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Abstract
In this paper, we investigate an inverse problem to determine an unknown source
term that has a separable-variable form in the time-fractional diffusion equation,
whereby the data is obtained at a certain time. This problem is ill-posed, and we use
the Landweber iterative regularization method to solve this inverse source problem.
Two kinds of convergence rates are obtained by using an a priori and an a posteriori
regularization parameters choice rules, respectively. Numerical examples are provided
to show the effectiveness of the proposed method.
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1 Introduction
In recent years, diffusion equations with fractional-order derivatives play an important
role in modeling contaminant diffusion processes. A fractional diffusion equation mainly
describes anomalous diffusion phenomena because fractional-order derivatives enable the
description of memory and hereditary properties of heterogeneous substances []. Replac-
ing the standard time derivative with a time fractional derivative leads to the time frac-
tional diffusion equation, and it can be used to describe superdiffusion and subddiffusion
phenomena [–]. In some practical problems, the diffusion coefficients, a part of bound-
ary data, initial data, or source term may be unknown. We need additional measurement to
identify them, which leads to some fractional diffusion inverse problem. Nowadays there
are many research results about fractional diffusion inverse problem. In [], the authors
considered an inverse problem of recovering boundary functions from transient data at
an interior point in a -D semiinfinite half-order time-fractional diffusion equation. In
[], the authors applied a quasi-reversibility regularization method to solve a backward
problem for the time-fractional diffusion equation. In [–], the authors studied an in-
verse problem in a spatial fractional diffusion equation by using the quasi-boundary value
method and truncation method. In [, ], the authors determined the unknown source
in one-dimensional and two-dimensional fractional diffusion equations. In [], the au-
thors used the dynamic spectral method to consider the inverse heat conduction problem
of a fractional heat diffusion equation in -D setting. In [], the authors used an optimal
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regularization method to consider the inverse heat conduction problem of a fractional
heat diffusion equation. In [, ], the authors used the quasi-reversibility regularization
method and Fourier regularization method to identify the unknown source for a fractional
heat diffusion equation.

In this paper, we investigate an inverse problem for the time-fractional diffusion equa-
tion with variable coefficients in a general bounded domain[, ]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
t u – Lu(x, t) = f (x)q(t), x ∈ �, t ∈ (, T),α ∈ (, ),

u(x, t) = , x ∈ ∂�,

u(x, ) = , x ∈ �,

u(x, T) = g(x), x ∈ �,

(.)

where � is a bounded domain in R
d with a sufficient smooth boundary ∂�, Dα

t (·) is the
Caputo fractional derivative of order α ( < α ≤ ), –L is defined on D(–L) = H(�) ∩
H

(�) and is a symmetric uniformly elliptic operator:

Lu(x) =
d∑

i=

∂

∂xi

( d∑

j=

aij(x)
∂

∂xj
u(x)

)

+ c(x)u(x), x ∈ �, (.)

where the coefficient functions aij and c(x) satisfy

aij = aji, ν

d∑

i=

ξ 
i ≤

d∑

i=

d∑

j=

aij(x)ξiξj and c(x) ≤ , x ∈ �̄, ξ ∈R
d. (.)

As in [], define the Hilbert space

D
(
(–L)p) =

{

φ ∈ L(�);
∞∑

n=

λp
n

∣
∣(φ, Xn)

∣
∣ < ∞

}

(.)

with the norm

‖φ‖D((–L)p) =

( ∞∑

n=

λp
n

∣
∣(φ, Xn)

∣
∣

) 


. (.)

Assume that the time-fractional source term q ∈ C[, T] satisfies q(t) ≥ q >  for all t ∈
[, T] and is known. The space-dependent source term f (x) is unknown. We use the data
u(x, T) = g(x) to determine f (x). The noise data gδ ∈ L(�) satisfies

∥
∥gδ – g

∥
∥

L(�) ≤ δ, (.)

where ‖ · ‖ denotes the L(�) norm, and δ >  is a noise level.
In [], the authors used the modified quasi-boundary value method to solve problem

(.), but the error estimates between the regularization solution and the exact solution
have the saturation phenomenon under the two parameter choice rules, that is, the best
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convergence rate for the a priori parameter choice method is O(δ 
 ), and for the a posteri-

ori parameter choice method, it is O(δ 
 ). In [], the authors used the Tikhonov regular-

ization method to solve problem (.), but the error estimates between the regularization
solution and the exact solution also have the saturation phenomenon under the two pa-
rameter choice rules. In this study, we use the Landweber iterative regularization method
to solve this problem. Our error estimates under two parameter choice rules have no sat-
uration phenomenon, and the convergence rates are all O(δ

p
p+ ).

This paper is organized as follows. Section  presents the Landweber iterative regular-
ization method. Section  presents the convergence estimates under a priori and a poste-
riori choice rules. Section  presents some numerical examples to show the effectiveness
of our method. Section  presents a simple conclusion.

2 Landweber iterative regularization method
In this section, we first give some useful lemmas.

Lemma . ([]) For η >  and  < α ≤ , we have  ≤ Eα,(–η) < , and Eα,(–η) is com-
pletely monotonic, that is,

(–)n dn

dηn Eα,(–η) ≥ , ∀n ∈N∪ {}. (.)

Lemma . ([]) For β ∈R and α > , we have

Eα,β (z) = zEα,α+β (z) +


�(β)
, z ∈C. (.)

Lemma . ([]) For  < α < , λ > , and q ∈ C(, T), we have

Dα
t

∫ t


q(τ )(t – τ )α–Eα,α

(
–λ(t – τ )α

)
dτ

= q(t) – λ

∫ t


q(τ )(t – τ )α–Eα,α

(
–λ(t – τ )α

)
dτ . (.)

Moreover, if λ = , then

Dα
t

∫ t


q(τ )(t – τ )α– dτ = �(α)q(t),  < t ≤ T .

Lemma . ([]) For any λn satisfying λn ≥ λ > , there exists a positive constant C

depending on α, T , λ such that

C

Tαλn
≤ Eα,α+

(
–λnTα

) ≤ 
Tαλn

. (.)

Lemma . For any  < x < , we have

x <
√

x (.)

and

( – x)h ≥  – hx, h > . (.)
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Due to Lemma ., using the separation of variables, we obtain the solution of problem
(.)

u(x, t) =
∞∑

n=

(

fn

∫ t


q(τ )(t – τ )α–Eα,α

(
–λn(t – τ )α

)
dτ

)

Xn(x), (.)

where λn are the eigenvalues of the operator –L, and the corresponding eigenfunctions
are Xn(x), fn = (f (x), Xn(x)). Using u(x, T) = g(x), we have

g(x) =
∞∑

n=

(

fn

∫ T


q(τ )(T – τ )α–Eα,α

(
–λn(T – τ )α

)
dτ

)

Xn(x), (.)

where gn = (g(x), Xn(x)). Since –L is a symmetric uniformly elliptic operator, we get []

 < λ ≤ λ ≤ · · · ≤ λn ≤ · · · , lim
n→∞λn = +∞. (.)

Let hn(T) :=
∫ T

 q(τ )(T – τ )α–Eα,α(–λn(T – τ )α) dτ .
So we obtain

gn = fnhn(T). (.)

Then

fn =
gn

hn(T)
, (.)

that is,

f (x) =
∞∑

n=

fnXn(x) =
∞∑

n=

gn

hn(T)
Xn(x). (.)

We only need to solve the following first kind integral equation to obtain f (x):

(Kf )(x) =
∫

�

k(x, ξ )f (ξ ) dξ = g(x), x ∈ �, (.)

where the kernel is

k(x, ξ ) =
∞∑

n=

hn(T)Xn(x)Xn(ξ ).

For k(x, ξ ) = k(ξ , x), K is a self-adjoint operator. If f ∈ L(�), then g ∈ H(�) from [].
Because H(�) is compactly embedded in L(�), we have that K : L(�) → L(�) is a
compact operator. So problem (.) is ill-posed []. Assume that f (x) has the following a
priori bound:

∥
∥f (x)

∥
∥

D((–L)
p
 )

≤ E, p > , (.)

where E >  is a constant. We first give conditional stability results about ill-posed problem
(.).
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Theorem . ([]) Let q(t) ∈ C[, T] satisfy q(t) ≥ q >  for all t ∈ [, T], and let f (x) ∈
D((–L)– p

 ) satisfy the a priori bound condition

∥
∥f (·)∥∥

D((–L)– p
 )

≤ E, p > .

Then we have

∥
∥f (·)∥∥ ≤ CE


p+

∥
∥g(x)

∥
∥

p
p+ , (.)

where C := (Cq)– p
p+ .

Now we use the Landweber iterative method to obtain the regularization solution for
(.) and rewrite the equation Kf = g in the form f = (I – aK∗K)f + aK∗g for some a > .
Iterate this equation:

f ,δ(x) := , f m,δ(x) =
(
I – aK∗K

)
f m–,δ(x) + aK∗gδ(x), m = , , , . . . ,

where m is an iterative step number, and the selected regularization parameter a is called
the relaxation factor and satisfies  < a < 

‖K‖ . Since K is a self-adjoint operator, we obtain

f m,δ(x) = a
m∑

k=

(
I – aK∗K

)k–Kgδ(x). (.)

We get

f m,δ(x) = Rmgδ(x) =
∞∑

n=

 – ( – ah
n(T))m

hn(T)
gδ

nXn(x), (.)

where gδ
n = (gδ , Xn(x)).

3 Error estimate under two parameter choice rules
In this section, we give two convergence estimates under an a priori regularization param-
eter choice rule and an a posteriori regularization parameter choice rule, respectively.

3.1 An a priori regularization parameter choice rule
Theorem . Let f (x) be the exact solution of problem (.), and let f m,δ(x) be the regular-
ization Landweber iterative approximation solution. Choosing the regularization param-
eter m = [r], where

r =
(

E
δ

) 
p+

, (.)

we have the following convergence rate estimate:

∥
∥f m,δ(·) – f (·)∥∥ ≤ CE


p+ δ

p
p+ , (.)

where [r] denotes the largest integer less than or equal to r, and C =
√

a + ( aC
 q
p )– p

 is a
positive constant depending on a, p, and q.
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Proof By the triangle inequality we have

∥
∥f m,δ(·) – f (·)∥∥ ≤ ∥

∥f m,δ(·) – f m(·)∥∥ +
∥
∥f m(·) – f (·)∥∥. (.)

We first give an estimate for the first term. From conditions (.) and (.) we have

∥
∥f m,δ(·) – f m(·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

 – ( – ah
n(T))m

hn(T)
gδ

nXn(x) –
∞∑

n=

 – ( – ah
n(T))m

hn(T)
gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

 – ( – ah
n(T))m

hn(T)
(
gδ

n – gn
)
Xn)

∥
∥
∥
∥
∥



≤ sup
n≥

H(n)δ,

where H(n) := –(–ah
n(T))m

hn(T) .
By Lemma . we get

 – ( – ah
n(T))m

hn(T)
≤ √

am, (.)

that is,

H(n) ≤ √
am.

So

∥
∥f m,δ(·) – f m(·)∥∥ ≤ √

amδ. (.)

Now we estimate the second term in (.). By (.), (.), and (.) we have

∥
∥f m(·) – f (·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

 – ( – ah
n(T))m

hn(T)
gnXn(x) –

∞∑

n=


hn(T)

gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

( – ah
n(T))m

hn(T)
gnXn(x)

∥
∥
∥
∥
∥



=

∥
∥
∥
∥
∥

∞∑

n=

(
 – ah

n(T)
)m

λ
– p


n λ

p

n fnXn

∥
∥
∥
∥
∥



≤
∞∑

n=

(

 – a
C


λ

n

)m

λ–p
n λp

nf 
n

≤ sup
n≥

Q(n)E,

where Q(n) := ( – ah
n(T))mλ

– p


n .
Using Lemma . and Theorem ., we have

Q(n) ≤ (
 – aq

TαE
α,α+

(
–λnTα

))m
λ

– p


n ≤
(

 – aq


C


λ
n

)m

λ
– p


n .
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Let λn := t and

F(t) :=
(

 – aq


C


t

)m

t– p
 . (.)

Let t satisfy F ′(t) = . Then we easily get

t =
(

aq
C

 (m + p)
p

) 


> . (.)

Thus

F(t) =
(

 –
p

m + p

)m(
aq

C
 (m + p)

p

)– p


,

that is,

F(t) ≤
(

aq
C


p

)– p


(m + )– p
 . (.)

Thus we obtain

Q(n) ≤
(

aq
C


p

)– p


(m + )– p
 . (.)

Hence

∥
∥f m(·) – f (·)∥∥ ≤

(
aq

C


p

)– p


(m + )– p
 E. (.)

Combining (.) and (.) and choosing the regularization parameter m = [r], we get

∥
∥f m,δ(·) – f (·)∥∥ ≤ CE


p+ δ

p
p+ , (.)

where C :=
√

a + ( aq
C


p )– p

 .
We complete the proof of Theorem .. �

3.2 An a posteriori regularization parameter choice rule
We consider the a posteriori regularization parameter choice in the Morozov discrepancy
and construct regularization solution sequences f m,δ(x) by the Landweber iterative reg-
ularization method. Let τ >  be a given fixed constant. Stop the algorithm at the first
occurrence of m = m(δ) ∈N with

∥
∥Kf m,δ(·) – gδ(·)∥∥ ≤ τδ, (.)

where ‖gδ‖ ≥ τδ is constant.

Lemma . Let γ (m) = ‖Kf m,δ(·) – gδ(·)‖. Then we have:
(a) γ (m) is a strictly decreasing function for any m ∈ (, +∞);
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(b) limm→+∞ γ (m) = ‖gδ‖;
(c) limm→ γ (m) = ;
(d) γ (m) is a continuous function.

Lemma . For fixed τ > , combining Landweber’s iteration method with stopping rule
(.), we obtain that the regularization parameter m = m(δ, gδ) ∈N satisfies

m ≤
(

p + 
aq

C


)(
q

τ – 

) 
p+

(
E
δ

) 
p+

. (.)

Proof From (.) we get the representation

Rmg =
∞∑

n=

 – ( – ah
n(T))m

hn(T)
gnXn(x) (.)

and

‖KRmg – g‖ =
∞∑

n=

(
 – ah

n(T)
)m∣

∣(g, Xn)
∣
∣.

Since | – ah
n(T)| < , we conclude that ‖KRm– – I‖ ≤ .

On the other hand, it is easy to see that m is the minimum value and satisfies

∥
∥KRmgδ – gδ

∥
∥ =

∥
∥Kf m,δ – gδ

∥
∥ ≤ τδ.

Hence

‖KRm–g – g‖ ≥ ∥
∥KRm–gδ – gδ

∥
∥ –

∥
∥(KRm– – I)

(
g – gδ

)∥
∥

≥ τδ – ‖KRm– – I‖δ
≥ (τ – )δ.

On the other hand, using (.), we obtain

‖KRm–g – g‖ =

∥
∥
∥
∥
∥

∞∑

n=

(
 –

(
 – ah

n(T)
)m–)gnXn –

∞∑

n=

gnXn

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=

–
(
 – ah

n(T)
)m–(g, Xn)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=

(
 – ah

n(T)
)m–hn(T)fnλ

p

n λ

– p


n Xn

∥
∥
∥
∥
∥

≤ sup
n≥

(
 – ah

n(T)
)m–hn(T)λ– p


n E.

Let

S(n) :=
(
 – ah

n(T)
)m–hn(T)λ– p


n ,
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so that

(τ – )δ ≤ S(n)E. (.)

Using Lemma ., we have

S(n) ≤ (
 – aq

TαEα,α+
(
–λnTα

))m–qTαEα,α+
(
–λnTα

)
λ

– p


n

≤ q

(

 – aq


C


λ
n

)

λ
– p

 –
n .

Let t := λn and

G(t) :=
(

 – aq


C


t

)m–

t– p
 –. (.)

Suppose that t∗ satisfies G′(t∗) = . Then we easily get

t∗ =
(

aq
C

 (m + p – )
(p + )

) 


, (.)

so that

G(t∗) ≤
(

 –
p + 

m + p – 

)m–(aq
C

 (m + p – )
(p + )

)– p+


≤
(

aq
C


p + 

)– p+


.

Then

S(n) ≤ q

(
p + 

aq
C



) p+


m– p+
 . (.)

Combining (.) with (.), we obtain

m ≤
(

p + 
aq

C


)(
q

τ – 

) 
p+

(
E
δ

) 
p+

.

The proof of lemma is completed. �

Theorem . Let f (x) be the exact solution of problem (.), and let f m,δ(x) be the Landwe-
ber iterative regularization approximation solution. Choosing the regularization parame-
ter by Landweber’s iterative method with stopping rule (.), we have the following error
estimate:

∥
∥f m,δ(·) – f (·)∥∥ ≤ (

C(τ + )


p+ + C
)
E


p+ δ

p
p+ , (.)

where C = ( p+
q

C


) 
 ( q

(τ–) )


p+ is a constant.
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Proof Using the triangle inequality, we obtain

∥
∥f m,δ(·) – f m(·)∥∥ ≤ ∥

∥f m,δ(·) – f m(·)∥∥ +
∥
∥f m(·) – f (·)∥∥. (.)

Applying (.) and Lemma ., we get

∥
∥f m,δ(·) – f m(·)∥∥ ≤ √

amδ ≤ CE


p+ δ
p

p+ , (.)

where C = ( p+
q

C


) 
 ( q

τ– )


p+ .
For the second part of the right side of (.), we get

K
(
f m(·) – f (·)) =

∞∑

n=

–
(
 – ah

n(T)
)mgnXn(x)

=
∞∑

n=

–
(
 – ah

n(T)
)m(

gn – gδ
n
)
Xn(x)

+
∞∑

n=

–
(
 – ah

n(T)
)mgδ

nXn(x).

Combining (.) and (.), we have

∥
∥K

(
f m(·) – f (·))∥∥ ≤ (τ + )δ. (.)

Using Theorem . and (.), we have

∥
∥f m(·) – f (·)∥∥

D((–L)
p
 )

=

( ∞∑

n=

–
(
 – ah

n(T)
)mf 

n λp
n

) 


≤ E.

So

∥
∥f m(·) – f (·)∥∥ ≤ C(τ + )

p
p+ E


p+ δ

p
p+ . (.)

Hence

∥
∥f m,δ(·) – f (·)∥∥ ≤ (

C(τ + )
p

p+ + C
)
E


p+ δ

p
p+ . (.)

The theorem is proved. �

4 Numerical implementation and numerical examples
In this section, we provide numerical examples to illustrate the usefulness of the proposed
method. Since analytic solution of problem (.) is difficult, we first solve the forward prob-
lem to obtain the final data g(x) using the finite difference method. For details of the fi-
nite difference method, we refer to [–]. Assume that � = (, ) and take �t = T

N and
�x = 

M . The grid points on the time interval [, T] are labeled tn = n�t, n = , , . . . , N ,
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and the grid points in the space interval [, ] are xi = i�x, i = , , , . . . , M. Noise data are
generated by adding random perturbation, that is,

gδ(x) = g(x) + g(x)ε · ( rand
(
size(g)

)
– 

)
,

where ε reflects the noise level. The total error level g can be given as follows:

δ =
∥
∥gδ – g

∥
∥ =

√
√
√
√ 

M + 

M+∑

i=

(
gi – gδ

i
).

In our numerical experiments, we take T = . When computing the Mittag-Leffler func-
tion, we need a better algorithm in []. In applications, the a priori bound E is difficult to
obtain, and thus we only give the numerical results under the a posteriori parameter choice
rule. In the following three examples, the regularization parameter is given by (.) with
τ = .. To avoid the ‘inverse crime,’ we use a finer grid to computer the forward problem,
that is, we take M = , N =  and choose M = , N =  for solving the regularized
inverse problem. In the computational procedure, we let a(x) = x + , c(x) = –(x + ), and
the time-dependent source term q(t) = e–t .

Example  Take function f (x) = [x( – x)]α sin πx.

Example  Consider the following piecewise smooth function:

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

,  ≤ x ≤ 
 ,

(x – 
 ), 

 < x ≤ 
 ,

–(x – 
 ), 

 < x ≤ 
 ,

, 
 < x ≤ .

(.)

Example  Consider the following initial function:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

,  ≤ x ≤ 
 ,

, 
 < x ≤ 

 ,

, 
 < x ≤ .

(.)

Figure  indicates the exact and regularized source terms given by the a posteriori pa-
rameter choice rule for Example . Figure  indicates the exact and regularized source
terms given by the a posteriori parameter choice rule for Example . Figure  indicates the
exact and regularized source terms given by the a posteriori parameter choice rule for Ex-
ample . According to these three examples, we can find that the smaller ε and α, the better
effect between the exact solution and regularized solution. From Figures  and  we can
see that the numerical solution is not better than that of Example . Figures  and  pre-
sented worse numerical results because due to the common finite element or high-order
finite element, it is difficult to describe a piecewise function. However, the numerical result
is reasonable. Moreover, numerical examples show that the Landweber iterative method
is efficient and accurate.
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Figure 1 The exact and regularized terms given by the a posteriori parameter choice rule for
Example 1: (a) α = 0.2, (b) α = 0.5, (c) α = 0.9.

Figure 2 The exact and regularized terms given by the a posteriori parameter choice rule for
Example 2: (a) α = 0.2, (b) α = 0.5, (c) α = 0.9.
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Figure 3 The exact and regularized terms given by the a posteriori parameter choice rule for
Example 3: (a) α = 0.2, (b) α = 0.5, (c) α = 0.9.

Table 1 The posteriori regularization parameter m under different α and ε for Example 1

ε = 0.05 ε = 0.01 ε = 0.001

α = 0.2 1,359,781 7,324,093 72,760,970
α = 0.5 1,073,344 5,810,540 58,185,563
α = 0.9 1,033,583 5,622,036 51,073,803

Table 2 The posteriori regularization parameter m under different α and ε for Example 2

ε = 0.05 ε = 0.01 ε = 0.001

α = 0.2 87,014 454,794 4,115,710
α = 0.5 86,575 420,586 4,073,802
α = 0.9 79,713 411,222 4,314,369

Table 3 The posteriori regularization parameter m under different α and ε for Example 3

ε = 0.05 ε = 0.01 ε = 0.001

α = 0.2 91,970 416,913 4,747,577
α = 0.5 92,115 447,945 4,337,702
α = 0.9 87,505 415,486 4,309,392

5 Conclusion
In this paper, we solve an inverse problem for identifying the unknown source of a
separable-variable form in a time-fractional diffusion equation with variable coefficients
in a general domain. We propose the Landweber iterative method to obtain a regulariza-
tion solution. The error estimates are obtained under the a priori regularization parameter
choice rule and the a posteriori regularization parameter choice rule. Comparing the er-
ror estimated obtained by [, ], our error estimates have no saturation phenomenon,
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and the convergence rates are all O(δ
p

p+ ) under two parameter choice rules. Meanwhile,
numerical examples verify that the Landweber iterative regularization method is efficient
and accurate. In the future work, we will continue to study some source terms that depend
on both time and space variables.

Acknowledgements
The authors would like to thank the editor and referees for their valuable comments and suggestions that improved the
quality of our paper. The work is supported by the National Natural Science Foundation of China (11561045, 11501272)
and the Doctor Fund of Lan Zhou University of Technology.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by FY, and XL prepared the initial manuscript and performed all the steps of
the proofs in this research. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 July 2017 Accepted: 10 November 2017

References
1. Berkowitz, B, Scher, H, Silliman, SE: Anomalous transport in laboratory-scale, heterogenous porous media. Water

Resour. Res. 36(1), 149-158 (2000)
2. Metzler, R, Klafter, J: Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional

diffusion. Phys. Rev. E 61(6), 6308-6311 (2000)
3. Scalas, E, Gorenflo, R, Mainardi, F: Fractional calculus and continuous-time finance. Phys. A 284, 367-384 (2000)
4. Sokolov, IM, Klafter, J: From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15,

1-7 (2005)
5. Bhrawy, AH, Baleanu, D: A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection

diffusion equations with variable coefficients. Rep. Math. Phys. 72(2), 219-233 (2013)
6. Fairouz, T, Mustafa, I, Zeliha, SK, Dumitru, B: Solutions of the time fractional reaction-diffusion equations with residual

power series method. Adv. Mech. Eng. 8(10), 1-10 (2016)
7. Gómez-Aguilar, JF, Miranda-Hernández, M, López-López, MG, Alvarado-Martinez, VM, Baleanu, D: Modeling and

simulation of the fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 30(1), 115-127
(2016)

8. Benson, DA, Wheatcraft, SW, Meerschaert, MM: Application of a fractional advection-dispersion equation. Water
Resour. Res. 36(6), 1403-1412 (2000)

9. Sun, HG, Zhang, Y, Chen, W, Donald, MR: Use of a variable-index fractional-derivative model to capture transient
dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47-58 (2014)

10. Zhang, Y, Sun, HG, Lu, BQ, Rhiannon, G, Roseanna, MN: Identify source location and release time for pollutants
undergoing super-diffusion and decay: parameter analysis and model evaluation. Adv. Water Resour. 107, 517-524
(2017)

11. Murio, DA: Stable numerical solution of fractional-diffusion inverse heat conduction problem. Comput. Math. Appl.
53(1), 492-501 (2007)

12. Liu, JJ, Yamamoto, M: A backward problem for the time-fractional diffusion equation. Appl. Anal. 80(11), 1769-1788
(2010)

13. Wei, T, Wang, J: A modified quasi-boundary value method for an inverse source problem of the time-fractional
diffusion equation. Appl. Numer. Math. 78, 95-111 (2014)

14. Wang, JG, Zhou, YB, Wei, T: Two regularization methods to identify a space-depend source for the time-fractional
diffusion equation. Appl. Numer. Math. 68, 39-75 (2013)

15. Zhang, ZQ, Wei, T: Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl.
Math. Comput. 219(11), 5972-5983 (2013)

16. Kirane, M, Malik, AS: Determination of an unknown source term and the temperature distribution for the linear heat
equation involving fractional derivative in time. Appl. Math. Comput. 218(1), 163-170 (2011)

17. Kirane, M, Malik, AS, Al-Gwaiz, MA: An inverse source problem for a two dimensional time fractional diffusion
equation with nonlocal boundary conditions. Math. Methods Appl. Sci. 36(9), 1056-1069 (2013)

18. Xiong, XT, Zhou, Q, Hon, YC: An inverse problem for fractional diffusion equation in 2-dimensional case: stability
analysis and regularization. J. Math. Anal. Appl. 393, 185-199 (2012)

19. Xiong, XT, Guo, HB, Liu, XH: An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 236,
4474-4484 (2012)

20. Yang, F, Fu, CL: The quasi-reversibility regularization method for identifying the unknown source for time fractional
diffusion equation. Appl. Math. Model. 39, 1500-1512 (2015)

21. Yang, F, Fu, CL, Li, XX: The inverse source problem for time fractional diffusion equation: stability analysis and
regularization. Inverse Probl. Sci. Eng. 23(6), 969-996 (2015)

22. Nguyen, HT, Le, DL, Nguyen, VT: Regularized solution of an inverse source problem for a time fractional diffusion
equation. Appl. Math. Model. 40(19-20), 8244-8264 (2016)



Yang et al. Advances in Difference Equations  (2017) 2017:388 Page 15 of 15

23. Pollard, H: The completely monotonic character of the Mittag-Leffler function Eα (–x). Bull. Am. Math. Soc. 54,
1115-1116 (1948)

24. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland
Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

25. Sakamoto, K, Yamamoto, M: Initial value/boundary value problems for fractional diffusion-wave equations and
applications to some inverse. J. Math. Anal. Appl. 382(1), 426-447 (2011)

26. Kirsch, A: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)
27. Murio, DA: Implicit finite difference approximation for the time-fractional diffusion equation. Comput. Math. Appl.

56(4), 1138-1145 (2008)
28. Yang, M, Liu, JJ: Implicit difference approximation for the time-fractional diffusion equation. J. Appl. Math. Comput.

22(3), 87-99 (2006)
29. Podlubny, I, Kacenak, M: Mittag-Leffler function, The MATLAB routine (2006). http://www.mathworks.com/

matlabcentral/fileexchage
30. Murio, DA, Mejıa, CE: Source terms identification for time fractional diffusion equation. Rev. Colomb. Mat. 42(1), 25-46

(2008)

http://www.mathworks.com/matlabcentral/fileexchage
http://www.mathworks.com/matlabcentral/fileexchage

	Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation
	Abstract
	MSC
	Keywords

	Introduction
	Landweber iterative regularization method
	Error estimate under two parameter choice rules
	An a priori regularization parameter choice rule
	An a posteriori regularization parameter choice rule

	Numerical implementation and numerical examples
	Conclusion
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


