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Abstract
We consider adaptive compensation for infinite number of actuator failures in the
tracking control of uncertain nonlinear systems. We construct an adaptive controller
by combining the common Lyapunov function approach and the structural
characteristic of neural networks. The proposed control strategy is feasible under the
presupposition that the systems have a nonstrict-feedback structure. We prove that
the states of the closed-loop system are bounded and the tracking error converges to
a small neighborhood of the origin under the designed controllers, even though
there are an infinite number of actuator failures. At last, the validity of the proposed
control scheme is demonstrated by two examples.
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1 Introduction
In recent years, many approximation-based adaptive fuzzy or neural backstepping con-
trollers have been developed for uncertain nonlinear systems; see [–]. Among them, to
eliminate the problem of ‘explosion of complexity’ inherent in the existing method, in []
a control design strategy was developed for a class of nonlinear systems in strict-feedback
form with arbitrary uncertainty. To deal with the state unmeasured problem, a novel con-
trol scheme was introduced in []. To address the control problem of nonsmooth hystere-
sis nonlinearity in the actuator, adaptive neural controllers were constructed for nonlinear
strict-feedback systems with unknown hysteresis in []. It should be noted that the con-
trol schemes mentioned are under the presupposition that the systems have a nonstrict-
feedback structure.

In the nonlinear systems without strict-feedback structure, the unknown nonlinear
functions involve all the state variables, so they cannot be approximated with current
states. To deal with such a structural restriction, in [] a variable separation method was
proposed. The control scheme in [] assured that the tracking performance is achieved
as time variable goes to infinity. Besides the proposed control scheme, many efforts have
been made in relaxing such a restriction of system structure; see [–]. In practical ap-
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plication, the actuator component is usually employed to execute control actions on the
plant. However, the actuation mechanism may suffer from failures, which results in the
actuator losses of partial or total effectiveness. To prevent the emergence of performance
deterioration and instability of the closed-loop system caused by actuator faults, accom-
modating actuator failures should be taken into account in the control design.

In recent years, many control schemes have been proposed to accommodate actuator
failures; see, for example, [–]. By applying backstepping technique for the linear sys-
tems, a systematic actuator failure compensation control was presented in []. Then, in
[] the proposed control method was extended to nonlinear systems with actuator fail-
ures; in [] the problem of accommodating actuator failures was investigated for a lass
of uncertain nonlinear systems with hysteresis input as a follow-up extension. In practice,
the failure pattern in an actuator may change repeatedly, which makes failure parameters
suffer from an infinite number of jumps. Consequently, the considered Lyapunov function
would experience infinite number of jumps. In [], this problem was addressed by apply-
ing a new tuning function under the frame of adaptive control. However, the proposed
control strategy can only apply to the strict-feedback systems.

Motivated by the aforementioned researches, in this paper, we focus on the problem
of adaptive compensation for an infinite number of actuator failures in neural tracking
control for a class of nonstrict-feedback systems. The main contributions in this paper
can be summarized as follows.

() The control scheme in this paper relaxes the restriction of system structure so that a
better approach is proposed to deal with the problem of compensation for an
infinite number of actuator failures, which is more meaningful in practical
application in comparison with [].

() In this paper, combining neural networks and a new piecewise Lyapunov function
analysis, we establish an adaptive control scheme for a class of uncertain nonlinear
systems with a nonstrict-feedback structure.

The remainder of the paper is organized as follows. In the next section, the problem de-
scription and preliminaries are presented. Section  shows the major result. In Section ,
the simulation result expounds the validity of the proposed control scheme. Finally, we
give a simple summary.

2 Preliminaries and problem description
2.1 A. System description
We consider the following nonstrict-feedback system form:

ẋi = xi+ + fi(x),  ≤ i ≤ n – ,

ẋn =
m∑

j=

bjσj(x)uj + fn(x),

y = x,

where x = [x, x, . . . , xn]T are the state vectors, fi (i = , , . . . , n) are unknown smooth non-
linear functions, uj ∈ R for j = , . . . , m is the output of the jth actuator, y denotes the system
output, bj (j = , . . . , m) are unknown control coefficients, and σj(x) (j = , . . . , m) are known
continuous functions.
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For simplicity, the internal dynamics in actuators can be negligible. Let ǔj (j = , . . . , m)
be jth actuator input, and then the normal actuator is described as uj = ǔj. However, in
practical applications, the actuation components may suffer from failures or faults. The
actuator failure model in this paper is given as follows:

uj = κj,k(t)ǔj + ufj,k(t), ()

κj,k(t)ufj,k(t) = , j = , . . . , m, ()

where t ∈ [tk , tk+) for k = , , . . . , and tk denotes the unknown failure time instant at which
the failure parameter jumps occur. In ()-(),  ≤ κj,k(t) ≤  is called the efficiency factor,
and ufj,k(t) is the stuck value. Note that the proposed model covers two classes of typical
actuator failures, that is, partial loss of effectiveness (PLOE) faults ( < κj,k < ) and total
loss of effectiveness (TLOE) faults (κj,k = ), as detailed in [].

Remark  The unknown time-varying value ufj,k(t) can be linearly parameterized as
ufj,k(t) = uj,k + �

qj
i=ζji,kφji(t) with known functions φji(t) and unknown constants uj,k and

ζji,k .

Control objective: design the control input ǔj to compensate for the actuator failures
modeled as ()-() such that all the closed-loop signals are bounded and the system out-
put y tracks the given reference signal yd with a tracking error converging to a residual
around zero. The following assumptions are general in the literature on the adaptive ac-
tuator failure compensation control.

Assumption  The number of failed actuators undergoing TLOE faults simultaneously is
allowed to be at most m – , and achieving control objective with the remaining actuators
is still possible.

Assumption  The reference signal yd(t) and its first nth-order time derivatives yd(t) (i =
, . . . , n) are known, smooth, and bounded.

Assumption  sign(bj) are known for j = , , . . . , m.

Assumption  The conditions σj(·) �= ,  < b ≤ |bj| ≤ bM , and |ufj,k(t)| ≤ ufM are satis-
fied. In addition, for the PLOE faults,  < κ ≤ κj,k(t) < . Note that b, bM , ufM , and κ are
known constants.

Assumption  The failure parameters κj,k(t) and ufj,k(t) are smooth and continuous over
[tk , tk+). Moreover, their change rates are bounded, that is, supt∈[tk ,tk+) |κ̇j,k(t)| ≤ d and
supt∈[tk ,tk+) |u̇fj,k(t)| ≤ d, where d and d denote two unknown positive constants.

2.2 B. RBF neural networks
In the following design, the radial basis function (RBF) neural networks will be utilized to
approximate an unknown function f (ζ ) defined on some compact set �. For sufficiently
large nodes number κ , the RBF neural networks ξ ∗T	(ζ ) can approximate any continuous
function f (ζ ) over a compact set � ⊂ Rq to arbitrary accuracy ε >  as follows:

f (ζ ) = ξ ∗T
ϕ(ζ ) + ε(ζ ), ∀ζ ∈ � ⊂ Rq,
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where the approximation error ε(ζ ) satisfies |ε(ζ )| ≤ ε, ϕ(ζ ) = [ϕ(ζ ),ϕ(ζ ), . . . ,ϕκ (ζ )]T is
the basis function vector, and ξ ∗ = [ξ, ξ, . . . , ξκ ]T ∈ Rκ is defined as

ξ ∗ := arg min
ξ∈Rκ

{
sup
ζ∈�

∣∣f (ζ ) – ξTϕ(ζ )
∣∣
}

,

where ξ ∈ Rκ denotes the weight vector. In this research, the following Gaussian basis
functions φi(ζ ) will be used:

ϕi(ζ ) = exp

[
–

(ζ – ιi)T (ζ – ιi)
ω

i

]
, i = , , . . . ,κ , ()

where ιi = [ιi, ιi, . . . , ιiq]T denotes the center of the receptive field, and ωi represents the
width of the Gaussian function.

Lemma  ([]) Let f (χ ) be a continuous function defined on a compact set �. Then, for
every ε > , there exists a neural network θT�(χ ) such that

sup
χ∈�

∣∣f (χ ) – θT�(χ )
∣∣ ≤ ε. ()

Lemma  ([]) For any ω ∈ R and ε > , the following holds:

 ≤ |ω| – ω tanh

(
ω

ε

)
≤ δε ()

with δ = ..

3 Adaptive tracking control design and stability analysis
In this section, based on a backstepping technique and neural networks, we design
an adaptive actuator failure compensation control scheme. The control goal of this
manuscript is to establish an adaptive controller such that the system output y follows
a desired reference signal yd .

3.1 A. Adaptive tracking control design
Before implementing the design, a set of uncertain constants is defined as

Wi = Mi‖θi‖
 = Miθ

T
i θi, i = , . . . , n, ()

where θi = [θi,, . . . , θi,Ni ] and Ni are the weight vector and the number of neurons in ith
hidden layer, respectively. The operator ‖ · ‖ represents the Euclidean norm of a column
vector. From the definition we know that Wi is an unknown constant. The adaptive pa-
rameter Ŵi is utilized to estimate Wi, and the estimated error is W̃i = Wi – Ŵi. The com-
putation in adaptation mechanism utilized in the literature can be reduced from �n

i=Mi

to n.
The coordinate transformations are defined as follows:

z = x – yd,

zi = xi – αi– – y(i–)
d , i = , . . . , n,

()

where αi– is an intermediate controller.
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Denote

ǔj =
sign(bj)

σj
τ̂T v, ()

where τ̂ = [τ̂, τ̂,, . . . , τ̂,m] is the estimate of τ ∈ R+m designed latter, and v = [αn +
y(n)

d ,σ, . . . ,σm].
To ensure the boundedness of the jumping size of the Lyapunov function at failure in-

stants, we design the adaptation laws for updating parameter estimators with projection
operation.

The adaptive laws are selected as

˙̂Wi =
n∑

i=

l
ai

z
i – ℘Ŵi, i = , , . . . , n, ()

˙̂ε =
n∑

i=

hzi tanh
zi

ς
– ℘ε̂, ()

˙̂τ = Proj(–�τ vzn), τ̂ () ∈ �τ , ()

where h, ℘, and ℘ are positive design constants, and �τ ∈ R(+m)(+m) is chosen to be
symmetric and positive definite (for convenience, we can select �τ = diag{r, r, . . . , r+m}
with positive constants ri), Proj(·) denotes the projection operator, and �τ is a known
convex compact set given by

�τ =
{

(γ,γ,, . . . ,γ,m)
∣∣∣


mbM

≤ 
bκ

and
∣∣∣∣γ,j ≤ bMufM

bκ

∣∣∣∣, j = , . . . , m
}

; ()

αi– is the virtual controller designed as

αi = –λizi –


a
i

ziŴi – ε̂ tanh
zi

ς
, ()

where λi, ai, and l are positive design constants.
With the developed projection-based tuning function approach, we further propose new

piecewise Lyapunov function analysis to establish the closed-loop system stability.

3.2 B. Stability analysis
Theorem  Consider the closed-loop adaptive system consisting of nonlinear plant () with
actuator failures ()-() and the proposed control scheme ()-(). Moreover, the nonstrict-
feedback nonlinear system () satisfies Assumptions -. Then:

() All the signals of the closed-loop system are bounded;
() The tracking error converges to a small neighborhood of zero.

Proof Consider the following Lyapunov function candidate:

V̄k =



n∑

i=

z
i +


l

W̃  +


h
ε̃ +




m∑

j=

|bj|κj,k(t)τ̃T�–
τ τ̃ , ()
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where ε̃i is used to estimate εi, ε̃i = εi – ε̂i refers to the estimated error, and τ̃i = τi – τ̂i is
the estimated error of τi. We define τ (t) ∈ R+m by

τ(t) =
∑m

j= |bj|κj,k(t)
, ()

τ,j(t) = –
bjufj,k(t)∑m

j= |bj|κj,k(t)
, ()

where j = , . . . , m.
Note that all �, � ∈ �τ satisfy

‖� – �‖ ≤
√(


bκ

–


mbM

)

+
mb

mu
fM

b
κ




= �.

From the related properties of a projection operator in [] we can derive that τ̂ (t) ∈ �τ .
We get

∥∥τ̃ (t)
∥∥ =

∥∥τ (t) – τ̂ (t)
∥∥ ≤ �. ()

The time derivative of V̄ is

˙̄Vk = z(z + α + ϕ) +
n–∑

i=

zi(zi+ + αi + ϕi – α̇i–)

+ φ̇ + zn

( m∑

j=

|bj|κj,k(t)τ̂T v +
m∑

j=

bjσjufj,k(t) + ϕn – α̇n– – y(n)
d

)
, ()

where

φ =

l

W̃  +


h
ε̃ +




m∑

j=

|bj|κj,k(t)τ̃T�–
τ τ̃ .

It follows that

φ̇ = –

l

W̃ ˙̂W –

h
ε̃ ˙̂ε –

m∑

j=

|bj|κj,k(t)τ̃T�–
τ

˙̂τ

+
m∑

j=

|bj| ˙κj,k(t)


τ̃T�–
τ τ̃ +

m∑

j=

|bj|κj,k(t)τ̃T�–
τ τ̇ . ()

Define unknown functions as

Pi
(
x, Ŵ , ε̂, yd, . . . , y(i–)

d
)

=
∂αi–

∂Ŵ

i–∑

j=

l
a

j
z

j – zi
l

a
i

i∑

j=

∣∣∣∣zj
∂αj–

∂Ŵ

∣∣∣∣ –
∂αi–

∂Ŵ
℘Ŵ

+
∂αi–

∂ε̂

i–∑

j=

hzj tanh
zj

ς
+ h tanh

zi

ς

i∑

j=

zj
∂αj–

∂ε̂
–

∂αi–

∂ε̂
℘ε̂, ()
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f(x) = ϕ(x), ()

fi
(
x, Ŵ , ε̂, yd, . . . , y(i–)

d
)

= zi– + ϕi –
i–∑

j=

∂αi–

∂xj
(xj+ + ϕj) ()

–
i–∑

j=

∂αi–

∂yd (j–) y(j)
d – Pi

(
x, Ŵ , ε̂, yd, . . . , y(i–)

d
)
, ()

i = , . . . , n.

From ()-() and ()-() we have

n∑

i=

zi

(
Pi –

∂αi–

∂Ŵ
˙̂W –

∂αi–

∂ε̂
˙̂ε
)

≤ . ()

Moreover, according to () and (), we have

m∑

j=

|bj|κj,k(t)τT v +
m∑

j=

bjσjufj,k(t) – αn – y(n)
d = . ()

It follows that

˙̄Vk(t) ≤
n∑

i=

(αi + fi) –
m∑

j=

|bj|κj,k(t)τ̃T vzn + φ̇. ()

Since fi(x) contain the unknown functions ϕi, they cannot be implemented in practice.
According to Lemma , for any given constant εi > , there exists a neural network θT

i �i

such that

|zi|fi(x) ≤ 
a

i
z

i ‖θi‖�T
i �i +




a
i + |zi|ε. ()

Combining with the condition �T
i �i ≤ Mi and Lemma , we have

|zi|fi(x) ≤ 
a

i
z

i W +



a
i + ziε tanh

zi

ς
+ .ςε, ()

where

W = max
{‖θ‖�T

 �, . . . ,‖θi‖�T
i �i

}
, ()

ε = max{ε, . . . , εn}. ()

Substituting () and () into (), we have

˙̄Vk ≤
n∑

i=

λiz
i +

n∑

i=


a

i
z

i W̃ +
n∑

i=




a
i +

n∑

i=

ziε̃ tanh
zi

ς
+

n∑

i=

.ςε

–
m∑

j=

|bj|κj,k(t)τ̃T vzn + φ̇. ()
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By Assumption  and by () and () we get

‖τ̇‖ ≤ mbMd

b
κ




, ()

‖τ̇,j‖ ≤ mb
Md + mb

MufMd

b
κ




, j = , . . . , m. ()

It follows that

∥∥τ̇ (t)
∥∥ ≤ mbMd

b
κ




+
mb

Md + mb
MufMd

b
κ




= � . ()

According to (), (), and (), we have

˙̄Vk ≤
n∑

i=

λiz
i –

τ

l
W̃  –

τ

h
ε̃ +

mbM


τ 

M +
τ

l
W  +

τ

h
ε +

n∑

i=




a
i (.ςε) + �

–
m∑

j=

|bj|κj,k(t)
λmax(�–

τ )
τ̃T�–

τ τ̃ , ()

where

� =
mbMd


�

∥∥�–
τ

∥∥
F + mbM�

∥∥�–
τ

∥∥
F� . ()

Then, it follows that

˙̄Vk(t) ≤ –AV̄k + B, ()

where

A = min

{
λi, τ, τ,


λmax(�–

τ )

}
, ()

B =
τ

l
W  +

τ

h
ε +

n∑

i=




a
i (.ςε) +

mbM


τ 

M + �tk ,

tk ≤ t ≤ tk+, k = , , . . . . ()

To establish the closed-loop system stability for all the time under the case of actuator
failures or faults, we need to consider the overall Lyapunov function defined as

V (t) = V̄ (t)k , t ∈ [tk , tk+), k = , , . . . , ()

where t =  is the initial time instant. Note that V (t) is not a continuous function, and
it experiences a sudden jump at each failure instant tk+ (k = , , . . .). The jumping size at
instant tk is computed as

V
(
t+
k+

)
– V

(
t–
k+

)

=
m∑

j=

|bj|κj,k+(t+
k+)


τ̃T(

t+
k+

)
�–

τ τ̃
(
t+
k+

)
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–
m∑

j=

|bj|κj,k+(t–
k+)


τ̃T(

t–
k+

)
�–

τ τ̃
(
t–
k+

)

≤ mbM


∥∥�–

τ

∥∥
F�

 = �. ()

Let H(t) = eatV (t). Then it follows that

Ḣ = AeatV (t) + eatV̇ (t) ≤ BeAt . ()

Integrating both sides of () over [tk , tk+), we have

H
(
t–
k+

) ≤ H
(
t+
k+

)
+

∫ tk+

tk

BeAt dt. ()

From ()-() we have

H
(
t+
k+

) ≤ H
(
t+
k
)

+
∫ tk+

tk

BeAt dt + eatk+�. ()

We denote by ℵ(t, T) the number of jumps of the overall Lyapunov V (t) during (t, T) for
t ≥ . Let T � = min{tk+ – tk}, k = , , . . . . Then it follows that

H
(
T–)

= H
[
t+
ℵ(,T)

]
+

∫ T

tℵ(,T)

BeAt dt�

≤ V () +
∫ T


BeAt dt + eAT

ℵ(,T)∑

k=

ea(tk –T)�, ()

ℵ(tk , T)T � ≤ T – tk , k = , . . . ,ℵ(, T)

tk – T ≤ –ℵ(tk , T)T �.
()

Then we have

eAT
ℵ(,T)∑

k=

ea(tk –T)� ≤ eAT
ℵ(,T)∑

k=

e–aℵ(tk ,T)T�
�

=
 – e–aT�ℵ(,T)

 – e–aT�
eaT�. ()

It follows that

V
(
T–) ≤

(
V () –

B
A

–
�

 – e–aT�

)
e–aT +

(
B
A

+
�

 – e–aT�

)
, ∀T > . ()

Then all closed-loop signals are bounded. Note that �n
i= ≤ V (t), and let T → ∞. The

bound of the tracking error can be derived as

lim
t→∞

∥∥z(t)
∥∥ ≤

√
B
A

+
�

 – e–AT�
. ()

�
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Remark  Inequality () makes a vital contribution to the backstepping design because it
builds the relation between xi and zi, which makes a backstepping-based design procedure
viable.

Remark  The adaptive parameters Ŵi, ε̂, τ̂ are utilized to estimate Wi, ε, τ , respectively.
W̃i = Wi – Ŵi, ε̃ = ε – ε̂, and τ̃ = τ – τ̂ denote the estimated errors. Note that the failure
parameter κj,k is allowed to be time varying during each time interval [tk , tk+) for k =
, , . . . and bj (j = , . . . , m) are unknown control coefficients. The instability cannot be
ensured when [tk , tk+) and bj are not contained in the Lyapunov function.

Remark  The failure-related parameters τ contained in the Lyapunov function () will
undergo a sudden jump at unknown time instant tk , and it follows that decreasing of the
Lyapunov function, shown as in (), is only valid at the time interval [tk , tk+) during which
the Lyapunov function V̄k(t) is differentiable. To establish the closed-loop system stability
under the case of actuator failures or faults, we consider the overall Lyapunov function
defined in ().

4 Simulation example
In this section, we use two examples to expound our design scheme and testify the results
obtained.

4.1 A. Example 1
The nonlinear system is given as

ẋ = x + x
 ,

ẋ = xx + 
 – e–x

 + e–x
+ bu + bu,

y = x,

ξ̇ = Z(ξ , x, x),

Z(ξ , x, x) = –ξ + x + tan– x

+
 + x


 + x



[
xx +

 – e–x

 + e–x

]
,

()

where y is the system output, and uj (j = , ) are control inputs to the plant. The param-
eters b =  and b = . are unknown for controller design. The last subsystem system
ξ̇ = Z(ξ , x, x) represents the zero dynamics for the system. From [, ] we have that
ξ = Z(ξ , x, x) is input-to-state stable with respect to [x, x], which implies that the state
variable ξ is bounded if x(t), x(t) ∈ �∞. The system is initialized as x() = ., x() = ,
ξ () = , and u() = u() = . In the simulation, the failure case studied is given by

u = cos
(
.

(
t – hT �

))
uc ()

u = uc, t ∈ [
hT �, (h + )T �

]
, h = , , , . . . , ()

u =  sin(.t), ()

u = .uc, t ∈ [
hT �, (h + )T �

]
, h = , , , . . . , ()
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where ǔj is the jth actuator input for j = , , and T � =  s denotes the minimum length of
time intervals between two successive jumps of failure parameters. It is seen that during
the time interval [hT �, (h + )T �), h = , , , . . . , the first actuator suffers from PLOE faults
with a time-varying efficiency indicator κ,h(t) = cos(.(t – hT �)), whereas the second
actuator works normally, and during [hT �, (h+)T �), h = , , , . . . , the first actuator output
is stuck at an unknown time-varying value, that is, u =  sin(.t), whereas the second
actuator loses % of the effectiveness of its input. The boundary information b = .,
bM = , κ = ., and ufM =  is employed to construct the projection adaptation law (),
and then the compact set �τ in () is computed as

�τ = [τ, τ,, τ,]T |. ≤ τ ≤ ., –. ≤ τ, ≤ ., j = , ]. ()

To make all the signals bounded and y follow a given signal yd = . sin(.t), we select
the scheme

z = y – yd,

z = x – α – ẏd,

α = –z – .Ŵz – ε̂(.z),

α = –.z – .Ŵ z – ε̂(.z),

˙̂W = .z
 + .z

 tanh(.z) – .ε̂,

˙̇τ = Proj(–�τ vzn), ̂ ∈ �τ ,

ǔj = τ̂(α + ÿd) + τ̂, + τ̂,, j = , ,

with �τ = I, where I denotes the  × identity matrix. The initial parameter estimates
are set as Ŵ () = , ε̂() = ., and τ̂ () = [., ., .]T . Figures - demonstrate the cor-
responding simulation results.

4.2 B. Example 2
We consider the subsystem of the cascade chemical reactor system as in [, ]:

ẋ = x + φ + x�,

ẋ = φ + bu + bu,

y = x.

()

In the system,

φ =
(q + qR)Td


V

–
x + Td


V

(q + qR) –
Cd

A
αλ

ρcρ

e
– Ea

R(x+Td
 ) –

UA
ρcρV

(
x + Td

 – Td
j
)
, ()

and

φ =
UA

ρcρV

[
qj

Vj

(
Td

j –
ρcρVx

UA
– Td

j

)
+

UA
ρjcjVj

(
x + Td

 –
ρcρVx

UA
– Td

j

)]
,
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Figure 1 y and yr .

Figure 2 y – yr .

Figure 3 u1 and u2.

where q and q = q + qR are the flows of reactants, b = UAqj
ρcρVVj

and b = UAqj
ρcρVVj

denote
the control coefficients, V represents the volume of the reactor. The system parameters
are given in Table . The system is initialized as x() = ., x() = , x() = , and
u() = u() = . In the simulation, the failure case studied is given by

u = uc,

u = uc, t ∈ [
hT �, (h + )T �

]
, h = , , , . . . ,

u = .uc, ()

u = , t ∈ [
hT �, (h + )T �

]
, h = , , , . . . , ()
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Table 1 Parameters of the cascade chemical reactor system

q = 2.8317 m3/h qR = 1.4158m3/h V = 1.3592 m3

Td1 = 750 ◦C Td2 = 737.5 ◦C CdA2 = 10.4178 mol/m3

α = 7.08× 1010 h–1 λ = –3.1644× 107 h–1 ρ = 800.9189 kg/m3

cρ = 1395.3 J/kg◦C Ea = 3.1644× 107 J/mol R = 1679.2 J/mol◦C
U = 1.3625× 107 J/hm2◦C A = 23.2 m2 Tdj2 = 727.6 ◦C
qj2 = 1.4130 m3/h Tdj20 = 608.2 ◦C ρj = 997.9450 kg/m3

cj = 1860.3 J/kg◦C V = 0.1090 m3

where ǔj is the jth actuator input for j = , , and T � =  s denotes the minimum length
of time intervals between two successive jumps of failure parameters; b = ., bM = ,
κ = ., and ufM =  are employed to construct the projection adaptation law (), and
then the compact set �τ in () is computed as

�τ = [τ, τ,, τ,]T |. ≤ τ ≤ ., –. ≤ τ, ≤ ., j = , ]. ()

To make all the signals bounded and y follow a given signal yd = , we select the scheme

z = y – yd,

z = x – α – ẏd,

α = –z – .Ŵz – ε̂(.z),

α = –.z – .Ŵ z – ε̂(.z),

˙̂W = .z
 + .z

 tanh(.z) – .ε̂,

˙̇τ = Proj(–�τ vzn), ̂ ∈ �τ ,

ǔj = τ̂(α + ÿd) + τ̂, + τ̂,, j = , ,

with �τ = I, where I denotes the  × identity matrix. The initial parameter estimates
are set as Ŵ () = , ε̂() = ., and τ̂ () = [., ., .]T . Figures - demonstrate the cor-
responding simulation results.

4.3 C. Conclusions
In this papedr, we investigate the issue of adaptive finite-time tracking for a class of non-
linearity systems with hysteresis. On the basis of the approximation capability of fuzzy
logic systems, we give an adaptive law and an intermediate control function. Moreover,
we proved that the aforementioned approach can make the system SGPFS.

In comparison with the tuning function control schemes in [–], which also focus on
adaptive actuator failure compensation problem, the framework of our control is further
simplified by using RBFNN, as seen in ()-(). Moreover, with respect to the previous
fault-tolerant controllers such as [, ], our scheme additionally contains an optimized
neural network adaptation mechanism, which renders that there are only two estimates,
that is, Ŵi and ε need to be computed online. The control scheme in [] is under the
presupposition that the systems have a nonstrict-feedback structure. Our control scheme
relaxes the restriction of system structure so that the method in this note is more meaning-
ful. In this sense, the presented study is more computationally attractive and thus feasible
in practical implementation in comparison with other existing results.
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Figure 4 y and yr .

Figure 5 y – yr .

Figure 6 u1 and u2.
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