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Abstract
We provide the numerical solution of a Volterra integro-differential equation of
parabolic type with memory term subject to initial boundary value conditions. Finite
difference method in combination with product trapezoidal integration rule is used
to discretize the equation in time and sinc-collocation method is employed in space.
A weakly singular kernel has been viewed as an important case in this study. The
convergence analysis has been discussed in detail, which shows that the approach
exponentially converges to the solution. Furthermore, numerical examples and
illustrations are presented to prove the validity of the suggested method.
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1 Introduction
We consider a Volterra integro-differential equation with memory term of the form

ut(x, t) =
∫ t


k(t – s)uxx(x, s) ds + f (x, t), x ∈ �, t ∈ J , ()

subjected to initial and boundary conditions

u(a, t) = u(b, t) = , t ∈ J ,

u(x, ) = u(x), x ∈ �,
()

where � = [a, b] ⊆ R and J = [, T]. Here ut = ∂u
∂t , uxx = ∂u

∂x , and k is a real-valued and
positive definite kernel, that is,

∫ T


ϕ(t)

∫ t


k(t – s)ϕ(s) ds dt ≥  ()

for all T >  and any continuous ϕ : [, T] −→ R, and f is a real-valued function. If k is a
smooth function on R

+, equation () is hyperbolic, whereas if k has a weak singularity at
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, such as k(t) = tβ–

�(β) ,  < β < , then it adopts a parabolic behavior [–]. With uxx = ∇u,
the evolution equation () is sometimes called a fractional wave equation [], because in
the limiting case where β = , after differentiation with respect to t, we obtain

utt(x, t) = ∇u(x, t) + f ′(x, t),

and as β → , we get the heat equation

ut(x, t) = ∇u(x, t) + f (x, t).

Modeling phenomena in viscoelasticity, biological models, chemical kinetics, heat con-
duction in materials with memory, population dynamics, fluid dynamics and nuclear re-
actor dynamics, mathematical biology, financial mathematics, compression of viscoelastic
media, and other similar areas are all done by partial integro-differential equations of type
(). See, for example, [] and the references therein. This problem governs many physical
systems occurring in diffusion problems as a particular case [].

To treat the partial integro-differential equations (PIDEs), a substantial number of meth-
ods have been applied. For example, the pseudo-spectral Legendre-Galerkin method for
solving a parabolic PIDE with convolution-type kernel was presented in []. Combina-
tion of radial basis functions and finite difference for solving nonlinear-type PIDEs with
smooth kernel containing an unknown function was considered in []. Also, a spectral
method was proposed in [] for the PIDEs with a weakly singular kernel.

The numerical solution of equation () with a weakly singular kernel was considered by
many authors, such as finite-element methods [, ], finite-difference methods [, ],
compact difference schemes [], spectral collocation methods [], orthogonal spline col-
location methods [], variational iteration and Adomian decomposition methods [],
radial basis functions methods [], and quasi-wavelet methods []. However, construc-
tion of precise numerical methods for integro-differential equations is still a challenge
owing to the weak singularity of the kernel k that contains sharp states of transitions in
the solution. This lack of smoothness of the solution near t =  results in a decay in the
order of the practical performance of familiar timestepping methods for equation (). For
instance, the trapezoidal rule with product integration of the quadrature term does not
produce expected O(�t) errors [].

The sinc approximation has been studied by many authors to solve various equations
such as integral equations [], ordinary differential equations [], partial differential
equations [–], integro-differential equations [], and so on, due to high accuracy,
exponential rate of convergence, and near optimality of this method []. With these back-
grounds, we extend the sinc-collocation method for solving partial integro-differential
equations of type ().

In this paper, the time discretization method to solve equation () is effected by a com-
bination of finite difference and quadrature. For this purpose, we apply the backward Eu-
ler method in addition to the product trapezoidal integration rule [] for the integral
term. Consequently, equation () is reduced to a system of ordinary differential equations
(ODEs), which is discretized with the sinc-collocation method. In addition, the accuracy
and efficiency of the suggested method is tested with some examples and illustrations.
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This paper is organized as follows. Section  provides some basic definitions, assump-
tions, and preliminaries of sinc approximation. In Section , we develop the sinc collo-
cation method to solve Volterra partial integro-differential equations. In Section , we
discuss the convergence analysis of the proposed method. Finally, in Section , numerical
examples are solved to verify the accuracy and efficiency of the proposed approach.

2 Preliminaries
The goal of this section is to recall notation and definitions of the sinc function and state
some known theorems important for the rest of this paper, which were discussed thor-
oughly in [, ].

The sinc method is basically defined on the real line. So, the sinc function is defined on
the whole real line by

sinc(z) =

⎧⎨
⎩

sin(πz)
πz , z �= ,

, z = ,

and the translated sinc functions with evenly spaced nodes are given as

S(j, h)(z) = sinc

(
z – jh

h

)
, j = ,±,±, . . . . ()

The sinc function at the interpolating points xk = kh is given by

S(j, h)(kh) = δ
()
jk =

⎧⎨
⎩

, k = j,

, k �= j.

They are based on the infinite strip Dd in the complex plane

Dd =
{

w = u + iv : |v| < d ≤ π



}
.

Let f be a function defined on R, and let h >  be the mesh size. Then the Whittaker
cardinal function is defined by the infinite series as follows:

C(f , h, x) =
∞∑

j=–∞
f (jh)S(j, h)(x).

However, in practice, the finite number of terms are used in this series such as j =
–N , . . . , N , where N +  is the number of sinc grid points. So,

C(f , h, x) ≈
N∑

j=–N

f (jh)S(j, h)(x),

where h is suitably selected depending on the properties of the function f and given pos-
itive integer N .
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To construct an approximation on the interval � = [a, b], we consider the conformal map

φ(z) = log

(
z – a
b – z

)
. ()

The map φ carries the eye-shaped region

DE =
{

z = x + iy :
∣∣∣∣arg

(
z – a
b – z

)∣∣∣∣ < d ≤ π



}

onto Dd such that φ(a) = –∞, φ(b) = ∞, where a, b are the boundary points of DE with
a, b ∈ ∂DE . For the sinc method on the interval � = [a, b], basis functions are derived from
the composite translated sinc functions

Sj(z) = S(j, h) ◦ (
φ(z)

)
= sinc

(
φ(z) – jh

h

)
, j = ,±,±, . . . .

The inverse map of w = φ(z) is

z = φ–(w) =
a + bew

 + ew .

Let ψ denote the inverse map of φ, so we define the range of φ– on the real line as

� =
{
ψ(u) = φ–(u) ∈ DE : –∞ < u < ∞}

= [a, b].

For h > , let the points xk on � be given by

xk = ψ(kh) =
a + bekh

 + ekh , k ∈ Z. ()

Definition  ([], p. ) Let B(DE) denote the class of functions f analytic in DE such
that, for some constant γ with  ≤ γ < ,

∫
ψ(u+

∑
)

∣∣f (z) dz
∣∣ = O

(|x|γ )
, u → ±∞,

where
∑

= {iη : |η| < d ≤ π
 }, and, for a simple closed contour δ in DE ,

N(f , DE) ≡ lim
δ→∂DE

∫
δ

∣∣f (z) dz
∣∣ < ∞,

where ∂DE represents the boundary of DE .

Definition  ([], p. ) By Lα(DE) we denote the set of all analytic functions f for which
there exists a constant, C such that

∣∣f (z)
∣∣ ≤ C

|ρ(z)|α
( + |ρ(z)|)α

, z ∈ DE,  < α ≤ , ()

where ρ(z) = eφ(z).
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The following theorem presents the convergence result on the approximation of deriva-
tives particularly useful for approximate solving some differential equations.

Theorem  ([], p. ) If φ′u ∈ B(DE) and

sup
–π
h ≤t≤ π

h

∣∣∣∣
(

d
dx

)l

eitφ(x)
∣∣∣∣ ≤ Ch–l, x ∈ �,

for l = , , . . . , m with a constant C depending only on m and φ. If u ∈ Lα(DE), then taking
h =

√
πd/αN it follows that

sup
x∈�

∣∣∣∣∣u(l)(x) –
(

d
dx

)l N∑
j=–N

u(xj)Sj(x)

∣∣∣∣∣ ≤ CN (l+)/exp
(
–(πdαN)/),

where C is a constant depending only on u, d, m, φ, and α.

The sinc-collocation method requires the derivatives of the composite sinc function to
be evaluated at the nodes. So, we need to recall the following lemma.

Lemma  ([], p. ) Let φ be the conformal one-to-one mapping of the simply connected
domain DE onto Dd given by (). Then

δ
()
jk =

[
S(j, h) ◦ φ(x)

]∣∣
x=xk

=

⎧⎨
⎩

, j = k,

, j �= k,
()

δ
()
jk = h

d
dφ

[
S(j, h) ◦ φ(x)

]∣∣∣∣
x=xk

=

⎧⎨
⎩

, j = k,
(–)k–j

k–j , j �= k,
()

δ
()
jk = h d

dφ

[
S(j, h) ◦ φ(x)

]∣∣∣∣
x=xk

=

⎧⎨
⎩

–π

 , j = k,
–(–)k–j

(k–j) , j �= k.
()

In equations ()-(), h is step size, and xk is the sinc grid given by ().

3 Description of the method
In this section, we give the sinc-collocation method for solving the partial integro-
differential equation with kernel k(t – s) = (t – s)–β :

ut(x, t) =
∫ t


(t – s)–βuxx(x, s) ds + f (x, t),  < x < , t ∈ J , ()

with boundary and initial conditions

u(, t) = u(, t) = ,  ≤ t ≤ T ,

u(x, ) = u(x),  ≤ x ≤ .
()

The parameter β shows the order of singularity at the point s = x, and we assume that
 < β < . Since the integral kernel has this kind of singularity, equation () is said to have
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a weakly singular kernel. First of all, a description of the spatial-temporal discretization
for this type of equations is provided in detail. The sinc-collocation algorithm is then de-
scribed for solving equation ().

3.1 Discretization in time
Now, the backward Euler method is applied for time derivatives in equation (). Let tn =
n�t with time step �t, un = u(x, tn), and f n = f (x, tn) for n = , , . . . , M, M = [ T

k ], k ∈N . By
substituting t = tn+ into the left-hand side of () for the first term, we have

ut(x, tn+) ≈ un+(x) – un(x)
�t

+ Rn+,,  < x < , n ≥ , ()

where Rn+, = O(�t) is the order of the backward Euler method. The integral term of ()
can be approximated by unusual quadrature approximation, that is, a kind of the product
trapezoidal integration rule [] as follows:

∫ tn+


(tn+ – s)–βuxx(x, s) ds =

n∑
l=

∫ tl+

tl

(tn+ – s)–βuxx(x, s) ds

≈
n∑

l=

∫ tl+

tl

(tn+ – s)–β

{
tl+ – s

�t
ul

xx(x) +
s – tl

�t
ul+

xx (x)
}

ds

≈ 
�t

n∑
l=

(
An,lul

xx(x) + Bn,lul+
xx (x)

)
+ Rn+,, ()

where Rn+, = O(�t–β ) is the order of the product trapezoidal integration rule, proved
by Dixon [], and

An,l =
∫ tl+

tl

(tn+ – s)–β (tl+ – s) ds,

Bn,l =
∫ tl+

tl

(tn+ – s)–β (s – tl) ds.
()

Substituting equations () and () into equation (), we get the temporal semi-discrete
form of () as follows:

un+(x) – Bn,nun+
xx (x) = �tf n+(x) + un(x) +

n∑
l=

ρn,lul
xx(x) + Rn+,

un+() = , un+() = ,

()

where

|Rn+| ≤ min
{|Rn+,|, |Rn+,|

}
,

and

ρn, = An,,

ρn,l = An,l + Bn,l–, l = , , . . . , n,
()
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and with additional initial condition

u(x) = u(x). ()

Ignoring the small error term Rn+, we arrive at the semidiscrete scheme

un+(x) – Bn,nun+
xx (x) = �tf n+(x) + un(x) +

n∑
l=

ρn,lul
xx(x),  < x < , n ≥ . ()

The scheme () is implicit because the integral term depends on un+ and is accurate of
order Rn+ = O(�t). In fact, we find that

u(x) – B,u
xx(x) = �tf (x) + u(x),

and, for n ≥ , by applying () at each step the right-hand side involves the solution at all
previous time levels. As a consequence, we have a linear ordinary differential equation in
the form () with boundary conditions () in each time level. Now, in each time level, we
can use the sinc-collocation method to estimate the solution of the linear boundary value
problem ()-().

3.2 Discretization in space: sinc-collocation method
We discretize the spatial direction by the described sinc-collocation method. Assume that
the approximate solution of () defined by

un
m(x) =

N∑
j=–N

cn
j S(j, h) ◦ φ(x), m = N + , ()

and

φ(x) = log

(
x

 – x

)
()

and that the unknown coefficients cn
j in () are determined by the sinc-collocation

method. The points in the sinc-collocation method are

xk =
ekh

 + ekh , k = –N , . . . , N , h =
√

πd
αN

, ()

so

d

dx un
m(x) =

N∑
j=–N

cn
j

d

dx

[
S(j, h) ◦ φ(x)

]

=
N∑

j=–N

cn
j
[
φ′′(x)S()

j (x) +
(
φ′(x)

)S()
j (x)

]
, ()

where

S(l)
j (x) =

d(l)

dφ(l)

[
S(j, h) ◦ φ(x)

]
, l = , . ()
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Thus, by Theorem ,

d

dx un
m(xi) =

N∑
j=–N

cn
j

[
φ′′(xi)

δ
()
ji

h
+

(
φ′(xi)

) δ
()
ji

h

]
. ()

By substituting () and () into () we have

N∑
j=–N

cn+
j δ

()
ji – Bn,n

N∑
j=–N

cn+
j

[
φ′′(xi)

δ
()
ji

h
+

(
φ′(xi)

) δ
()
ji

h

]

= �tf n+
i +

N∑
j=–N

cn
j δ

()
ji +

n∑
l=

N∑
j=–N

ρn,lcl
j

[
φ′′(xi)

δ
()
ji

h
+

(
φ′(xi)

) δ
()
ji

h

]
()

with additional initial condition

c
i = u(xi), i = –N , . . . , N . ()

Note that δ
()
ji = δ

()
ij , δ()

ji = –δ
()
ij , and δ

()
ji = δ

()
ij . We denote I(r) = [δ(r)

ij ], r = , , , where I() is
the identity matrix, and I() and I() are symmetric and skew-symmetric Toplitz matrices
of order N + , respectively. We define the (N + ) × (N + ) diagonal matrix as follows:

D
(
g(x)

)
ij =

⎧⎨
⎩

g(xi), i = j,

, i �= j.
()

By multiplying both sides of () by 
(φ′(xi)) we have


(φ′(xi)) cn+

i – Bn,n

N∑
j=–N

[(
–φ′′(xi)
(φ′(xi))

)
δ

()
ij

h
+


h δ

()
ij

]
cn+

j

=
�t

(φ′(xi)) f n+
i +


(φ′(xi)) cn

i +
n∑

l=

N∑
j=–N

ρn,l

[(
–φ′′(xi)
(φ′(xi))

)
δ

()
ij

h
+


h δ

()
ij

]
cl

j . ()

Therefore, system () can be written in a matrix form as

(
D

((

φ′

))
Cn+ – Bn,n

[

h

D
((


φ′

)′)
I() +


h I()

])
Cn+

= �tD
((


φ′

))
Fn+ + D

((

φ′

))
Cn

+
n∑

l=

ρn,l

[

h

D
((


φ′

)′)
I() +


h I()

]
Cl ()

or in a compact form as

PCn+ = R
(
�tFn+ + Cn) +

n∑
l=

ρn,lQCl, ()
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where

Q =

h

D
((


φ′

)′)
I() +


h I(),

R = D
((


φ′

))
,

P = R – Bn,nQ,

()

and

Cn+ =
(
cn+

–N , cn+
–N+, . . . , cn+

N
)t , Fn+ =

(
f n+
–N , f n+

–N+, . . . , f n+
N

)t . ()

If we set

Gn+ = R
(
�tFn+ + Cn) +

n∑
l=

ρn,lQCl, ()

then the system of equations can be written as follows:

PCn+ = Gn+ ()

with additional initial condition

C =
(
u(x–N ), u(x–N+), . . . , u(xN )

)t . ()

For each n, system () is a linear system of equations consisting of N +  equations and
N +  unknowns. The coefficients cn

j in the approximate solution () can be determined
by solving this linear system.

4 Convergence analysis
In this section, we consider the ODE (), and for simplicity, we can rewrite it as

un+(x) – Bn,n
d

dx

(
un+(x)

)
= g(x), ()

where

g(x) = �tf n+(x) + un(x) +
n∑

l=

ρn,l
d

dx

(
ul(x)

)
,

associated with boundary conditions

un+() = un+() = .

Let un+(x) be the exact solution of ODE (), that is, the solution of given equations ()-
() at time level (n + )th. Also, we assume that un+

m (x) is the approximate solution of
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equation () by using the sinc-collocation (). The computed solution of equations ()-
() at point xj can be obtained by

wn+
m (x) =

N∑
j=–N

un+(xj)Sj(x). ()

We need to derive an upper bound for ‖P–‖, which is given in the following lemma.

Lemma  Let the matrix P be defined by equation (). For x ∈ φ–((–∞,∞)), we can
obtain

P + P∗


= H –

Bn,n

h I(),

where (·)∗ denotes the conjugate transpose of a matrix, and

H = D
(

Re

((

φ′

)))
–

Bn,n

h

{
D

((

φ′

)′)
I() – I()D

((

φ′

)′)}
.

If the eigenvalues of matrix H are nonnegative, then there exists a constant c, independent
of N , such that

∥∥P–∥∥
 ≤ dN

απBn,n

(
 +

c

N

)
()

for a sufficiently large N .

Proof Let λi(·), i = , , . . . , N + , be the eigenvalues of a matrix ordered as λi(·) ≤ λi+(·),
and let σi be the singular values of the matrix P satisfying σi ≤ σi+. Note that the matrix
I() is a symmetric, negative definite Toeplitz matrix with bounded eigenvalues and matrix
I() is a skew-symmetric Toeplitz matrix with complex eigenvalues ([], p. -). From
([], p. , []) we have

σ(P) = min
≤i≤N+

σi(P) ≥ min
≤i≤N+

∣∣∣∣λi

(
P + P∗



)∣∣∣∣ = min
≤i≤N+

∣∣∣∣λi

(
H –

Bn,n

h I()
)∣∣∣∣

≥ Bn,n

h min
≤i≤N+

∣∣λi
(
I())∣∣ ≥ Bn,n

h sin
(

π

(N + )

)
,

and setting h =
√

πd/αN leads to

∥∥P–∥∥
 =


σ(P)

≤ h

Bn,nsin( π
(N+) )

≤ hN

πBn,n

(
 +

c

N

)
=

dN
απBn,n

(
 +

c

N

)
,

where Bn,n is given by equation (). �

The following theorem gives a bound for |un+
m (x) – wn+

m (x)|.
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Theorem  Let un+
m (x) be an approximate solution of equation (), and let wn+

m (x) be an
approximate solution of equations ()-(). Then, there exists a constant c, independent
of N , such that

sup
x∈�

∣∣un+
m (x) – wn+

m (x)
∣∣ ≤ cN exp

(
–(πdαN)/). ()

Proof By equations () and () and the Cauchy-Schwarz inequality we have

∣∣un+
m (x) – wn+

m (x)
∣∣ =

∣∣∣∣∣
N∑

j=–N

cn+
j Sj(x) –

N∑
j=–N

un+(xj)Sj(x)

∣∣∣∣∣

≤
( N∑

j=–N

∣∣cn+
j – un+(xj)

∣∣
) 


( N∑

j=–N

∣∣Sj(x)
∣∣

) 


.

Since (
∑N

j=–N |Sj(x)|) 
 ≤ c, where c is a constant independent of N , we get

∣∣un+
m (x) – wn+

m (x)
∣∣ ≤ c

∥∥Cn+ – V n+∥∥
, ()

where Cn+ is given by () and denoting the vector V n+ by

V n+ =
(
un+(x–N ), un+(x–N+), . . . , un+(xN )

)t . ()

Using equation () in (), we have

∥∥Cn+ – V n+∥∥
 =

∥∥P–(PCn+ – PV n+)∥∥
 ≤ ∥∥P–∥∥



∥∥PV n+ – Gn+∥∥
. ()

Now, we must get a bound for ‖PV n+ – Gn+‖. For simplicity, we denote

rk =
(
PV n+ – Gn+)

k , k = –N , . . . , N ,

and using equation (), we obtain

|rk| =
∣∣g(xk) – gm(xk)

∣∣

=
∣∣∣∣un+(xk) – Bn,n

d

dx

(
un+(xk)

)
– un+

m (xk) + Bn,n
d

dx

(
un+

m (xk)
)∣∣∣∣

≤ ∣∣un+(xk) – un+
m (xk)

∣∣ + Bn,n

∣∣∣∣ d

dx

(
un+(xk)

)
–

d

dx

(
un+

m (xk)
)∣∣∣∣. ()

Now, using Theorem , we obtain

‖rk‖ ≤ cN / exp
(
–(πdαN)/) + Bn,ncN/ exp

(
–(πdαN)/)

≤ exp
(
–(πdαN)/)(cN/ + Bn,ncN/)

= KN/ exp
(
–(πdαN)/), ()
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where c and c are constants independent of N , and K = c + Bn,nc. We know that

∥∥PV n+ – Gn+∥∥
 ≤ √

N + 
∥∥PV n+ – Gn+∥∥∞,

and using inequality (), we obtain

∥∥PV n+ – Gn+∥∥
 ≤ √

KN exp
(
–(πdαN)/). ()

Now, using Lemma  and inequality () in (), we have

∥∥Cn+ – V n+∥∥
 ≤ 

√
dK( + c)
απBn,n

N exp
(
–(πdαN)/). ()

So, from () and () we get

sup
x∈�

∣∣un+
m (x) – wn+

m (x)
∣∣ ≤ cN exp

(
–(πdαN)/),

where c = 
√

dK (+c)c
απBn,n

. �

Theorem  Let un+(x) be the exact solution of ODE (), and let un+
m (x) be its sinc ap-

proximation defined by Eq. (). Then, under the assumptions of Theorems  and , there
exists a constant c, independent of N , such that

sup
x∈�

∣∣un+(x) – un+
m (x)

∣∣ ≤ cN exp
(
–(πdαN)/). ()

Proof Applying the triangular inequality,

∣∣un+(x) – un+
m (x)

∣∣ ≤ ∣∣un+(x) – wn+
m (x)

∣∣ +
∣∣wn+

m (x) – un+
m (x)

∣∣. ()

After Applying Theorem , there exists a constant c independent of N such that

∣∣un+(x) – wn+
m (x)

∣∣ ≤ cN / exp
(
–(πdαN)/). ()

Also, using Theorem , we obtain

∣∣wn+
m (x) – un+

m (x)
∣∣ ≤ cN exp

(
–(πdαN)/), ()

where c is a constant independent of N . Finally, applying solutions to () and (), we
conclude

sup
x∈�

∣∣un+(x) – un+
m (x)

∣∣ ≤ cN exp
(
–(πdαN)/),

where c = max{c, c}. �

Remark We know that the time discretization is affected by a combination of the back-
ward Euler method and product trapezoidal integration rule with orders of accuracy
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O(�t) and O(�t–β ), respectively [–, , ]. Then, by applying () the truncation
error of the proposed approach for solution of equations ()-() can be written as fol-
lows:

∥∥u(x, t) – um(x, t)
∥∥∞ ≤ γ

(
Nexp

(
–(πdαN)/) + �t

)
,

where γ is a constant independent of N .

5 Numerical results
In this section, we provide numerical experiments of the suggested method. In all exam-
ples, we set the parameters d = π

 and α =  and denote the computational solution and
exact analytical solution by uapp and uex, respectively. The error estimation is given to show
the accuracy of approximation, and the following maximum pointwise error between the
exact and approximate solution is given:

‖ · ‖∞ = Max
i,n

∣∣uapp(xi, tn) – uex(xi, tn)
∣∣, i = –N , . . . , N , n = , , . . . , M.

To implement the method, the following algorithm is given.
The linear algebraic system in step  of Algorithm  is solved directly by using ‘linsolve’

command from ‘LinearAlgebra’ package in Matlab Ra software, and to overcome the
ill-conditioning faced in this problem, we used the following Tikhonov regularization [],
which states that ‘solve the system Ax = b by replacing minx∈Rn ‖AX – b‖ by the least
square problem minx∈Rn{‖AX – b‖

 + μ‖X‖
}’. All the calculations were supported by In-

tel CORE Dual-Core at . GHz CPU with  GB RAM.

Algorithm  Implementation of the proposed approach
: Input M, N , n, u(x), f (x, t), uex(x, t),
: Set xi := eih

+eih , i = –N , . . . , N ,
: Set tj := j�t, j = , , . . . , n,
: Compute uex(xi, tj),
: Compute uapp(xi, tj) as follows:
: Set uapp(xi, t) := C, i = –N , . . . , N , based on Eq. ()

for j =  : n –  do
for i = –N : N do

uapp(xi, tj+) := Cj+ by applying Eqs. (), (), and ()
error(xi, tj) := |uex(xi, tj) – uapp(xi, tj)|,

end do
end do

: Print MaxError := max(error(xi, tj)), i = –N , . . . , N , j = , , . . . , n.
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Example  Consider the following homogenous Volterra partial integro-differential
equation []:

ut(x, t) =
∫ t


(t – s)–/uxx(x, s) ds,  < x < ,  < t < ,

u(, t) = u(, t) = ,  ≤ t ≤ ,

u(x, ) = sin(πx),  ≤ x ≤ ,

with analytic solution [, ]

u(x, t) =
∞∑

k=

(–)k�

(



k + 
)–(

π/t/)k
sin(πx).

To evaluate the analytic solution practically at a specific point, we truncate this infinite
series by the term k = . In Table , the outcomes of the three-point explicit method
(TPEM), three-point implicit method (TPIM), Crank-Nicolson method (CNM), Crandall
method (CM) (see []) with �t = – are presented in order to compare with the sinc-
collocation method solving the arising system solved by the Linsolve package (SMLP) and
the sinc-collocation method solving the arising system by the Tikhonov regularization
(SMTR) with �t = –, �t = –, and �t = –. In Figure  and Figure , we can also
observe that the computational solution is highly consistent with the truncated analytical
solution when �t is selected small enough. Furthermore, in Table , the maximum point-
wise errors and condition numbers for various values of N at t = ., �t = –, and T = 
for SMLP and SMTR are reported, which shows the improved rate of convergence when
the number of sinc points increases. Also, the global maximum pointwise errors at N = 
and �t = – are plotted in Figure (a) for SMLP and in Figure (b) for SMTR in order
to compare with the thin plate spline-radial basis function method (TPS-RBF), inverse
multiquadric-radial basis function method (IMQ-RBF), and hyperbolic secant-radial ba-
sis function method (Sech-RBF) (see []) with �t = – at N = . These figures show
that our method achieved more accurate results with less data grid points. Convergence
curves of Table  are plotted in Figure . This figure indicates that the maximum errors
decline at an exponential rate with respect to N for both SMLP and SMTR, and these
graphs confirm the theoretical results.

Example  Consider the following nonhomogenous Volterra partial integro-differential
equation [, ]:

ut(x, t) =
∫ t


(t – s)–/uxx(x, s) ds + f (x, t),  < x < ,  < t < ,

u(, t) = u(, t) = ,  ≤ t ≤ ,

u(x, ) = sin(πx),  ≤ x ≤ .

In the case of

f (x, t) =
t/
√

π

(
π sinπx – sin πx

)
– πt sin πx,
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Figure 1 Truncated analytic and computed solutions of Example 1 with N = 4 at t = 1 by using the
Linsolve package.

Figure 2 Truncated analytic and computed solutions of Example 1 with N = 4 at t = 1 by using
Tikhonov regularization.

Table 2 Results for Example 1 at t = 0.01

N SMLP SMTR Cond(P) = ‖P‖‖P–1‖
4 1.10× 10–2 8.27× 10–3 4.61× 102

8 2.85× 10–3 7.94× 10–4 6.71× 103

16 4.68× 10–4 9.32× 10–5 3.88× 104

32 9.75× 10–5 4.71× 10–5 1.30× 105

the analytic solution is given by u(x, t) = sinπx – t/


√

π
sin πx. We apply our presented

methods SMLP and SMTR to this example for comparison with the quasi-wavelet method
(QWM) []. We used N =  and �t = –, –. The global maximum pointwise errors
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Figure 3 The global maximum pointwise errors at N = 4 and �t = 10–3 (a) by using the Linsolve
package, (b) by using of Tikhonov regularization.

Figure 4 Convergence of the SMLP and SMTR methods for various values of N at t = 0.01, �t = 10–4,
and T = 1.

Table 3 Results for Example 2

n �t = 10–5 �t = 10–6

QWM SMLP SMTR QWM SMLP SMTR

50 4.9343e–004 5.1621e–005 7.5561e–006 1.5630e–005 9.8142e–006 2.7356e–006
150 2.5228e–003 2.9006e–004 8.6902e–005 8.0470e–005 9.8142e–006 2.9441e–006
250 5.3616e–003 6.4177e–004 1.1924e–004 1.7272e–004 2.0303e–005 9.1242e–006
350 8.7631e–003 1.0796e–003 6.6327e–004 2.8572e–004 3.4165e–005 1.5836e–005
450 1.2588e–002 1.5898e–003 1.1745e–004 4.1611e–004 5.0328e–005 2.3042e–005

in the solutions have been computed for th, th, th, th, and th time levels
and tabulated in Table , which shows that the sinc method in comparison with QWM
is considerably accurate. The analytic and exact solutions are compared in Figure  for
N =  and �t = – by using the SMLP. In addition, the maximum pointwise errors in
the solution by SMLP and SMTR in Table  are plotted in Figure  and Figure .
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Figure 5 Analytic and computed solutions of Example 2 with �t = 10–6 and N = 32 by using the
Linsolve package.

Figure 6 The global maximum pointwise errors at N = 32 and �t = 10–6 (a) by using the Linsolve
package, (b) by using Tikhonov regularization.

Figure 7 The global maximum pointwise errors for N = 32 at t = 0.00045, �t = 10–6, and T = 1 (a) by
using the SMLP method, (b) by using the SMTR method.

Example  Consider equation () in the nonhomogenous form when k(t – s) = (π (t –
s))– 

 ,  ≤ x ≤ ,  ≤ t ≤ , u(x) = sin(πx), and f (x, t) = sin(πx). Thus, the analytical solu-
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Table 4 Results for Example 3

N �t = 10–5 �t = 10–6 �t = 10–7

SMLP SMTR SMLP SMTR SMLP SMTR

8 2.75× 10–3 8.52× 10–4 1.05× 10–3 8.28× 10–4 3.57× 10–6 9.81× 10–7

2.83× 10–3 8.94× 10–4 2.58× 10–3 8.41× 10–4 1.65× 10–4 7.34× 10–6

2.87× 10–3 9.86× 10–4 2.61× 10–3 9.73× 10–4 4.35× 10–4 6.52× 10–5

2.88× 10–3 9.71× 10–3 2.61× 10–3 8.84× 10–3 6.13× 10–4 1.41× 10–4

16 2.75× 10–4 7.32× 10–5 2.63× 10–4 7.28× 10–5 9.00× 10–5 6.87× 10–7

2.92× 10–4 6.54× 10–5 2.66× 10–4 1.79× 10–5 2.56× 10–4 5.62× 10–6

6.45× 10–4 8.30× 10–5 2.67× 10–4 5.48× 10–5 2.61× 10–4 6.42× 10–6

1.08× 10–3 9.24× 10–5 2.67× 10–4 6.74× 10–5 2.61× 10–4 7.83× 10–6

32 5.28× 10–5 9.12× 10–6 9.81× 10–6 5.41× 10–6 8.66× 10–6 1.19× 10–7

2.92× 10–4 4.37× 10–5 9.81× 10–6 4.09× 10–6 8.66× 10–6 4.72× 10–7

6.45× 10–4 5.83× 10–5 2.04× 10–5 6.49× 10–6 8.66× 10–6 7.28× 10–7

1.08× 10–3 7.34× 10–5 3.43× 10–5 8.51× 10–6 8.66× 10–6 8.63× 10–7

64 5.28× 10–5 3.41× 10–6 1.67× 10–6 9.86× 10–7 6.11× 10–8 7.53× 10–8

2.92× 10–4 1.92× 10–5 9.24× 10–6 5.17× 10–6 2.28× 10–7 8.91× 10–8

6.45× 10–4 4.56× 10–5 2.04× 10–5 6.84× 10–6 6.45× 10–7 9.52× 10–8

1.08× 10–3 5.37× 10–5 3.43× 10–5 7.13× 10–6 9.44× 10–7 1.54× 10–7

Figure 8 Truncated analytic and computed solutions of Example 3 with �t = 0.00001 and N = 16 by
using the Linsolve package.

tion is given by []

u(x, t) =

{ ∞∑
k=

(–)k (πt/)k

�( + 
 k)

+ t
∞∑

k=

(–)k (πt/)k

�( + 
 k)

}
sin(πx).

To evaluate the analytic solution practically at a specific point, the infinite series given
above is truncated by the term k = . In Table , we show the results of the th, th,
th, and th time levels of the three different grid sizes �t = –, �t = –, and
�t = – for SMLP and SMTR methods when N = , , , , which verify that the sinc
method is accurate enough. Besides, we can also see in Figure  that the computational
solution is consistent with the truncated analytical solution. In addition, the maximum
pointwise errors in the solution by SMLP and SMTR in Table  are plotted in Figure  and
Figure .
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Figure 9 The global maximum pointwise errors at N = 16 and �t = 10–5 (a) by using the Linsolve
package, (b) by using Tikhonov regularization.

Figure 10 The global maximum pointwise errors for N = 16 at t = 0.0035, �t = 10–5, and T = 1 (a) by
using the Linsolve package, (b) by using Tikhonov regularization.

6 Conclusions
In this paper, the sinc-collocation method was applied to solve linear Volterra partial
integro-differential equations by using the Linsolve package and Tikhonov regularization
methods for a final ill-conditioned system. To illustrate the effectiveness of the method,
some examples were solved based on the proposed algorithm. Also, the convergence of
the method was given. The results show that the proposed method is practically reliable
and consistent in comparison with other mentioned methods, and using the Tikhonov
regularization method for solving the final ill-conditioned algebraic system, the rate of
convergence improved.
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