph-theoretical approach and Lyapunov
functions by Guo et al. [, ] and Li and Shuai [].

For convenience of notations, define

β̄kj = βkjS∗
k I∗

j ,  ≤ k, j ≤ m,

and


 =

⎛

⎜
⎜
⎜
⎜
⎝

∑m
l 	= β̄l –β̄ · · · –β̄m

–β̄
∑m

l 	= β̄l · · · –β̄m
...

...
. . .

...
–β̄m –β̄m · · · ∑m

l 	=m β̄ml

⎞

⎟
⎟
⎟
⎟
⎠

,

which is a Laplacian matrix whose column sums are zero. It follows from the assump-
tion B = (βkj)m×m is irreducible that the matrix 
 is also irreducible. By Lemma . in [],
the solution space of the linear system 
v =  has dimension  with a base (v, . . . , vm) =
(c, . . . , cmm), where ckk >  is the co-factor of the kth diagonal entry of 
. We construct
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the following Lyapunov function:

Ln =

h

m∑

k=

vk

{

Skn – S∗
k – S∗

k ln
Skn

S∗
k

+ Ekn – E∗
k – E∗

k ln
Ekn

E∗
k

+ h
m∑

j=

βkjS∗
k I∗

j ϕ

(
Ikn

I∗
j

)

+
dE

k + δk

δk

(

Ikn – I∗
k – I∗

k ln
Ikn

I∗
k

)

+ h
m∑

j=

βkjS∗
k I∗

j

n–∑

s=n–mj

ϕ

(
Ijs

I∗
j

)}

,

where ϕ(x) = x –  – ln x ≥  defined for all x > . Together with system () and equilibrium
condition () for P∗, then we have

Ln+ – Ln =

h

m∑

k=

vk

{

Skn+ – Skn + S∗
k ln

Skn

Skn+
+ Ekn+ – Ekn

+ E∗
k ln

Ekn

Ekn+
+

dE
k + δk

δk

(

Ikn+ – Ikn + I∗
k ln

Ikn

Ikn+

)

+ h
m∑

j=

βkjS∗
k I∗

j

[

ϕ

(
Ikn+

I∗
j

)

– ϕ

(
Ikn

I∗
j

)]

+ h
m∑

j=

βkjS∗
k I∗

j

[ n∑

s=n–mj+

ϕ

(
Ijs

I∗
j

)

–
n–∑

s=n–mj

ϕ

(
Ijs

I∗
j

)]}

≤ 
h

m∑

k=

vk

{(

 –
S∗

k
Skn+

)

(Skn+ – Skn )

+
(

 –
E∗

k
Ekn+

)

(Ekn+ – Ekn )

+
dE

k + δk

δk

(

 –
I∗

k
Ikn+

)

(Ikn+ – Ikn )

+ h
m∑

j=

βkjS∗
k I∗

j

[

ϕ

(
Ikn+

I∗
j

)

– ϕ

(
Ikn

I∗
j

)]

+ h
m∑

j=

βkjS∗
k I∗

j

[

ϕ

(
Ijn

I∗
j

)

– ϕ

( Ijn–mj

I∗
j

)]}

=
m∑

k=

vk

{(

 –
S∗

k
Skn+

)(

�k –
m∑

j=

βkjSkn+ Ijn–mj
– dS

k Skn+

)

+
(

 –
E∗

k
Ekn+

)( m∑

j=

βkjSkn+ Ijn–mj
–

(
dE

k + δk
)
Ekn+

)

+
(

 –
I∗

k
Ikn+

)
(
δkEk –

(
dI

k + γk
)
Ikn+

)

+
m∑

j=

βkjS∗
k I∗

j

[

ϕ

(
Ikn+

I∗
j

)

– ϕ

(
Ikn

I∗
j

)
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+ ϕ

(
Ijn

I∗
j

)

– ϕ

( Ijn–mj

I∗
j

)]}

=
m∑

k=

vk

{

dS
k S∗

k

(

 –
S∗

k
Skn+

–
Skn+

S∗
k

)

+
m∑

j=

βkjS∗
k I∗

j

(

 –
S∗

k
Skn+

–
E∗

k Skn+ Ijn–mj

Ekn+ S∗
k I∗

j
–

I∗
k Ekn+

Ikn+ E∗
k

+
Ijn

I∗
j

–
Ikn

I∗
k

+ ln
Ijn–mj

Ikn

Ijn Ikn+

)}

=
m∑

k=

vk

{

dS
k S∗

k

(

 –
S∗

k
Skn+

–
Skn+

S∗
k

)

+
m∑

j=

βkjS∗
k I∗

j

[

–ϕ

(
S∗

k
Skn+

)

– ϕ

(E∗
k Skn+ Ijn–mj

Ekn+ S∗
k I∗

j

)

– ϕ

(
I∗

k Ekn+

Ikn+ E∗
k

)

+
Ijn

I∗
j

–
Ikn

I∗
k

+ ln
I∗

j Ikn

Ijn I∗
k

]}

.

To proceed, we set

G =
m∑

k=

m∑

j=

vkβkjS∗
k I∗

j

(
Ijn

I∗
j

–
Ikn

I∗
k

)

, G =
m∑

k=

m∑

j=

vkβkjS∗
k I∗

j ln
I∗

j Ikn

Ijn I∗
k

.

We first show that G ≡  for all In , In , . . . , Imn > . It follows from the equality 
v =
 that

∑m
j= β̄jkvj =

∑m
i= β̄kivk which is equivalent to

∑m
j= βjkS∗

j I∗
k vj =

∑m
i= βkiS∗

k I∗
i vk , this

implies

m∑

k=

m∑

j=

vkβkjS∗
k Ijn =

m∑

k=

m∑

j=

vjβjkS∗
j Ikn =

m∑

k=

Ikn

I∗
k

m∑

j=

vjβjkS∗
j I∗

k

=
m∑

k=

Ikn

I∗
k

m∑

i=

vkβkiS∗
k I∗

i =
m∑

k=

m∑

j=

vkβkjS∗
k I∗

j
Ikn

I∗
k

,

and thus G = . Next we will show G =  by applying the idea developed in [–], one
can also refer to [, ] for details. Let G denote the directed graph associated with matrix
(β̄kj). G has vertices , , . . . , m with a directed arc (k, j) from k to j if and only if β̄kj 	= . E(G)
denotes the set of all directed arcs of G . It follows from Lemma . in [] that vk = ckk can
be interpreted as a sum of weights of all directed spanning subtrees T of G that are rooted
at vertex k. Consequently, each term in vkβ̄kj is the weight w(Q) of a unicyclic subgraph Q
of G obtained from such a tree T by adding a directed arc (k, j) from vertex k to vertex j.
Note that the arc (k, j) is a part of the unique cycle CQ of Q, and that the same unicyclic
graph Q can be formed when each arc of CQ is added to a corresponding rooted tree T .
Therefore, the double sum in G can be reorganized as a sum over all unicyclic subgraphs
Q containing vertices {, , . . . , m}. That is,

G =
∑

Q

Gn,Q,
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where

Gn,Q = w(Q) ·
∑

(k,j)∈E(CQ)

ln

( I∗
j

Ijn

Ikn

I∗
k

)

= w(Q) · ln

( ∏

(k,j)∈E(CQ)

I∗
j

Ijn

Ikn

I∗
k

)

,

since E(CQ) is the set of arcs of a cycle CQ, we have

∏

(k,j)∈E(CQ)

I∗
j

Ijn

Ikn

I∗
k

= , and thus ln

( ∏

(k,j)∈E(CQ)

I∗
j

Ijn

Ikn

I∗
k

)

= .

This implies that Gn,Q =  for each Q, and G ≡  for all In , In , . . . , Imn > . Notice that
S∗

k
Skn+

+ Skn+
S∗

k
≥ , the equality holds if and only if Skn = S∗

k , and ϕ(x) = x –  – ln x has global
minimum value ϕ() =  defined with all x > . Hence, we have Ln+ – Ln ≤ . Thus, Ln

is a monotone decreasing sequence. Due to Ln ≥ , there is a limit limn→∞ Ln ≥ , which
implies that limn→∞(Ln+ – Ln) = . Furthermore, similar to [, ], we can show that the
only compact invariant subset of {limn→∞(Ln+ – Ln) = } is the singleton {P∗}, which im-
plies that the endemic equilibrium P∗ is globally asymptotically stable. This completes the
proof. �

4 Numerical simulations
In this section, some numerical simulations are carried out to demonstrate our theoretical
results. To this end, we just need to simulate () for simplicity. We do simulations for
k = , . We select τ = , τ =  in the following simulations.

First, we set � = , � = , dS
 = ., dE

 = ., dI
 = ., δ = ., γ = ., dS

 = .,
dE

 = ., dI
 = ., δ = ., γ = ., β = ., β = ., β = ., β =

.. By calculating, we have R = . <  and P = (, , , , , ). It then fol-
lows from Figure  that P is globally asymptotically stable, which is consistent with The-
orem ..

Furthermore, when choosing the following parameter values: � = , � = , dS
 =

., dE
 = ., dI

 = ., δ = ., γ = ., dS
 = ., dE

 = ., dI
 = ., δ = ., γ = .,

β = ., β = ., β = ., β = ., it follows that R = . > 
and the unique endemic equilibrium P∗ = (., ., ., ., .,
.). It follows from Figure  that P∗ is globally asymptotically stable, which is consis-
tent with Theorem ..

5 Conclusions
In this paper, a discrete multi-group epidemic model with time delay has been constructed
by applying a nonstandard finite difference (NSFD) scheme to a class of continuous multi-
group model. The advantage of the NSFD scheme is that the global properties of the so-
lutions for the corresponding continuous model can be preserved. A crucial observation
regarding the advantage of the NSFD scheme is that the discrete model has equilibria
which are exactly the same as those of the original continuous model, and the conditions
for their stability are identical in case of both the continuous and discrete models. It is
shown that the global stability of the equilibria is completely determined by R: if R ≤ ,
then the disease-free equilibrium P is globally asymptotically stable; if R > , then the
infection equilibrium P∗ is globally asymptotically stable.
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Figure 1 Solution for system (5) with
R0 = 0.6391 < 1.

Our results show that the discretization scheme preserves the positivity and bounded-
ness of the solutions and the global stability of the equilibria for the corresponding contin-
uous model. Applying Mickens’s NSFD scheme to other types of discrete epidemic models
is our future work. For example, for a more reasonable model, a more general incidence
rate ϕ(S)f (I) (see []) should be taken into consideration, which induces the following
system by utilizing the NSFD scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Skn+ –Skn
h = �k –

∑m
j= βkjϕk(Skn+ )fj(Ijn–mj

) – dS
k Skn+ ,

Ekn+ –Ekn
h =

∑m
j= βkjϕk(Skn+ )fj(Ijn–mj

) – (dE
k + δk)Ekn+ ,

Ikn+ –Ikn
h = δkEkn+ – (dI

k + γk)Ikn+ ,
Rkn+ –Rkn

h = γkIkn+ – dR
k Rkn+ ,

()

where the functions ϕ(S) and f (I) satisfy some certain conditions (see []). The investi-
gation for model () with a more general incidence rate is much more difficult than this
manuscript, and it is under consideration.
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Figure 2 Solution for system (5) with
R0 = 4.4704 > 1.
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