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Abstract
In this paper, we consider the nonergodic Ornstein-Uhlenbeck process

X0 = 0, dXt = θXt dt + dBa,bt , t ≥ 0,

driven by the weighted fractional Brownian motion Ba,bt with parameter a and b. Our
goal is to estimate the unknown parameter θ > 0 based on the discrete observations
of the process. We construct two estimators θ̂n and θ̌n of θ and show their strong
consistency and the rate consistency.
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1 Introduction
The fractional Brownian motion (fBm for short) has already been widely applied in hydrol-
ogy, traffic volume prediction, estimation of Hurst exponent of seismic signal, finance, and
various other areas due to its properties such as long-range dependence, self-similarity,
and stationarity of its increments. However, fBm is not sufficient for some random phe-
nomena, so many researchers have chosen more general stochastic processes to construct
stochastic models. For instance, Azzaoui and Clavier [] studied impulse response of the
-Ghz channel by using α-stable processes. Lin and Lin [] studied pricing debt value
in stochastic interest rate by using Lévy processes. Meanwhile, the weighted fractional
Brownian motion (wfBm), which is a kind of generalizations of the fBm, can be also used
for modeling.

We recall that the wfBm Ba,b
t with parameters (a, b) such that a > –, |b| < , and |b| <

a +  and long/short-range dependence is a centered self-similar Gaussian process with
covariance function

Ra,b(t, s) := E
[
Ba,b

t Ba,b
s

]
=

∫ s∧t


ua[(t – u)b + (s – u)b]du, s, t ≥ . ()
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Obviously, when a = b = , Ba,b
t is the standard Brownian motion Bt . When a = , we have

E
[
Ba,b

t Ba,b
s

]
=


b + 

[
tb+ + sb+ – |s – t|b+],

which is the covariance function of the fBm with Hurst index b+
 when – < b < . There-

fore, the wfBm is an extension of the fBm. The wfBm has some applications in various
areas. It is known that the process Ba,b

t introduced in Bojdecki et al. [] is neither a semi-
martingale nor a Markov process unless a =  and b = , so many useful technical tools
of stochastic analysis are ineffective when researchers deal with Ba,b

t . More studies on the
wfBm can be found in Bojdecki et al. [, ], Garzón [], Shen, Yan, and Cui [], Yan, Wang,
and Jing [], and the references therein.

Kleptsyna and LeBreton [] first studied the maximum likelihood estimator (MLE) of the
fractional Ornstein-Uhlenbeck (fOU) process Xt and proved the convergence of the MLE.
Hu and Nualart [] studied the drift parameter estimation by a least squares approach
and obtained the consistency and the asymptotic properties of the estimator based on
continuous observations {Xt , t ∈ [, T]}. In the ergodic case, Azmoodeh and Morlanes [],
Azmoodeh and Viitasaari [], Hu and Song [], and Jiang and Dong [] studied the
statistical inference for several models. In addition, Belfadli, Es-Sebaiy, and Ouknine [],
El Machkouri, Es-Sebaiy, and Ouknine [], Es-Sebaiy and Ndiaye [], Shen, Yin, and Yan
[] studied the parameter estimation in the nonergodic case for fOU processes. Liu and
Song [] considered minimum distance estimation for fOU processes. Xiao et al. []
considered the fOU processes with discretization procedure of an integral transform.

Thus, motivated by all these studies, the present paper is concerned with the parameter
estimation problem for nonergodic O-U process driven by the wfBm

X = , dXt = θXt dt + dBa,b
t , t ≥ , ()

where θ >  is an unknown parameter. Hu and Nualart [] used the LSE technique to
define the estimation of the unknown parameter as follows:

θ̂t =
∫ t

 Xs dXs
∫ t

 X
s ds

, ()

where the integral
∫ t

 Xs dXs is interpreted in the Young sense (see Young []). In fact,
when θ̂t =

∫ t
 Xs dXs∫ t
 X

s ds
, the quadratic function of θ

∫ t


|Ẋs – θXs| ds =

∫ t


Ẋ

s ds – θ

∫ t


Xs dXs + θ

∫ t


X

s ds

has minimum.
Note that ElOnsy, Es-Sebaiy. and Ndiaye [] studied the parameter estimation for non-

ergodic fOU processes of the second kind with discrete observations. They proved the
strong consistency of the estimators and obtained the rate consistency of those estima-
tors. In this paper, we study parameter estimation problems for nonergodic OU processes
driven by the weighted fractional Brownian motion with discrete observations. We con-
struct two estimators, then prove the consistency of the estimators and get their rate con-
sistency. By comparing ElOnsy, Es-Sebaiy, and Ndiaye [] with our paper, we obtain both



Cheng et al. Advances in Difference Equations  (2017) 2017:366 Page 3 of 16

the consistency of the estimators and their rate consistency. However, there is some dif-
ference of the processes we study.

From a practical standpoint, it is more realistic and amusing to consider asymptotic
properties of the estimator based on discrete observations of Xt . We suppose that an
Ornstein-Uhlenbeck process Xt is observed in equidistant times with step size �n : t =
�n, t = �n, . . . , tn = Tn = n�n, where we denote by Tn the length of the ‘observation win-
dow.’ The goal is to construct two estimators for θ that converge at rate

√
n�n based on

the observational data Xti , i = , , . . . , n.
Since

∫ t
 Xs dXs is a Young integral (pathwise sense), we have

∫ t
 Xs dXs = 

 X
t , Thus, we

obtain

θ̃Tn =
∫ Tn

 Xs dXs
∫ Tn

 X
s ds

=
X

Tn


∫ Tn

 X
s ds

. ()

In the following, we construct two different discrete version estimators of θ̃Tn . In (), let
us replace

∫ Tn
 Xs dXs by

∑n
i= Xti– (Xti – Xti– ) and

∫ Tn
 X

s ds by �n
∑n

i= X
ti–

.
Then the estimators of θ are as follows:

θ̂n =
∑n

i= Xti– (Xti – Xti– )
�n

∑n
i= X

ti–

()

and

θ̌n =
X

Tn

�n
∑n

i= X
ti–

. ()

Denote Sn = �n
∑n

i= X
ti–

. Then () and () can be rewritten respectively as

θ̂n =
∑n

i= Xti– (Xti – Xti– )
Sn

()

and

θ̌n =
X

Tn

Sn
. ()

The paper is organized as follows. In Section , some preliminaries for the wfBm Ba,b
t

and main lemmas are provided. In Section  the strong consistency of θ̂n and θ̌n are proved.
In Section , we show the rate consistency of θ̂n and θ̌n. Finally, we make simulations to
show the performance of two estimators θ̂n and θ̌n.

2 Preliminaries and main lemmas
Let Ba,b

t be a wfBm defined on a complete probability space (�,F , P) with parameters a, b
(a > –,  < b < , b < a + ). It is possible for researchers to construct a variety of stochastic
calculus with respect to the wfBm Ba,b

t associated with the Malliavin calculus. More studies
and references can be found in Nualart [] and the references therein. Here, we need to
review the basic concepts and some results of the Malliavin calculus.

The crucial ingredient is the canonical Hilbert space H (also called the reproducing
kernel Hilbert space) associated with the wfBm Ba,b

t defined as the closure of the linear
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space E generated by the indicator functions {[,t], t ∈ [, T]} with respect to the scalar
product

〈[,t], [,s]〉H = Ra,b(t, s).

The mapping E 	 ϕ 
→ Ba,b(ϕ) =
∫ T

 ϕ(s) dBa,b
s (Ba,b(ϕ) is a Gaussian process on H, and

E[Ba,b(ϕ)Ba,b(ψ)] = 〈ϕ,ψ〉H for all ϕ,ψ ∈H) is an isometry from the space E to the Gaus-
sian space generated by the wfBm Ba,b

t , and it can be extended to the Hilbert space H.
We can find a linear space of functions contained in H in the following way. Let |H| be

the linear space of measurable functions ϕ on [, T] such that

‖ϕ‖
|H| :=

∫ T



∫ T



∣∣ϕ(s)
∣∣∣∣ϕ(r)

∣∣φ(s, r) ds dr < ∞ ()

with φ(s, r) = b(s ∧ r)a(s ∨ r – s ∧ r)b–.
It can be proved that (|H|, 〈·, ·〉|H|) is a Banach space (see Shen et al. [] and Pipiras and

Taqqu []. Moreover,

L([, T]
) ⊂ L


+a+b ⊂ |H| ⊂H.

Furthermore, for all ϕ,φ ∈ |H| (see Shen et al. []),

E
(∫ T


ϕs dBa,b

s

∫ T


φs dBa,b

s

)

= b
∫ T



∫ T


ϕuφv(u ∧ v)a(u ∨ v – u ∧ v)b– du dv. ()

For every n ≥ , we denote by Hn the nth Wiener chaos of Ba,b
t . Namely, Hn is the closed

linear subspace of L(�) generated by the random variables {Hn(Ba,b
t (f )), f ∈H,‖f ‖H = },

where Hn is the nth Hermite polynomial. The mapping In(h⊗n) = n!Hn(Ba,b
t (f )) gives a lin-

ear isometry between the symmetric tensor product H�n and Hn, where the symmetric
tensor product H�n is equipped with the modified norm ‖ · ‖H�n = √

n!‖ · ‖H⊗n , where
H⊗n denotes the tensor product, h⊗n ∈ H⊗n. For every f , g ∈ H�n, we have the following
formula:

E
(
In(f )In(g)

)
= n!〈f , g〉H⊗n ,

where In(f ) is the multiple stochastic integral of a function f . It has the following property:

(
E
[∣∣Iq(f )

∣
∣p]) 

p ≤ Cp,q
(
E
[∣∣Iq(f )

∣
∣]) 

 for any p ≥ .

Naturally, for any F ∈ ⊕q
i=Hi, we have

(
E|F|p) 

p ≤ Cp,q
(
E|F|) 

 for any p ≥ . ()

To prove the consistency of the estimators θ̂n and θ̌n, we will use the following lemmas.
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Lemma  (Kloeden and Neuenkirch []) Let γ >  and P ∈ N. Moreover, let {Zn}n∈N

be a sequence of random variables. Suppose that, for every p ≥ p, there exists a constant
cp >  such that, for all n ∈ N,

(
E|Zn|p

) 
p ≤ cp · n–γ .

Then, for all ε > , there exists a random variable ηε such that, for any n ∈ N,

|Zn| ≤ ηε · n–r+ε a.s.

Moreover, E|ηε|p < ∞ for all p ≥ .

Lemma  Assume that – < a < ,  < b < a + , a + b > , and �n →  and Tn → ∞ as
n → ∞. Then, for any α > ,

e–θTn Sn =
�n

eθ�n – 
η

tn– + o
(
nα�

a+b–


n e–θTn
)

almost surely. ()

Moreover, if n�
+β
n → ∞ for some β >  as n → ∞, then

e–θTn Sn =
�n

eθ�n – 
η

tn– + o() almost surely. ()

In particular, as n → ∞,

e–θTn Sn → η∞
θ

almost surely, ()

where η∞ :=
∫ ∞

 e–θs dBa,b
s . Small o-notation o(•) is defined as an infinitesimal of higher

order of •.

Proof First, it is easy to get the solution of SDE ():

Xt = eθ t
∫ t


e–θs dBa,b

s . ()

Denote

ηt =
∫ t


e–θs dBa,b

s , t > .

Then

Xt = eθ tηt . ()

Applying (), we have

Sn = �n

n∑

i=

X
ti–

= �n

n∑

i=

eθ (i–)�nη
ti–

.
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Next, we need to deal with the term e–θTn Sn:

e–θTn Sn = �ne–θTn
n∑

i=

eθ (i–)�nη
ti–

=
�n

eθ�n – 

n∑

i=

eθ (i–n)�n eθ�n – 
eθ�n

η
ti–

=
�n

eθ�n – 

n∑

i=

eθ (i–n)�n
(
 – e–θ�n

)
η

ti–

=
�n

eθ�n – 

n∑

i=

[
eθ (i–n)�n – eθ (i––n)�n

]
η

ti–

=
�n

eθ�n – 

[

η
tn– –

n–∑

i=

(
η

ti
– η

ti–

)
eθ (i–n)�n

]

.

Hence,

e–θTn Sn –
�n

eθ�n – 
η

tn– = –
�n

eθ�n – 

[ n–∑

i=

(
η

ti
– η

ti–

)
eθ (i–n)�n

]

.

Because eθ�n –  = θ�n + o(�n), we have

e–θTn Sn –
�n

eθ�n – 
η

tn– = –


θ + o(�n)
�n

Fn, ()

where Fn :=
∑n–

i= (η
ti

– η
ti–

)eθ (i–n)�n . From the equality

√
�neθTn Fn =

√
�n

n–∑

i=

eθ i�n eθ (i–n)�n
(
η

ti
– η

ti–

)
,

applying the Minkowski inequality, we have

(
E
∣∣
√

�neθTn Fn
∣∣) 

 ≤ √
�n

n–∑

i=

eθ i�n eθ (i–n)�n
[
E
(
η

ti
– η

ti–

)] 
 . ()

By the Cauchy-Schwarz inequality we can rewrite () as

(
E
∣∣
√

�neθTn Fn
∣∣) 



≤ 
√

�n
(
Eη

∞
) 


n–∑

i=

eθ i�n eθ (i–n)�n
[
E(ηti – ηti– )] 



= 
√


√

�n
(
Eη

∞
) 


n–∑

i=

eθ i�n eθ (i–n)�n
[
E(ηti – ηti– )] 



= 
√


√

�n

[
b

aθ +a+b ( + a)(b)
] 

 n–∑

i=

eθ i�n eθ (i–n)�n
[
E(ηti – ηti– )] 

 .
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According to (), we can calculate

[
E(ηti – ηti– )]

= E
(∫ ti

ti–

e–θs dBa,b
s

)

= b
∫ ti

ti–

∫ ti

ti–

e–θse–θr(s ∧ r)a(s ∨ r – s ∧ r)b– ds dr.

Letting s = (u + i – )�n and r = (v + i – )�n (i = , , , . . . , n), we have

[
E
(
eθ i�n (ηti – ηti– )

)]

= b�a+b+
n eθ�n

∫ 



∫ 


e–θu�n e–θv�n

(
(u + i – ) ∧ (v + i – )

)a

× (
(u ∨ v) – (u ∧ v)

)b– du dv

≤ b�a+b+
n eθ�n

∫ 



∫ 



(
(u + i – ) ∧ (v + i – )

)a

× (
(u ∨ v) – (u ∧ v)

)b– du dv

= b�a+b+
n eθ�n

∫ 



∫ 

v
(v + i – )a(u – v)b– du dv

≤ b�a+b+
n eθ�n

∫ 



∫ 

v
va(u – v)b– du dv

= �a+b+
n eθ�n

∫ 


va( – v)b dv

= �a+b+
n eθ�n B(a + , b + )

:= M�a+b+
n eθ�n , ()

where M = B(a + , b + ). Hence,

(
E
∣
∣
√

�neθTn Fn
∣
∣) 



≤ 
√

M
(
Eη

∞
) 

 �
a+b

 +
n eθ�n

n–∑

i=

eθ (i–n)�n

= 
√

M
(
Eη

∞
) 

 �
a+b

 +
n eθ (–n)�n

n–∑

i=

eiθ�n

= 
√

M
(
Eη

∞
) 

 �
a+b

 +
n

 – eθ (–n)�n

 – e–θ�n

≤ 
√

M
(
Eη

∞
) 

 �
a+b

 +
n


 – e–θ�n

≤ 
√

M
(
Eη

∞
) 

 �n

 – e–θ�n
�

a+b


n

≤ c(a, b, θ )�
a+b


n , ()
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where c(a, b, θ ) is a positive constant depending on a, b, θ , and its value may be different
in different cases. Therefore, for any α > ,

[
E
∣
∣n–α�

–(a+b)


n eθTn Fn
∣
∣] 

 ≤ c(a, b, θ )n–α .

According to () and Lemma , there exists a random variable Xα such that

∣
∣n–α�

–(a+b)


n eθTn Fn
∣
∣ ≤ |Xα|n– α

 a.s. ()

for all n ∈ N . Moreover, [E|Xα|p] < ∞ for all p ≥ . Therefore equality () is satisfied.
For the convergence (), we assume that n�

+β
n → ∞ for some β >  as n → ∞. Then

(
n�+β

n
) α+–(a+b)

β → ∞.

Note that T
α+ α+–(a+b)

β
n e–θTn →  as n → ∞ and

nα�
a+b–


n e–θTn =

T
α+ α+–(a+b)

β
n e–θTn

(n�
+β
n )

α+–(a+b)
β

.

Hence, using (), we get the convergence ().
For the convergence (), note that �n

eθ�n – → θ as n → ∞, and using ηt → η∞ :=
∫ ∞

 e–θs dBa,b
s as t → ∞, we can easily obtain it by (). �

3 Establishment and strong consistency of the estimators
In this section, we construct two estimators θ̂n and θ̌n and prove the strong consistency.

Using ti = i�n (i = , , . . . , n) and (), we have

Xti– = eθ ti–ηti– ()

and

Xti = eθ tiηti . ()

Applying () and (), we can write the estimator θ̂n in () as

θ̂n =
∑n

i= eθ tiηti Xti– –
∑n

i= X
ti–

Sn

=
∑n

i= eθ ti (ηti – ηti– )Xti– + (
∑n

i= eθ tiηti– Xti– –
∑n

i= X
ti–

)
Sn

=
∑n

i= eθ ti (ηti – ηti– )Xti– + (eθ�n – )
∑n

i= X
ti–

Sn

=
Gn

Sn
+

eθ�n – 
�n

, ()

where Gn :=
∑n

i= eθ ti (ηti – ηti– )Xti– .
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Substituting () into (), we can write the other estimator θ̌n of θ as

θ̌n =
eθTnη

Tn

Sn
=

η
Tn

e–θTn Sn
. ()

Theorem  Let – < a < ,  < b < a + , a + b > . Assume that θ >  and that �n →  and
n�

+β
n → ∞ for some β >  as n → ∞. Then

θ̂n → θ a.s. ()

and

θ̌n → θ a.s. ()

Proof To prove (), we need to show that Gn
Sn

→  a.s. as n → ∞.
According to (), it suffices to show that

e–θTn Gn →  a.s., n → ∞. ()

By the Minkowski inequality and () we have

(
E
∣
∣e–θTn Gn

∣
∣) 



= e–θTn

{

E

[ n∑

i=

eθ ti (ηti – ηti– )Xti–

]} 


≤ e–θTn
n∑

i=

eθ i�n
(
EX

ti–

) 

[
E(ηti – ηti– )] 



≤ e–θTn
√

M�
a+b+


n eθ�n

n∑

i=

(
EX

ti–

) 
 v

≤ √
Meθ�n

(
Eη

∞
) 

 �
a+b+


n e–θTn

n∑

i=

eθ (i–)�n

=
√

Meθ�n
(
Eη

∞
) 

 �
a+b+


n e–θTn  – eθTn

 – eθ�n

≤ √
Meθ�n

(
Eη

∞
) 

 �
a+b+


n e–θTn  – e–θTn

eθ�n – 

≤ √
Meθ�n

(
Eη

∞
) 

 �
a+b+


n e–θTn 

eθ�n – 

≤ c(a, b, θ )�
a+b–


n e–θTn . ()

Noting that �
a+b–


n e–θTn = o(n–α), α > , as n → ∞, we have that, for any γ > ,

�
a+b–


n e–θTn = n–α–γ ,
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and thus () can be written as follows:

(
E
∣
∣e–θTn Gn

∣
∣) 

 ≤ c(a, b, θ )n–α–γ .

By () and Lemma  there exists a random variable Xα such that

∣∣e–θTn Gn
∣∣ ≤ |Xα|n–α a.s.

for all n ∈ N . Moreover, [E|Xα|p] < ∞ for all p ≥ . Hence, the convergence () is satisfied.
Observe that eθ�n –

�n
→ θ as n → ∞, and then the convergence () is proved.

Now, it remains to show that the convergence () is satisfied.
Since ηt → η∞ :=

∫ ∞
 e–θs dBa,b

s a.s. as t → ∞, the convergence () is easily proved from
() and (). This completes proof. �

4 Rate consistency of the estimators
In this section, we show that

√
Tn(θ̂n – θ ) and

√
Tn(θ̌n – θ ) are bounded in probability.

Theorem  Let – < a < ,  < b < a + , a + b > . Assume that �n → , Tn → ∞, and
n�

+β
n → ∞ for some β >  as n → ∞,

() for any q ≥ ,

�q
neθTn (θ̂n – θ ) is not bounded in probability. ()

() if n�
n →  as n → ∞, then

√
Tn(θ̂n – θ ) is bounded in probability. ()

Proof () Firstly, we consider the case of q = .
According to (), we have

�neθTn (θ̂n – θ ) = eθTn
(
eθ�n –  – θ�n

)
+

�ne–θTn Gn

e–θTn Sn
. ()

Because eθ�n –  – θ�n ∼ θ

 �
n as �n → , we have

lim
n→∞ eθTn

(
eθ�n –  – θ�n

)
= lim

n→∞
θ


�

neθTn

= lim
n→∞

θ


(
n�+β

n
) 

β
eθTn

T

β

n

.

Because n�
+β
n → ∞ as n → ∞ for some β >  and eθTn

T

β

n

→ ∞ as n → ∞, we obtain that,
as n → ∞,

eθTn
(
eθ�n –  – θ�n

) → ∞. ()

Applying (), we have that, as n → ∞,

E
∣∣�ne–θTn Gn

∣∣ ≤ c(a, b, θ )�
a+b+


n → . ()
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Therefore we get the result () when q =  by combining (), (), (), and (). Next,
we consider the case of q > .

According to (), we have

�q
neθTn (θ̂n – θ ) = �q–

n eθTn
(
eθ�n –  – θ�n

)
+ �q–

n
�ne–θTn Gn

e–θTn Sn
. ()

Because eθ�n –  – θ�n ∼ θ

 �
n as �n → , we have

lim
n→∞�q–

n eθTn
(
eθ�n –  – θ�n

)
= lim

n→∞
θ


�q+

n eθTn

= lim
n→∞

θ


(
n�+β

n
) +q

β
eθTn

T
+q
β

n

.

Because n�
+β
n → ∞ as n → ∞ for some β >  and eθTn

T
+q
β

n

→ ∞ as n → ∞, we obtain that,
as n → ∞,

�q–
n eθTn

(
eθ�n –  – θ�n

) → ∞. ()

Then by using (), (), (), and () the result () is obtained when q > .
Finally, the case of  ≤ q <  is a direct result. Thus the proof of () is completed.
() According to (), we have

√
Tn(θ̂n – θ ) =

√
n�

n
eθ�n –  – θ�n

�
n

+
√

Tne–θTn Gn

e–θTn Sn

=
√

n�
n

o(�
n)

�
n

+
√

Tne–θTn Gn

e–θTn Sn
, ()

where o(�
n) is an infinitesimal of higher order than �

n as n → ∞.
Because �n →  and n�

n →  as n → ∞, we have

√
n�

n
o(�

n)
�

n
→ . ()

Let us now show that, as n → ∞,

√
Tne–θTn Gn

e–θTn Sn
→  in probability.

Applying (), it remains to prove
√

Tne–θTn Gn →  as n → ∞ in probability.
Using (), we have

E
∣
∣e–θTn Gn

∣
∣ ≤ (

E
∣
∣e–θTn Gn

∣
∣) 

 ≤ c(a, b, θ )�
a+b–


n e–θTn .

Then

E
∣∣
√

Tne–θTn Gn
∣∣ ≤ c(a, b, θ )�

a+b–


n e–θTn
√

Tn
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= c(a, b, θ )
T


 + –(a+b)

β
n e–θTn

(n�
+β
n )

–(a+b)
β

→  as n → ∞. ()

The last convergence () follows from n�
+β
n → ∞ as n → ∞. Applying the Markov

inequality, as n → ∞, we have

√
Tne–θTn Gn →  in probability.

Thus, combining (), (), and (), we deduce the conclusion (). �

Theorem  Let – < a < ,  < b < a + , a + b > . Assume that �n → , Tn → ∞, and
n�

+β
n → ∞ for some β >  as n → ∞,

() for any q ≥ ,

�q
neθTn (θ̌n – θ ) is not bounded in probability. ()

() If n�
n →  as n → ∞, then

√
Tn(θ̌n – θ ) is bounded in probability. ()

Proof () First, we shall prove the case of q = 
 . By using () we calculate

√
�neθTn (θ̌n – θ )

=
√

�neθTn

(
η

Tn

e–θTn Sn
– θ

)

=
√

�neθTn

e–θTn Sn

(
η

Tn – θe–θTn Sn
)

=
√

�neθTn

e–θTn Sn

[(
η

tn – η
tn–

)
+

(
 –

θ�n

eθ�n – 

)
η

tn–

– θ

(
e–θTn Sn –

�n

eθ�n – 
η

tn–

)]

=
√

�neθTn

e–θTn Sn

[(
η

tn – η
tn–

)
+

θ

θ + o(�n)
�n

Fn

+
(

 –
θ�n

eθ�n – 

)
η

tn–

]
, ()

where () comes from ().
Using the Minkowski and Cauchy inequalities, by () and () we have

E
∣
∣∣
∣
√

�neθTn

[
(
η

tn – η
tn–

)
+

θ

θ + o(�n)
�n

Fn

]∣
∣∣
∣

≤ E
∣∣
√

�neθTn
(
η

tn – η
tn–

)∣∣ + E
∣
∣∣
∣

θ

θ + o(�n)
�n

√
�neθTn Fn

∣
∣∣
∣
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≤ E
(
η

∞
) 


{

E
[√

�neθTn (ηtn – ηtn– )
]} 

 + E
∣∣
∣∣

θ

θ + o(�n)
�n

√
�neθTn Fn

∣∣
∣∣

≤ c(a, b, θ )�
a+b+


n eθ�n + c(a, b, θ )�

a+b


n .

The last inequality converges to  a.s. as n → ∞.
Thus by the Markov inequality and () we that, as n → ∞,

√
�neθTn

e–θTn Sn

[(
η

tn – η
tn–

)
+

θ

θ + o(�n)
�n

Fn

]
→  in probability. ()

Furthermore,

√
�neθTn

(
 –

θ�n

eθ�n – 

)

=
√

�neθTn eθ�n –  – θ�n

eθ�n – 

= �


n eθTn eθ�n –  – θ�n

�
n

�n

eθ�n – 

=
(
n�+β

n
) 

β
eθTn

T


β
n

eθ�n –  – θ�n

�
n

�n

eθ�n – 
.

Noting that n�
+β
n → ∞ as n → ∞ for some β > , eθTn

T


β
n

→ ∞ as n → ∞, and

eθ�n ––θ�n
�

n
→ θ and �n

eθ�n – → 
θ

as �n → , we obtain that, as n → ∞,

√
�neθTn

(
 –

θ�n

eθ�n – 

)
→ ∞. ()

Then we get () when q = 
 by combining (), (), and ().

Similarly, we can prove () when q > 
 and  ≤ q < 

 .
Thus we have the conclusion () of Theorem .
() Now, we calculate

√
Tn(θ̌n – θ )

=
√

Tn

(
η

Tn

e–θTn Sn
– θ

)

=
√

Tn

e–θTn Sn

(
η

Tn – θe–θTn Sn
)

=
√

Tn

e–θTn Sn

[(
η

tn – η
tn–

)
+

(
 –

θ�n

eθ�n – 

)
η

tn–

– θ

(
e–θTn Sn –

�n

eθ�n – 
η

tn–

)]

=
√

Tn

e–θTn Sn

[
(
η

tn – η
tn–

)
+

θ

θ + o(�n)
�n

Fn

+
(

 –
θ�n

eθ�n – 

)
η

tn–

]
, ()

where equation () comes from ().
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Using the Minkowski and Cauchy inequalities, from () and () we have

E
∣
∣∣∣
√

Tn

[(
η

tn – η
tn–

)
+

θ

θ + o(�n)
�n

Fn

]∣
∣∣∣

≤ E
∣
∣
√

Tn
(
η

tn – η
tn–

)∣∣ + E
∣∣
∣∣

θ

θ + o(�n)
�n

√
TnFn

∣∣
∣∣

≤ E
(
η

∞
) 


{

E
[√

Tn(ηtn – ηtn– )
]} 

 + E
∣∣∣
∣

θ

θ + o(�n)
�n

√
TnFn

∣∣∣
∣

≤ c(a, b, θ )�
a+b–


n eθ�n e–θTn

√
n�

n + c(a, b, θ )�
a+b–


n e–θTn

√
Tn

= c(a, b, θ )
T


 + –(a+b)

β
n e–θTn

(n�
+β
n )

–(a+b)
β

eθ�n�n + c(a, b, θ )
T


 + –(a+b)

β
n e–θTn

(n�
+β
n )

–(a+b)
β

.

The last term converges to  almost surely since n�
+β
n → ∞ as n → ∞. Thus by the

Markov inequality and () we have that, as n → ∞,

√
Tn

e–θTn Sn

[
(
η

tn – η
tn–

)
+

θ

θ + o(�n)
�n

Fn

]
→  in probability. ()

Next, we consider the convergence of
√

Tn( – θ�n
eθ�n – ):

√
Tn

(
 –

θ�n

eθ�n – 

)

=
√

n�
n

�n

eθ�n –  – θ�n

eθ�n – 

=
√

n�
n

eθ�n –  – θ�n

�
n

�n

eθ�n – 
.

Because n�
n → , eθ�n ––θ�n

�
n

→ θ, and �n
eθ�n – → 

θ
as n → ∞, we obtain that, as

n → ∞,

√
Tn

(
 –

θ�n

eθ�n – 

)
→ . ()

Therefore, combining (), (), and (), we have the conclusion () of Theorem . �

5 Numerical simulations
In this section, we study the efficiency of the estimators θ̂n and θ̌n of θ based on the simu-
lated path of Xt for different values of a, b, θ . We simulate  sample paths of Xt on the
time interval [, ] with the equidistant time �n = .. At the end, we get a series of
data sets about the two estimators θ̂n and θ̌n by () and (). The simulation of θ̂n and θ̌n is
given in Table .

According to Table , we can easily see that the standard deviations of the estimators θ̂n

and θ̌n are small. Also, we see that the means and medians of the constructed parameter
estimators are close to the true parameter values. Therefore, the numerical simulations
confirm the theoretical research.
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Table 1 The means, medians, and standard deviations of estimators

a = –0.2, b = 0.4 a = –0.2, b = 0.5 a = –0.2, b = 0.6

Panel 1. Low parameter value θ = 0.8000
Mean (θ̂n) 0.6109 0.7290 0.7544
Median (θ̂n) 0.8029 0.8185 0.8247
Std. dev. (θ̂n) 0.5560 0.3874 0.3370
Mean (θ̌n) 0.7741 0.7967 0.7921
Median (θ̌n) 0.8407 0.8374 0.8339
Std. dev. (θ̌n) 0.2917 0.2568 0.3061

Panel 2. Medium parameter value θ = 1.6931
Mean (θ̂n) 1.5894 1.6275 1.6262
Median (θ̂n) 1.6865 1.6936 1.6919
Std. dev. (θ̂n) 0.4326 0.3594 0.3242
Mean (θ̌n) 1.6430 1.6523 1.6424
Median (θ̌n) 1.6931 1.6956 1.6940
Std. dev. (θ̌n) 0.2529 0.2696 0.2739

Panel 3. High parameter value θ = 3.7097
Mean (θ̂n) 3.7004 3.7087 3.7093
Median (θ̂n) 3.7098 3.7097 3.7097
Std. dev. (θ̂n) 0.1967 0.0235 0.0182
Mean (θ̌n) 3.7087 3.7103 3.7107
Median (θ̌n) 3.7110 3.7110 3.7111
Std. dev. (θ̌n) 0.1395 0.0299 0.0182
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