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Abstract
This paper deals with the analytical solutions for two models of special interest in
mathematical physics, namely the (2 + 1)-dimensional generalized
Calogero-Bogoyavlenskii-Schiff equation and the (3 + 1)-dimensional generalized
Boiti-Leon-Manna-Pempinelli equation. Using a modified version of the Fan
sub-equation method, more new exact traveling wave solutions including triangular
solutions, hyperbolic function solutions, Jacobi and Weierstrass elliptic function
solutions have been obtained by taking full advantage of the extended solutions of
the general elliptic equation, showing that the modified Fan sub-equation method is
an effective and useful tool to search for analytical solutions of high-dimensional
nonlinear partial differential equations.
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1 Introduction
Nonlinear partial differential equations (NLPDEs) are important mathematical models to
describe physical phenomena. They are also an important field in the contemporary study
of nonlinear physics, especially in soliton theory. The research on the explicit solution and
integrability is helpful in clarifying the movement of the matter under nonlinear interac-
tion and plays an important role in scientifically explaining the physical phenomena. See,
for example, fluid mechanics, plasma physics, optical fibers, solid state physics, chemical
kinematic, chemical physics and geochemistry. In the present paper, we will consider the
following two high-dimensional nonlinear equations:

αuxt + βuxuxy + δuyuxx + uxxxy = 0 (1.1)

and

uxxxy – 3(uxuy)x – 2uyt + 3uyz = 0. (1.2)

Equation (1.1) [1] is the (2 + 1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff
(GCBS) equation, where the parameter α �= 1, β , δ are arbitrary nonzero constants. It con-
tains the following famous NLPDEs:
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(i) Bogoyavlenskii-Schiff equation

4uxt + 4uxuxy + 2uyuxx + uxxxy = 0. (1.3)

(ii) Breaking soliton equation

uxt – 4uxuxy – 2uyuxx + uxxxy = 0. (1.4)

(iii) Calogero-Bogoyavlenskii-Schiff equation

4uxt + 8uxuxy + 4uyuxx + uxxxy = 0. (1.5)

So it is very meaningful to further study equation (1.1). In particular, we can also get the
solutions of (1.3)-(1.5).

Equation (1.2) is a generalization of the Boiti-Leon-Manna-Pempinelli (GBLMP) equa-
tion. If we take z = t, equation (1.2) is reduced to the following BLMP equation [2, 3]:

uxxxy + uyt – 3uxxuy – 3uxuxy = 0.

Searching for traveling wave solutions of NLPDEs acts a pivotal part in the study of non-
linear physical phenomena. In the past decades, much effort has been spent on the con-
struction of exact solutions of NLPDEs, and many powerful methods have been developed
such as inverse scattering transform [4], Bäcklund and Darboux transform [5–7], Hirota
bilinear method [8], tanh-function method and extended tanh-function method [9–11],
Fan sub-equation method [12, 13], G′/G method [14, 15], F-expansion method [16] and so
on. Among these methods, the Fan sub-equation method not only gives a unified forma-
tion to construct various traveling wave solutions, but also provides a guideline to classify
the various types of traveling wave solutions according to five parameters.

Yomba [17] and Soliman and Abdou [18] extended the Fan sub-equation method to
show that the general elliptic equation can be degenerated in some special conditions
to the Riccati equation, first-kind elliptic equation, and generalized Riccati equation. Re-
cently, Zhang and Peng [19] proposed and used a modification of the Fan sub-equation
method with symbolic computation to construct a series of traveling wave solutions for
the (3 + 1)-dimensional potential YTSF equation. These methods show the effectiveness
of the modified Fan sub-equation method in handling the solution process of NLPDEs.

Motivated by the work described in the above three papers, in this paper, using Zhang
and Peng’s modification of the Fan sub-equation method, we construct the exact traveling
wave solutions for the above mentioned two high-dimensional nonlinear equations by
taking full advantage of the extended solutions of the following general elliptic equation:

(
dϕ(ξ )

dξ

)2

= h0 + h1ϕ(ξ ) + h2ϕ
2(ξ ) + h3ϕ

3(ξ ) + h4ϕ
4(ξ ). (1.6)

In some special cases, when h0 �= 0, h1 �= 0, h2 �= 0, h3 �= 0 and h4 �= 0, there may exist three
parameters r, p and q such that

(
dϕ(ξ )

dξ

)2

= h0 + h1ϕ(ξ ) + h2ϕ
2(ξ ) + h3ϕ

3(ξ ) + h4ϕ
4(ξ ) =

(
r + pϕ(ξ ) + qϕ2(ξ )

)2. (1.7)
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Equation (1.7) is satisfied only if the following relations hold:

h0 = r2, h1 = 2rp, h2 = 2rq + p2, h3 = 2pq, h4 = q2. (1.8)

When h2 = 0 and h0 �= 0, h1 �= 0, h3 �= 0 and h4 �= 0, there may exist three parameters r, p
and q such that

(
dϕ(ξ )

dξ

)2

= h0 + h1ϕ(ξ ) + h3ϕ
3(ξ ) + h4ϕ

4(ξ ) =
(
r + pϕ(ξ ) + qϕ2(ξ )

)2. (1.9)

Equation (1.9) requires for its existence the following relations:

h0 = r2, h1 = 2rp, h3 = 2pq, h4 = q2, p2 = –2rq, rq < 0. (1.10)

Thus, for (1.7) and (1.9), the general elliptic equation is reduced to the generalized Riccati
equation [20].

When h0 = h1 = 0, the general elliptic equation is reduced to the auxiliary ordinary equa-
tion [21]

(
dϕ(ξ )

dξ

)2

= h2ϕ
2(ξ ) + h3ϕ

3(ξ ) + h4ϕ
4(ξ ). (1.11)

When h1 = h3 = 0, the general elliptic equation is reduced to the elliptic equation

(
dϕ(ξ )

dξ

)2

= h0 + h2ϕ
2(ξ ) + h4ϕ

4(ξ ). (1.12)

Equation (1.12) includes the Riccati equation

(
dϕ(ξ )

dξ

)2

=
(
A + ϕ2(ξ )

)2, (1.13)

when h0 = A2, h2 = 2A, h4 = 1, and solutions of (1.13) can be deduced from those of (1.12)
in the specific case where the modulus m of the Jacobi elliptic functions (solutions of
(1.12)) is driven to 1 and 0.

When h2 = h4 = 0, the general elliptic equation is reduced to the following:

(
dϕ(ξ )

dξ

)2

= h0 + h1ϕ(ξ ) + h3ϕ
3(ξ ). (1.14)

The rest of this paper is organized as follows. In Section 2, we describe and further
develop Zhang and Peng’s modification of the Fan sub-equation method by making good
use of the extended solutions of the general elliptic equation. In Section 3, we apply the
modified Fan sub-equation method to solve the above mentioned two high-dimensional
nonlinear equations, and more new exact traveling wave solutions are explicitly obtained.
In Section 4, some conclusions are given.
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2 Modification of the Fan sub-equation method
For a given NLPDE with independent variables x = (x0 = t, x1, x2, . . . , xm) and dependent
variable u,

F(u, ut , uxi , uxixj , . . .), (2.1)

where F is in general a polynomial function of its argument, and the subscripts denote the
partial derivatives. By using the traveling wave transformation, (2.1) possesses the follow-
ing ansatz:

u = u(ξ ), ξ =
m∑

i=0

kixi, (2.2)

where ki (i = 0, . . . , m) are undetermined constants. Substituting (2.2) into (2.1) yields an
ODE

Q
(
u, u(r), u(r+1), . . .

)
= 0, (2.3)

where u(r) = dru
dξ r , u(r+1) = dr+1u

dξ r+1 , r ≥ 1, and r is the least order of derivatives in the equation.
To keep the solution process as simple as possible, the function Q should not be a total
ξ -derivative of another function. Otherwise, taking integration with respect to ξ further
reduces the transformed equation.

Further introduce

u(r)(ξ ) = υ(ξ ) =
n∑

i=1

αiϕ
i + α0, (2.4)

where ϕ = ϕ(ξ ) satisfies (1.6), while α0, αi (i = 1, 2, . . . , n) are constants to be determined
later.

To determine u(ξ ) explicitly, one may take the following four steps:
Step 1. Determine the value of n by balancing the highest-order nonlinear term(s) and

the highest-order partial derivative in (2.3).
Step 2. With the aid of Maple, substitute (2.4) along with (1.6) into (2.3) to derive a

polynomial in ϕ. Set all the coefficients of the polynomial to zero to derive a set of algebraic
equations for ki (i = 0, . . . , m), α0 and αi (i = 1, . . . , n).

Step 3. Apply Wu-elimination method [22] to solve the above algebraic equations de-
rived in Step 2, which yields the values of ki (i = 0, . . . , m), α0 and αi (i = 1, . . . , n).

Step 4. Use the results obtained in the above steps to derive a series of fundamental
solutions ϕI

l ,ϕII
l ,ϕIII

l ,ϕIV
l and ϕV

l to (1.6) depending on the different values chosen for h0,
h1, h2, h3 and h4 [17, 21]. The superscripts I, II, III, IV and V determine the group of
solutions, while the subscript l determines the rank of the solution. Then obtain exact
solutions of (2.1) by integrating each of the obtained fundamental solutions υ(ξ ) with
respect to ξ , r times:

u(ξ ) =
∫ ξ ∫ ξr

· · ·
∫ ξ2

υ(ξ1) dξ1 · · · dξr–1 dξr +
r∑

j=1

djξ
r–j, (2.5)

where dj (j = 1, 2, . . . , r) are arbitrary constants.
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3 Application to evolution equations from mathematical physics
3.1 GCBS equation
In this subsection we consider the (2 + 1)-dimensional GCBS equation (1.1). Using trans-
formation (2.2) (here we denote ξ = ax + by – ωt), we reduce (1.1) into an ODE equation
in the form

–aαωu′′ + (β + δ)a2bu′u′′ + a3bu(4) = 0. (3.1)

Integrating (3.1) once with respect to ξ and setting the integration constant to zero yields

–aαωu′ +
1
2

(β + δ)a2b
(
u′)2 + a3bu(3) = 0. (3.2)

Further setting r = 1 and u′ = υ , we have

–aαωυ +
1
2

(β + δ)a2b(υ)2 + a3bυ ′′ = 0. (3.3)

According to Step 1, we get 2n = n + 2; hence n = 2. We then suppose that (3.3) has the
formal solution:

υ = α2ϕ
2 + α1ϕ + α0. (3.4)

Substituting (3.4) along with (1.6) into (3.3) and collecting all terms with the same order
of ϕ together, the left-hand side of (3.3) is converted into a polynomial in ϕ. Setting each
coefficient of the polynomial to zero, we derive a set of algebraic equations for a, b, ω, α0,
α1, α2 as follows:

ϕ0 : a3bα1h1 + 4a3bα2h0 + a2bβα0
2 + a2bδα0

2 – 2aαωα0 = 0,

ϕ1 : a3bα1h2 + 3a3bα2h1 + a2bβα0α1 + a2bδα0α1 – aαωα1 = 0,

ϕ2 : 3a3bα1h3 + 8a3bα2h2 + 2a2bβα0α2 + a2bβα1
2 + 2a2bδα0α2

+ a2bδα1
2 – 2aαωα2 = 0,

ϕ3 : 2a3bα1h4 + 5a3bα2h3 + a2bβα1α2 + a2bδα1α2 = 0,

ϕ4 : 12a3bα2h4 + a2bβα2
2 + a2bδα2

2 = 0.

(3.5)

Solving the set of algebraic equations by using Maple, we can obtain many kinds of solu-
tions depending on the special values chosen for hi (i = 0, . . . , 4).

Case I. When h0 = r2, h1 = 2rp, h2 = 2rq + p2, h3 = 2pq, h4 = q2, from (3.5) we have

α2 = –
12aq2

β + δ
, α1 = –

12apq
β + δ

, α0 = –
12aqr
β + δ

, ω =
(p2 – 4qr)a2b

α
(3.6)

and

α2 = –
12aq2

β + δ
, α1 = –

12apq
β + δ

,

α0 = –
2a(p2 + 2qr)

β + δ
, ω = –

(p2 – 4qr)a2b
α

.
(3.7)
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We, therefore, have

υ = –
12aq2

β + δ
ϕ2 –

12apq
β + δ

ϕ –
12aqr
β + δ

, ω =
(p2 – 4qr)a2b

α
(3.8)

and

υ = –
12aq2

β + δ
ϕ2 –

12apq
β + δ

ϕ –
2a(p2 + 2qr)

β + δ
, ω = –

(p2 – 4qr)a2b
α

. (3.9)

For simplification, in the rest of this paper, we introduce that

M =
1
2
√

p2 – 4qr, N =
1
2
√

4qr – p2.

Note that ϕ is one of the twenty four ϕI
l (l = 1, 2, . . . , 24). For example, if we select l = 17,

by using (2.5) we can obtain the following traveling wave solutions:

u1(ξ ) = –
6aN
β + δ

[
tan

(
1
2

Nξ

)
– cot

(
1
2

Nξ

)]
+ d1, (3.10)

where ξ = ax + by + 4N2a2b
α

t, d1 is an arbitrary constant;

u2(ξ ) = –
6aN
β + δ

[
tan

(
1
2

Nξ

)
– cot

(
1
2

Nξ

)]
+

8aN2

β + δ
ξ + d1, (3.11)

where ξ = ax + by – 4N2a2b
α

t, d1 is an arbitrary constant.

More fundamental solutions

Using ansatz (3.9), similarly, we can obtain a series of the fundamental solutions for (1.1)
as follows.

Family 1: When p2 – 4qr > 0,

uI
1,2(ξ ) =

12aM
β + δ

tanh(Mξ ) –
8aM2

β + δ
ξ + d1;

uI
2,2(ξ ) = –

8a
β + δ

M2ξ +
12aM
β + δ

coth(Mξ ) + d1;

uI
3,2(ξ ) = –

a
β + δ

[
±12pi arctan

(
e2Mξ

) ∓ 6pi arctan
(
sinh(2Mξ )

)
+ 8M2ξ

+
12Mi

cosh(2Mξ )
– 12M tanh(2Mξ )

]
+ d1;

uI
4,2(ξ ) = –

a
β + δ

[
∓12p arctan

(
e2Mξ

) ∓ 6p ln
(
tanh(Mξ )

)
+ 8M2ξ

– 12M coth(2Mξ ) ∓ 12M
sinh(2Mξ )

]
+ d1;

uI
5,2(ξ ) =

6aM
β + δ

[
tanh

(
1
2

Mξ

)
+ coth

(
1
2

Mξ

)]
–

8aM2

β + δ
+ d1;

uI
6,2(ξ ) =

a
2B(β + δ)[A sinh(2Mξ ) + B]

[
–16ABM2 sinh(2Mξ )ξ
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+ 24AM
(
A +

√
A2 + B2

)
sinh(2Mξ ) + 48ABM cosh2(Mξ )

– 16B2M2ξ
]

+ d1,

uI
7,2(ξ ) =

a
(A – B)(β + δ)[2A cosh2(Mξ ) – A + B]

[
8(A – B)2M2ξ

+ 12AM(A – B) sinh(2Mξ ) + 24AM
√

B2 – A2 cosh2(Mξ )

– 16AM2(A – B) cosh2(Mξ )ξ
]

+ d1,

where A and B are two nonzero real constants satisfying B2 – A2 > 0;

uI
8,2(ξ ) =

–2a[L1(ξ ) tanh2( 1
2 Mξ ) + L2(ξ ) tanh( 1

2 Mξ ) + L1(ξ )]
p(β + δ)[p tanh2( 1

2 Mξ ) – 4M tanh( 1
2 Mξ ) + p]

+ d1,

where

L1(ξ ) = 4M2p2ξ , L2(ξ ) = –16pM3ξ – 48Mqr;

uI
9,2(ξ ) =

–8a[M3 tanh2( 1
2 Mξ )ξ – M2p tanh( 1

2 Mξ )ξ + 3qr tanh( 1
2 Mξ ) + M3ξ ]

(β + δ)[M tanh2( 1
2 Mξ ) – p tanh( 1

2 Mξ ) + M]
+ d1;

uI
10,2(ξ ) =

96aqrM
(β + δ)(2M ± pi)[(2M ± pi) tanh(Mξ ) ∓ 2Mi – p]

–
8M2aξ

β + δ
+ d1;

uI
11,2(ξ )+ = –

48aqrM
p(β + δ)[–p tanh(Mξ ) + 2M]

–
8M2aξ

β + δ
+ d1;

uI
11,2(ξ )– = –

24aqr
(β + δ)[2M tanh(Mξ ) – p]

–
8M2aξ

β + δ
+ d1;

uI
12,2(ξ ) = uI

9,2(ξ ).

Family 2: When p2 – 4qr < 0,

uI
13,2(ξ ) = –

12aN
β + δ

tan(Nξ ) +
8aN2

β + δ
ξ + d1;

uI
14,2(ξ ) =

12aN
β + δ

cot(Nξ ) +
8aN2

β + δ
ξ + d1;

uI
15,2(ξ ) = –

12aN
β + δ

[
tan(2Nξ ) ± sec(2Nξ )

]
+

8aN2

β + δ
ξ + d1;

uI
16,2(ξ ) =

12aN
β + δ

[
cot(2Nξ ) ± csc(2Nξ )

]
+

8aN2

β + δ
ξ + d1;

uI
17,2(ξ ) =

6aN
β + δ

[
cot

(
1
2

Nξ

)
– tan

(
1
2

Nξ

)]
+

8aN2

β + δ
ξ + d1;

uI
18,2(ξ ) =

a
B(β + δ)[A sin(2Nξ ) + B]

[
8ABN2 sin(2Nξ )ξ + 24ABN cos2(Nξ )

+ 12AN
(
A ± √

A2 – B2
)

sin(2Nξ ) + 8B2N2ξ
]

+ d1,

uI
19,2(ξ ) =

a
(A – B)(β + δ)[A cos(2Nξ ) + B]

[±24AN
√

A2 – B2 cos2(Nξ )

– 12AN(A – B) sin(2Nξ ) + 16AN2(A – B) cos2(Nξ )ξ – 8N2(A – B)2ξ
]

+ d1,
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where A and B are two nonzero real constants satisfying A2 – B2 > 0;

uI
20,2(ξ ) =

24aqr
(β + δ)[2N tan(Nξ ) + p]

+
8aN2

β + δ
ξ + d1;

uI
21,2(ξ ) =

48aqrN
p(β + δ)[p tan(Nξ ) – 2N]

+
8aN2

β + δ
ξ + d1;

uI
22,2(ξ ) =

96aqrN
(β + δ)(2N ∓ p)[(2N ∓ p) tan(Nξ ) ± 2N + p]

+
8aN2

β + δ
ξ + d1;

uI
23,2(ξ )+ =

48aqrN
p(β + δ)[p tan(Nξ ) – 2N]

+
8aN2

β + δ
ξ + d1;

uI
23,2(ξ )– =

24aqr
(β + δ)[2N tan(Nξ ) + p]

+
8aN2

β + δ
ξ + d1;

uI
24,2(ξ ) = uI

21,2(ξ );

where ξ = ax + by – 4N2a2b
α

t, d1 is an arbitrary constant.
Case II. When h0 = r2, h1 = 2rp, h2 = 0, h3 = 2pq, h4 = q2 and p2 = –2rq, from (3.5) we

have

α2 = –
12aq2

β + δ
, α1 = –

12apq
β + δ

, α0 = 0, ω = –
3a2bp2

α
(3.12)

and

α2 = –
12aq2

β + δ
, α1 = –

12apq
β + δ

, α0 =
6ap2

β + δ
, ω =

3a2bp2

α
. (3.13)

We, therefore, have

υ = –
12aq2

β + δ
ϕ2 –

12apq
β + δ

ϕ, ω = –
3a2bp2

α
(3.14)

and

υ = –
12aq2

β + δ
ϕ2 –

12apq
β + δ

ϕ +
6ap2

β + δ
, ω =

3a2bp2

α
. (3.15)

Note that ϕ is one of the twelve ϕII
l (l = 1, 2, . . . , 12). For example, if we select l = 2, by

using (2.5), we can obtain the following traveling wave solutions:

u3(ξ ) = –
8a

√
–6qr

β + δ
ln

∣∣∣∣coth

(
1
2
√

–6qrξ
)

+ 1
∣∣∣∣ +

6a
√

–6qr
β + δ

coth

(
1
2
√

–6qrξ
)

–
4a(2

√
–6qr ± 3

√
–2qr – 3p)

β + δ
ln

∣∣∣∣sinh

(
1
2
√

–6qrξ
)∣∣∣∣

± 6ap
√

–2qr
β + δ

ξ + d1, (3.16)
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where ξ = ax + by + 3a2bp2

α
t, d1 is an arbitrary constant;

u4(ξ ) = –
8a

√
–6qr

β + δ
ln

∣∣∣∣coth

(
1
2
√

–6qrξ
)

+ 1
∣∣∣∣ +

6a
√

–6qr
β + δ

coth

(
1
2
√

–6qrξ
)

–
4a(2

√
–6qr ± 3

√
–2qr – 3p)

β + δ
ln

∣∣∣∣sinh

(
1
2
√

–6qrξ
)∣∣∣∣

+
6ap(±√

–2qr + p)
β + δ

ξ + d1, (3.17)

where ξ = ax + by – 3a2bp2

α
t, d1 is an arbitrary constant.

More fundamental solutions

Using ansatz (3.15), if we select l = 5, 8, similarly, we can obtain more fundamental so-
lutions for (1.1) as follows.

uII
5,2(ξ ) = –

12ap
β + δ

ln

∣∣∣∣coth

(
1
4
√

–6qrξ
)

– tanh

(
1
4
√

–6qrξ
)∣∣∣∣

+
3a

√
–6qr

β + δ

[
tanh

(
1
4
√

–6qrξ
)

+ coth

(
1
4
√

–6qrξ
)]

∓ 12a
√

–2qr
β + δ

ln

[
sinh

(
1
2
√

–6qrξ
)]

+
6a(4qr ± p

√
–2qr + p2)

β + δ
ξ + d1;

uII
8,2(ξ ) =

–2aM(ξ )√–qr(β + δ)(tanh2 Y + 2
√

3 tanh Y + 1)
+ d1,

where

M(ξ ) = –6
√

–qr(p +
√

–2qr)
(
1 + tanh2 Y

)
ln

[√
–qr

(
tanh2 Y + 2

√
3 tanh Y + 1

)]
– 12

√
–3qr(p +

√
–2qr) tanh Y ln

[√
–qr

(
tanh2 Y + 2

√
3 tanh Y + 1

)]
– 24

√
–3qr(p +

√
–2qr) tanh Y ln(cosh Y )

– 3 ln 2
√

–qr(p +
√

–2qr)
(
tanh2 Y + 1

)
– 2

√
6
(
p2 – p

√
–2qr + 4qr

)(
tanh2 Y + 1

) · Y

– 12
√

2
(
p2 – p

√
–2qr + 4qr

)
tanh Y · Y

– 6
√

3 ln 2
√

–qr(p +
√

–2qr) tanh Y – 12
√

6qr tanh Y

– 12
√

–qr(p +
√

–2qr)
(
tanh2 Y + 1

)
ln(cosh Y ),

with Y = 1
4
√

–6qrξ , ξ = ax + by – 3a2bp2

α
t, d1 is an arbitrary constant.

Case III. If h0 = h1 = 0, h2, h3, h4 are arbitrary constants, the system does not admit any
solution of this group.

Case IV. If h1 = h3 = 0, when h2
2 – 3h0h4 > 0, from (3.5) we have

α2 = –
12ah4

β + δ
, α1 = 0,

α0 =
4a(–h2 ± √

h2
2 – 3h0h4)

β + δ
, ω = ±4a2b

√
h2

2 – 3h0h4

α
.

(3.18)
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We, therefore, have

υ = –
12ah4

β + δ
ϕ2 +

4a(–h2 ± √
h2

2 – 3h0h4)
β + δ

, ω = ±4a2b
√

h2
2 – 3h0h4

α
. (3.19)

Note that ϕ is one of the sixteen ϕIV
l (l = 0, . . . , 16). For example, if we select l = 4, then

h0 = m2 – 1, h2 = 2 – m2, h4 = –1. Using (2.5), we can obtain the following traveling wave
solutions:

u5(ξ ) =
12a
β + δ

E(φ, m) +
4a(m2 – 2 ± √

m4 – m2 + 1)
β + δ

ξ + d1, (3.20)

where ξ = ax + by ∓ 4a2b
√

m4–m2+1
α

t, E(φ, m) is the second kind elliptic integral, φ =
arcsin(snξ ) is the argument of ξ , d1 is an arbitrary constant.

In the limit case when m → 1, the solutions (3.20) become

u51(ξ ) =
12a
β + δ

tanh(ξ ) +
4a(–1 ± 1)

β + δ
ξ + d1, (3.21)

where ξ = ax + by ∓ 4a2b
α

t, d1 is an arbitrary constant.
When m → 0, the solutions (3.20) become a rational solution

u52(ξ ) =
4a(1 ± 1)

β + δ
ξ + d1, (3.22)

where ξ = ax + by ∓ 4a2b
α

t, d1 is an arbitrary constant.
When h2

2 – 3h0h4 < 0, from (3.5) we have

α2 = –
12ah4

β + δ
, α1 = 0,

α0 =
–4a(h2 ∓ i

√
3h0h4 – h2

2)
β + δ

, ω = ±4a2b
√

3h0h4 – h2
2

α
i.

Note that in this case ϕ may be one of ϕIV
l (l = 1, 2, 13, 15). For example, if we select l = 1,

i.e., h4 = m2, h2 = –(1 – m2), h0 = 1, which satisfy h2
2 – 3h0h4 < 0 for

√
7–

√
3

2 < m ≤ 1. Using
(2.5), we can obtain the following traveling wave solutions:

uIV
1 (ξ ) =

12a
β + δ

E(φ, m) –
4a(2 + m2 ∓ i

√
5m2 – m4 – 1)

β + δ
ξ + d1, (3.23)

where ξ = ax + by ∓ i 4a2b
√

5m2–m4–1
α

t, E(φ, m) is the second kind elliptic integral, φ =
arcsin(snξ ) is the argument of ξ , d1 is an arbitrary constant.

In the limit case when m → 1, the solutions (3.23) become

uIV
1,1(ξ ) =

12a
β + δ

tanh ξ –
4a(3 ∓ i

√
3)

β + δ
ξ + d1, (3.24)

where ξ = ax + by ∓ i 4a2b
√

3
α

t, d1 is an arbitrary constant.
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Case V. If h2 = h4 = 0, h3 > 0, h0, h1 are arbitrary constants, from (3.5) we have

α2 = 0, α1 = –
3ah3

β + δ
, α0 = ±α

√
3h1h3

β + δ
i, ω = ±a2b

√
3h1h3

α
i. (3.25)

We, therefore, have

υ = –
3ah3

β + δ
ϕ ± α

√
3h1h3

β + δ
i, ω = ±a2b

√
3h1h3

α
i. (3.26)

Substituting the corresponding solutions [17] of (1.6) into (3.26) and using (2.5), we can
obtain a Weierstrass elliptic function solution

u6(ξ ) = –
3ah3

β + δ

∫ ξ

℘

(√
h3

2
ξ1, g2, g3

)
dξ1 ± α

√
3h1h3i

β + δ
ξ + d1, (3.27)

where ξ = ax + by ∓ a2b
√

3h1h3i
α

t, g2 = – 4h1
h3

, g3 = – 4h0
h3

, d1 is an arbitrary constant.

Remark 3.1 In this case (in the condition of (1.14)), the solution is a Weierstrass elliptic
doubly periodic type solution only for h3 > 0, so we just consider the case h3 > 0. If h1 < 0,
then imaginary number i appears again in (3.25), (3.26) and (3.27), and then other steps
can be considered in a similar way.

3.2 GBLMP equation
In this subsection we consider the (3 + 1)-dimensional GBLMP equation (1.2). Note that
since each term of equation (1.2) contains a partial derivative with respect to y, for the
convenience of calculation, we denote transformation (2.2) by ξ = ax + y + cz – ωt, then
we reduce (1.2) into an ODE equation in the form

a3u(4) – 6a2u′u′′ + 2ωu′′ + 3cu′′ = 0. (3.28)

Integrating (3.28) once with respect to ξ and setting the integration constant to zero
yields

a3u(3) – 3a2(u′)2 + (2ω + 3c)u′ = 0. (3.29)

Further setting r = 1 and u′ = υ , we have

a3υ ′′ – 3a2(υ)2 + (2ω + 3c)υ = 0. (3.30)

According to Step 1, we get 2n = n + 2; hence n = 2. We then suppose that (3.30) has the
formal solution

υ = α2ϕ
2 + α1ϕ + α0. (3.31)

Substituting (3.31) along with (1.6) into (3.30) and collecting all terms with the same
order of ϕ together, the left-hand side of (3.30) is converted into a polynomial in ϕ. Setting
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each coefficient of the polynomial to zero, we derive a set of algebraic equations for a, c,
ω, α0, α1, α2 as follows:

ϕ0 : a3α1h1 + 4a3α2h0 – 6a2α0
2 + 6cα0 + 4ωα0 = 0,

ϕ1 : a3α1h2 + 3a3α2h1 – 6a2α0α1 + 3cα1 + 2ωα1 = 0,

ϕ2 : 3a3α1h3 + 8a3α2h2 – 12a2α0α2 – 6a2α1
2 + 6cα2 + 4ωα2 = 0,

ϕ3 : 2a3α1h4 + 5a3α2h3 – 6a2α1α2 = 0,

ϕ4 : 2a3α2h4 – a2α2
2 = 0.

(3.32)

Solving the set of algebraic equations by using Maple, similarly, we can get the solutions
α2, α1, α0 and ω depending on the special values chosen for hi (i = 0, . . . , 4). Note that
ϕ(ξ ) intervening in (3.31) may be one of ϕI

l (ξ ) or ϕII
l (ξ ) or ϕIV

l (ξ ) or ϕV
l (ξ ), using (2.5)

we can have many kinds of solutions. For the limit of length, we only consider Case I
here.

When h0 = r2, h1 = 2rp, h2 = 2rq + p2, h3 = 2pq, h4 = q2, from (3.32) we have

α2 = 2aq2, α1 = 2apq,

α0 = 2aqr, ω = –
1
2

a3p2 + 2a3qr –
3
2

c
(3.33)

and

α2 = 2aq2, α1 = 2apq,

α0 =
1
3

ap2 +
2
3

aqr, ω =
1
2

a3p2 – 2a3qr –
3
2

c.
(3.34)

We, therefore, have

υ = 2aq2ϕ2 + 2apqϕ + 2aqr, ω = –
1
2

a3p2 + 2a3qr –
3
2

c (3.35)

and

υ = 2aq2ϕ2 + 2apqϕ +
1
3

ap2 +
2
3

aqr, ω =
1
2

a3p2 – 2a3qr –
3
2

c. (3.36)

Note that ϕ is one of the twenty four ϕI
l (l = 1, 2, . . . , 24). For example, if we select l = 5,

by using (2.5) we can obtain the following traveling wave solutions:

u7(ξ ) = –aM
[

tanh

(
1
2

Mξ

)
+ coth

(
1
2

Mξ

)]
+ d1, (3.37)

where ξ = ax + y + cz + ( 1
2 a3p2 – 2a3qr + 3

2 c)t, d1 is an arbitrary constant;

u8(ξ ) = –aM
[

tanh

(
1
2

Mξ

)
+ coth

(
1
2

Mξ

)]
+

4aM2

3
ξ + d1, (3.38)

where ξ = ax + y + cz – ( 1
2 a3p2 – 2a3qr – 3

2 c)t, d1 is an arbitrary constant.
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More fundamental solutions

Using ansatz (3.36), if we select l = 2, 8, 20, similarly, we can obtain more fundamental
solutions for (1.2) as follows.

uuI
2,2(ξ ) = –2aM coth(Mξ ) +

1
3

ap2ξ –
4
3

aqrξ + d1;

uuI
8,2(ξ ) =

–aN(ξ )
6pM(p tanh2 Y – 4M tanh Y + p)

+ d1,
(3.39)

where

N(ξ ) = –4p2(p2 + 8qr
)

tanh2 Y · Y + 16pM
(
p2 + 8qr

)
tanh Y · Y

+ 96qrM2 tanh Y – 4p2(p2 + 8qr
)
Y ,

with Y = 1
2 Mξ ;

uuI
20,2(ξ ) = –

a
3(2N tan(Nξ ) + p)

[
8N3 tan(Nξ )ξ

+ 4pN2ξ + 12qr
]

+ d1;

where ξ = ax + y + cz – ( 1
2 a3p2 – 2a3qr – 3

2 c)t, d1 is an arbitrary constant.

Remark 3.2 All of the solutions presented in Section 3 have been checked with Maple 17
by putting them back into the original equations and the number of arbitrary constants
has been reduced to a minimum.

Remark 3.3 Most of the solutions presented in Section 3 (e.g., (3.16), (3.17), (3.20) and
(3.27)) cannot be obtained by means of the Riccati equation expansion method [23] and
its existing improvements like the one in [24]. To the best of our knowledge, they have not
been reported in literature.

4 Conclusions
In this paper, we used and further developed Zhang and Peng’s modification of the Fan
sub-equation method, and many exact solutions of the (2+1)-dimensional GCBS equation
and the (3 + 1)-dimensional GBLMP equation were successfully found out. The obtained
results show the effectiveness and advantages of the modified Fan sub-equation method
in handling the solution process of high-dimensional NLPDEs.

It is necessary to point out that in Step 3, to make the work feasible, how to choose
appropriately variables in the ansatz would be the key step in the computation to find out
a useful solution of the algebraic equations.

It is interesting to note that research on solving fractional PDEs has attracted much
attention recently, and there have been some new developments especially in solving
time-fractional PDEs of the Fan sub-equations method (e.g., [25, 26]). However, searching
for exact analytical solutions of nonlinear fractional PDEs is still on a preliminary stage.
It is difficult to extend the methods for NLPDEs to fractional PDEs. Very recently, the
known variable separation method has been extended to such fractional PDEs with initial
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and boundary conditions [27]. So, extending the work in the present paper is worthy of
study.
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