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Abstract
We investigate the averaging principle for multivalued stochastic differential
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1 Introduction
Most systems in science and industry are perturbed by some random environmental ef-
fects described by stochastic differential equations with (fractional) Brownian motion,
Lévy process, Poisson process, and so on. A series of useful theories and methods have
been proposed to explore stochastic differential equations, such as invariant manifolds
[1–3], averaging principle [3–12], homogenization principle, and so on. All these theories
and methods develop to extract an effective dynamics from these stochastic differential
equations, which is more effective for analysis and simulation. Averaging principle is often
used to approximate dynamical systems with random fluctuations and provides a power-
ful tool for simplifying nonlinear dynamical systems. The essence of averaging principle
is to establish an approximation theorem for a simplified stochastic differential equation
that replaces the original one in some sense and the corresponding optimal order con-
vergence. The theory of stochastic averaging principle has a long and rich history. It was
first introduced by Khasminskii [13] in 1968, and since then, the principle for stochastic
differential equations was intensively and extensively studied. Stoyanov and Bainov [11]
investigated the averaging method for a class of stochastic differential equations with Pois-
son noise, proving that under some conditions the solutions of averaged systems converge
to the solutions of the original systems in mean square and in probability. Xu, Duan, and
Xu [4] established an averaging principle for stochastic differential equations with general
non-Gaussian Lévy noise. Quite recently, L2 (mean square) strong averaging principle for
multivalued stochastic differential equations with Brownian motion was established by
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Xu and Liu [14]. Note that all the works mentioned are under the Lipschitz condition;
however, in the real world, the Lipschitz condition seems to be exceedingly harsh when
discussing various applications. So it is necessary and significant to consider some non-
Lipschitz cases; see [15].

In [16], the author discussed the existence and uniqueness of a solution in Lp (pth mo-
ment) sense for some multivalued stochastic differential equations under a non-Lipschitz
condition. From the dynamic view, we concern the p-moment averaging principle for a
multivalued stochastic differential equation under a non-Lipschitz condition, which is
different from [14] under the Lipschitz condition. Although the method used in our pa-
per is similar to that of [14], compared with the results of article [14], our conclusion is
more general, as it is well known that the L2-strong convergence does not imply Lp(p ≥ 2)
strong convergence in general. Meanwhile, results for higher-order moments are needed
that possess a good robustness and can be applied in computations in statistic, finance,
and other aspects.

Recently, many authors considered multivalued and set-valued stochastic differential
equations; see, for example, [17–20]. In this article, we study the averaging principle for
MSDEs of the form

dXt + A(Xt) dt � f (t, Xt) dt + g(t, Xt) dBt , X0 = x ∈ D(A), (1.1)

with t ∈ [0, T], where A is a multivalued maximal monotone operator, which we introduce
in the next section, f : [0, T] × Rd → Rd and g : [0, T] × Rd → Rd are measurable functions
and satisfy non-Lipschitz conditions with respect to x. To derive the averaging principle
for non-Lipschitz multivalued stochastic differential equation, we need some assumptions
given in the next section.

This paper is organized as follows. In Section 2, we give some assumptions for our the-
ory and then introduce the definition of a multivalued maximal monotone operator and
related results. The convergence of solutions in Lp (p ≥ 2) and in probability between the
MSDEs and the corresponding averaged MSDEs are considered in Section 3.

Throughout this paper, the letter C will denote positive constants with values changing
in different occasions. When necessary, we will explicitly write the dependence of con-
stants on parameters.

2 Framework and preliminaries
2.1 Basic hypothesis
In this paper, we impose the following assumptions.

H1 Non-Lipschitz condition: Suppose that f and b are bounded and satisfy the following
conditions:

For any x, y ∈R
d and t ∈ [0, T],

∥
∥g(t, x) – g(t, y)

∥
∥

2 ≤ ρ2
2,η

(‖x – y‖) and
∥
∥f (t, x) – f (t, y)

∥
∥ ≤ ρ1,η

(‖x – y‖). (2.1)

For 0 < η < 1
e , let ρ1,η,ρ2,η be two concave functions defined by

ρj,η(x) :=

⎧

⎨

⎩

x[log x–1]
1
j , x ≤ η,

([logη–1]
1
j – 1

j [logη–1]
1
j –1)x + 1

j [logη–1]
1
j –1

η, x > η.
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Let f̄ : Rd → Rd and ḡ : Rd → Rd be measurable functions satisfying the Lipschitz con-
ditions with respect to x as f (t, x) and g(x, t). Moreover, we assume that f (t, x), f̄ (x), g(x, t),
and ḡ(x) satisfied the following conditions:

H2

1
T

∫ T

0

∥
∥f (s, x) – f̄ (x)

∥
∥

2 ds ≤ ϕ1(T)
(

1 + ‖x‖2), (2.2)

H3

1
T

∫ T

0

∥
∥g(s, x) – ḡ(x)

∥
∥

2 ds ≤ ϕ2(T)
(

1 + ‖x‖2), (2.3)

where ϕi(T), i = 1, 2, are positive bounded functions; moreover, if T is fixed, then ϕi(T) is
a constant, which means that ϕi(·) only depends on time.

H4 The operator A is a maximal monotone operator with D(A) = R
d .

2.2 Multivalued operators and MSDEs
A map A : Rd → 2R

d is called a multivalued operator. Define the domain and image of A
as

D(A) :=
{

x ∈R
d : A(x) �= ∅

}

, Im(A) :=
⋃

x∈D(A)

A(x),

and the graph of A is

Gr(A) :=
{

(x, y) ∈R
2d : x ∈ R

d, y ∈A(x)
}

.

Definition 2.1 (1) A multivalued operator A is called monotone if

〈y1 – y2, x1 – x2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ Gr(A).

(2) A monotone operator A is called maximal monotone if and only if

(x1, y1) ∈ Gr(A) ⇔ {〈y1 – y2, x1 – x2〉 ≥ 0 for all (x2, y2) ∈ Gr(A)
}

.

Now, we give a precise definition of the solution to equation (1.1).

Definition 2.2 A pair of continuous and Ft-adapted processes (X, K) is called a strong
solution of equation (1.1) if:

• X0 = x, and X(t) ∈ D(A) a.s.;
• K = {K(t),Ft ; t ∈ R+} is of finite variation, and K(0) = 0 a.s.;
• dXt = f (t, Xt) dt + g(t, Xt) dZt – dKt , t ∈ R+, a.s.;
• for any continuous processes (α(t),β(t)) satisfying

(

α(t),β(t)
) ∈ Gr(A), t ∈ R+,

the measure

〈

X(t) – α(t), dK(t) – β(t) dt
〉 ≥ 0.
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Also, we need the following lemma from [21].

Lemma 2.1 Let A be a multivalued maximal monotone operator, let t �→ (X(t), K(t)) and
t �→ (X̃(t), K̃(t)) be continuous functions with X(t), X̃(t) ∈ D(A), and let t �→ K(t), K̃(t) be
of finite variation. Let (α(t),β(t)) be continuous functions satisfying

(

α(t),β(t)
) ∈ Gr(A), t ∈ R+.

If

〈

X(t) – α(t), dK(t) – β(t) dt
〉 ≥ 0

and

〈

X̃(t) – α(t), dK̃(t) – β(t) dt
〉 ≥ 0,

then

〈

X(t) – X̃(t), dK(t) – dK̃(t)
〉 ≥ 0.

Lemma 2.2 ([22]) Under H1 and H4, let the initial condition satisfy E‖x‖2p < +∞. For
any p ≥ 1 and 0 ≤ t ≤ T , equation (1.1) has a unique solution satisfying

E
[

sup
0≤t≤T

‖Xt‖2p
]

≤ C(p,‖x‖)
T < +∞.

The following example and two lemmas are taken from [22].

Lemma 2.3 Let ρ : R+ → R+ be a continuous nondecreasing function. If g(s) and q(s) are
two strictly positive functions on R+ such that

g(t) ≤ g(0) +
∫ t

0
q(s)ρ

(

g(s)
)

ds, t ≥ 0,

then

g(t) ≤ f –1
(

f
(

g(0)
)

+
∫ t

0
q(s) ds

)

, (2.4)

where f (x) :=
∫ x

x0
1

ρ(y) dy is well-defined for some x0 > 0.

Example 2.1 For 0 < η < 1
e , define a concave function as

ρη(x) :=

⎧

⎨

⎩

x log x–1, x ≤ η,

η logη–1 + (logη–1 – 1)(x – η), x > η.

Choosing x0 = η, we have

f (x) = log

(
logη

log x

)

, 0 < x < η,



Guo Advances in Difference Equations  (2017) 2017:386 Page 5 of 12

f –1(x) = exp
{

logη · exp{–x}}, x < 0.

If g(0) < η, then substituting these into (2.4), we obtain

g(t) ≤ (

g(0)
)exp{– ∫ t

0 q(s) ds}. (2.5)

Lemma 2.4
• For j = 1, 2, ρj,η is decreasing in η, that is, ρj,η1 ≤ ρj,η2 if 1 > η1 > η2.
• For any p ≥ 0 and η sufficiently small, we have

xpρ
j
j,η(x) ≤ 1

j + p
ρ1,ηj+p

(

xj+p), j = 1, 2.

3 Averaging principle for MSDEs
In this section, we prove an averaging principle for multivalued stochastic differential
equations (MSDEs) driven by a random process under non-Lipschitz conditions. We con-
sider the convergence of solutions in Lp (p ≥ 2) and in probability between the MSDEs
and the corresponding averaged MSDEs.

For t ∈ [0, T], consider

dXε
t + εA

(

Xε
t
)

dt � εf
(

t, Xε
t
)

dt +
√

εg
(

t, Xε
t
)

dBt , Xε
0 = x ∈ D(A). (3.1)

The standard form of (3.1) is defined as

Xε
t = Xε(0) + ε

∫ t

0
f
(

s, Xε(s)
)

ds +
√

ε

∫ t

0
g
(

s, Xε
s
)

dBs – εK(t), t ∈ [0, T], (3.2)

and the corresponding averaged MSDEs of (3.2) are defined as

Y ε
t = Y ε(0) + ε

∫ t

0
f
(

Y ε(s)
)

ds +
√

ε

∫ t

0
g
(

Y ε
s
)

dBs – εK(t), t ∈ [0, T]. (3.3)

Here f : Rd → Rd and g : Rd → Rd are measurable functions satisfying the non-Lipschitz
conditions with respect to x as f (t, x) and g(t, x), Y ε(0) = Xε(0) = x, and f , f , g, g satisfy H2
and H3.

Now, we are in the position to investigate the relationship between the processes Xε
t

and Y ε
t .

Theorem 3.1 Suppose that conditions H1-H4 hold. Then, for a given arbitrarily small
number δ > 0 and for α ∈ (0, 1

2 ), there exists a number ε̃ ∈ (0, ε0] (ε0 = 1
16p2 ) such that, for

all ε ∈ (0, ε̃) and p ≥ 1, we have

E
(

sup
t∈[0,εα– 1

2 (1–4p
√

ε)]

∥
∥Xε

t – Y ε
t
∥
∥

2p
)

≤ δ.
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Proof Consider the difference Xε
t – Y ε

t . From (3.2) and (3.3) we have

Xε
t – Y ε

t = ε

∫ t

0

[

f
(

s, Xε(s)
)

– f
(

Y ε(s)
)]

ds

+
√

ε

∫ t

0

[

g
(

s, Xε
s
)

– g
(

Y ε
s
)]

dBs – ε
[

K(t) – K(t)
]

.

By Itô’s formula [23],

∥
∥Xε

t – Y ε
t
∥
∥

2p = –ε2p
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈Xε
s – Y ε

s , dK(s) – dK(s)
〉

+ ε2p
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Xε(s)
)

– f
(

Y ε(s)
)

, Xε
s – Y ε

s
〉

ds

+
√

ε2p
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈g
(

s, Xε
s
)

– g
(

Y ε
s
)

, Xε
s – Y ε

s
〉

dBs

+ εp
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds

+ 2εp(p – 1)
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–4〈Xε
s – Y ε

s , g
(

s, Xε
s
)

– g
(

Y ε
s
)〉2 ds.

By Definition 2.2 and Lemma 2.1 we get

∥
∥Xε

t – Y ε
t
∥
∥

2p ≤ ε2p
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Xε(s)
)

– f
(

Y ε(s)
)

, Xε
s – Y ε

s
〉

ds

+
√

ε2p
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈g
(

s, Xε
s
)

– g
(

Y ε
s
)

, Xε
s – Y ε

s
〉

dBs

+ εp
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds

+ 2εp(p – 1)
∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–4〈Xε
s – Y ε

s , g
(

s, Xε
s
)

– g
(

Y ε
s
)〉2 ds.

Then

E sup
0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p

≤ ε2pE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Xε(s)
)

– f
(

Y ε(s)
)

, Xε
s – Y ε

s
〉

ds
∣
∣
∣
∣

+
√

ε2pE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈g
(

s, Xε
s
)

– g
(

Y ε
s
)

, Xε
s – Y ε

s
〉

dBs

∣
∣
∣
∣

+ εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds
∣
∣
∣
∣

+ 2εp(p – 1)E sup
0≤t≤T

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–4〈Xε
s – Y ε

s , g
(

s, Xε
s
)

– g
(

Y ε
s
)〉2 ds.

= I1 + I2 + I3 + I4.

We now estimate I1, I2, I3, I4 separately.
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Estimate of I1. Using the trigonometric inequality, we have

I1 = 2εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Xε(s)
)

– f
(

Y ε(s)
)

, Xε
s – Y ε

s
〉

ds
∣
∣
∣
∣

≤ 2εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Xε(s)
)

– f
(

s, Y ε(s)
)

, Xε
s – Y ε

s
〉

ds
∣
∣
∣
∣

+ 2εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Y ε(s)
)

– f
(

Y ε(s)
)

, Xε
s – Y ε

s
〉

ds
∣
∣
∣
∣

= I11 + I12.

For I11, using the non-Lipschitz condition of f and the Cauchy-Schwarz inequality, we
have

I11 ≤ 2εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–1
ρ1,η

(∥
∥Xε

s – Y ε
s
∥
∥
)

ds
∣
∣
∣
∣

≤ 2εp
∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–1
ρ1,η

(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.

For I12, using the Hölder and Young inequalities, we deduce

I12 = 2εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈f
(

s, Y ε(s)
)

– f
(

Y ε(s)
)

, Xε
s – Y ε

s
〉

ds
∣
∣
∣
∣

≤ εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2(∥
∥f

(

s, Y ε(s)
)

– f
(

Y ε(s)
)∥
∥

2 +
∥
∥Xε

s – Y ε
s
∥
∥

2)ds
∣
∣
∣
∣

≤ εpE sup
0≤t≤T

∫ t

0

(
2p – 2

2p
∥
∥Xε

s – Y ε
s
∥
∥

2p +
1
p

)
(∥
∥f

(

s, Y ε(s)
)

– f
(

Y ε(s)
)∥
∥

2)ds

+ εp
∫ t

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p ds

≤ ε
[

(p – 1)C(p,‖x‖)
T + 1

]

E
(

sup
0≤t≤T

t
1
t

∫ t

0

∥
∥f

(

s, Y ε(s)
)

– f
(

Y ε(s)
)∥
∥

2 ds
)

+ εp
∫ t

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p ds.

Taking condition H2, Lemma 2.2, and the Young inequality into account, we have

I12 ≤ ε
[

(p – 1)C(p,‖x‖)
T + 1

]

sup
0≤t≤T

{

tϕ1(t)
[

1 + E
(

sup
0≤s≤T

∥
∥Y ε

s
∥
∥

2p
)]}

+ εp
∫ t

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p ds

≤ εp
∫ t

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p ds + εC
(

p, T ,‖x‖)T .
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Finally, we have

I1 ≤ εTC
(

p, T ,‖x‖) + εp
∫ t

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p ds

+ 2εp
∫ T

0
E sup

0≤u≤s

∥
∥Xε

u – Y ε
u
∥
∥

2p–1
ρ1,η

(∥
∥Xε

u – Y ε
u
∥
∥
)

ds.

Estimate of I2. Using the Burkholder-Davis-Gundy and Young inequalities, we have

I2 =
√

ε2pE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2〈g
(

s, Xε
s
)

– g
(

Y ε
s
)

, Xε
s – Y ε

s
〉

dBs

∣
∣
∣
∣

≤ √
ε8pE

{∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

4p–4∣
∣
〈

g
(

s, Xε
s
)

– g
(

Y ε
s
)

, Xε
s – Y ε

s
〉∣
∣
2 ds

} 1
2

≤ √
ε8pE

{∫ T

0
sup

0≤s≤T

∥
∥Xε

s – Y ε
s
∥
∥

2p∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds
} 1

2

≤ √
ε4pE sup

0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p +
√

ε4pE
∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds

= I21 + I22.

In the following, we estimate

I22 =
√

ε4pE
∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds.

Using conditions H1 and H3 and the Young inequality, we get:

I22 ≤ √
ε8pE

∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2(∥
∥g

(

s, Xε
s
)

– g
(

s, Y ε
s
)∥
∥

2 +
∥
∥g

(

s, Y ε
s
)

– g
(

Y ε
s
)∥
∥

2)ds

≤ √
ε8pE

∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2(
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

+
∥
∥g

(

s, Y ε
s
)

– g
(

Y ε
s
)∥
∥

2)ds

≤ √
ε8pE

∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds

+
√

ε8pE
∫ T

0

[
2p – 2

2p
∥
∥Xε

s – Y ε
s
∥
∥

2p +
1
p

]
(∥
∥g

(

s, Y ε
s
)

– g
(

Y ε
s
)∥
∥

2)ds

≤ √
ε8pE

∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds

+
√

εC
(

p, T ,‖x‖)E
(

sup
0≤t≤T

t
1
t

∫ t

0

∥
∥g

(

s, Y ε
s
)

– g
(

Y ε
s
)∥
∥

2 ds
)

≤ √
εTC2

(

p, T ,‖x‖) +
√

ε8pE
∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.
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Combing the estimates of I21 and I22, we conclude that

I2 ≤ √
ε4pE sup

0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p +
√

εTC2
(

p, T ,‖x‖)

+
√

ε8pE
∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.

Estimate of I3. Note that

I3 = εpE sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2∥
∥g

(

s, Xε
s
)

– g
(

Y ε
s
)∥
∥

2 ds
∣
∣
∣
∣
.

Using the same estimate as for I22, we have

I3 ≤ εTC3
(

p, T ,‖x‖) + ε2pE
∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.

Estimate of I4. Using the Cauchy-Schwarz inequality, the term I4 has the same form with
I3 with a different constant:

I4 ≤ εTC4
(

p, T ,‖x‖) + ε4p(p – 1)E
∫ T

0

∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.

Combing the estimates of I1, I2 and I3, I4, we have

E sup
0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p

≤ εTC1
(

p, T ,‖x‖) + εC1(p)
∫ T

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p dt

+ 2εp
∫ T

0
E
∥
∥Xε

t – Y ε
t
∥
∥

2p–1
ρ1,η

(∥
∥Xε

t – Y ε
t
∥
∥
)

dt

+
√

ε4pE sup
0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p +
√

εC2
(

p, T ,‖x‖)

+
√

ε8p
∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds

+ εTC3
(

p, T ,‖x‖) + ε2p
∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds

+ εTC4
(

p, T ,‖x‖) + ε4p(p – 1)
∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.
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Taking
√

ε4p < 1, that is, ε < 1
16p2 , we have

E sup
0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p

≤
√

εTC5(p,‖x‖, T , ε)
1 –

√
ε4p

+
εC1(p)

1 –
√

ε4p

∫ T

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p dt

+
2εp

1 –
√

ε4p

∫ T

0
E
∥
∥Xε

t – Y ε
t
∥
∥

2p–1
ρ1,η

(∥
∥Xε

t – Y ε
t
∥
∥
)

dt

+
√

ε8p
1 –

√
ε4p

∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds

+
ε2p

1 –
√

ε4p

∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds

+
ε4p(p – 1)
1 –

√
ε4p

∫ T

0
E
∥
∥Xε

s – Y ε
s
∥
∥

2p–2
ρ2

2,η
(∥
∥Xε

s – Y ε
s
∥
∥
)

ds.

By Lemma 2.4 and the concavity of the function ρ1,η we have

E sup
0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p

≤
√

εTC5(p,‖x‖, T , ε)
1 –

√
ε4p

+
εC1(p)

1 –
√

ε4p

∫ T

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p dt

+
√

εC6(p,‖x‖, T , ε)
1 –

√
ε4p

∫ T

0
ρ1,η

(

E sup
0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p
)

dt

≤
√

εTC5(p,‖x‖, T , ε)
1 –

√
ε4p

+
√

εC7(p,‖x‖, T , ε)
1 –

√
ε4p

∫ T

0
E sup

0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p + ρ1,η

(

E sup
0≤s≤t

∥
∥Xε

s – Y ε
s
∥
∥

2p
)

dt.

Note that, for sufficiently small ε, we have g(0) =
√

εC5(p,‖x‖,T ,ε)
1–

√
ε4p ≤ η < 1

e , and from
Lemma 2.3 and Example 2.1 we get the following estimate:

E sup
0≤t≤T

∥
∥Xε

t – Y ε
t
∥
∥

2p ≤
√

εTC5(p,‖x‖, T , ε)
1 –

√
ε4p

exp
(1–lnη) exp{–

√
εTC7(p,‖x‖,T ,ε)

1–
√

ε4p } .

Choose α ∈ (0, 1
2 ) such that, for every t ∈ [0, εα– 1

2 (1 – 4p
√

ε)] ⊆ [0, T], we have

E
(

sup
t∈[0,εα– 1

2 (1–4p
√

ε)]

∥
∥Xε

t – Y ε
t
∥
∥

2p
)

≤ Cεα ,

where

C = C5
(

p,‖x‖, T , ε
)

exp{(1–lnη) exp{–εα (C7(p,‖x‖,T ,ε)}} .
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Consequently, given any number δ > 0, we can choose ε̃ ∈ (0, ε0] (ε0 = 1
16p2 ) such that, for

each ε ∈ (0, ε̃) and every t ∈ [0, εα– 1
2 (1 – 4p

√
ε)],

E
(

sup
t∈[0,εα– 1

2 (1–4p
√

ε)]

∥
∥Xε

t – Y ε
t
∥
∥

2p
)

≤ δ,

which completes the proof of the theorem. �

Using the Chebyshev-Markov inequality, we can also get the convergence in probability.

Theorem 3.2 Suppose that conditions H1-H4 hold. Then, for a given arbitrarily small
number θ > 0 and for α ∈ (0, 1

2 ), there exists a number ε̃ ∈ (0, ε0] (ε0 = 1
16p2 ) such that, for

all ε ∈ (0, ε̃) and p ≥ 1, we have

lim
ε→0

P

(

sup
t∈[0,εα– 1

2 (1–4p
√

ε)]

∥
∥Xε

t – Y ε
t
∥
∥

2p > θ
)

= 0.
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