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Abstract
We present here a new method of lower and upper solutions for a general boundary
value problem of fractional differential equations with p-Laplacian operators. By using
this approach, some new results on the existence of positive solutions for the
equations with multiple types of nonlinear integral boundary conditions are
established. Finally, some examples are presented to illustrate the wide range of
potential applications of our main results.
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1 Introduction
In this paper, we study the fractional differential equation with p-Laplacian operators

CDα
0+

(
ϕp

(CDβ

0+ u(t)
))

= f
(
t, u(t), CDβ

0+ u(t)
)
, t ∈ (0, 1), (1.1)

with the general boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

u′(0) = (ϕp(CDβ

0+ u(0)))′ = 0,

u(1) = T1[u(t)],
CDβ

0+ u(1) = T2[u(t)],

(1.2)

where 1 < α,β ≤ 2, CDα
0+ and CDβ

0+ are the Caputo fractional derivatives. p > 1, ϕp

is the p-Laplacian operator, which is given by ϕp(x) = |x|p–2x. Obviously, ϕp is con-
tinuous, increasing, invertible, and its inverse operator is ϕ–1

p = ϕq, where q > 1 is a
constant such that 1

p + 1
q = 1. T1[u(t)] and T2[u(t)] are two functionals, which could

be Tj[u(t)] =
∑m

i=1 gj(ξi, u(ξi), CDβ

0+ u(ξi)), Tj[u(t)] =
∫ 1

0 gj(s, u(s), CDβ

0+ u(s)) ds, Tj[u(t)] =
∫ 1

0 gj(s, u(s), CDβ

0+ u(s)) d�j(s), j = 1, 2, or the other cases.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-017-1446-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1446-1&domain=pdf
mailto:xipingliu@163.com


Liu and Jia Advances in Difference Equations  (2018) 2018:28 Page 2 of 15

In recent years, the theory of fractional differential equations has become an important
investigation area, see [1–5]. Many important results for certain boundary value condi-
tions related to the fractional differential equations had been obtained, for example, two-
point boundary value problem, multi-point boundary value problem, integral boundary
value problem and so on, see [6–16].

In [16], the authors discuss the two-point boundary value problem of the systems of
nonlinear fractional differential equations

⎧
⎪⎪⎨

⎪⎪⎩

Dαu(t) = f (t, u(t), v(t)), t ∈ (0, T],

Dαv(t) = g(t, v(t), u(t)), t ∈ (0, T],

t1–αu(t)|t=0 = x0, t1–αv(t)|t=0 = y0,

where 0 < T < ∞, Dα is the Riemann-Liouville fractional derivative of order 0 < α ≤ 1.
By using the monotone iterative technique, some existence results of solutions are estab-
lished.

On the other hand, the turbulent flow in a porous medium is a fundamental mechanics
phenomenon. For studying this kind of problems, the models of the p-Laplacian equation
are introduced, see [17]. Many important results for the boundary value problems of frac-
tional p-Laplacian equations have been obtained, see [18–28] and the references therein.

In [25], Wang and Xiang studied the four-point boundary value problem of the fractional
p-Laplacian equations

⎧
⎪⎪⎨

⎪⎪⎩

Dγ

0+ (ϕp(Dα
0+ u(t))) = f (t, u(t)), t ∈ (0, 1),

u(0) = 0, u′(1) = au(ξ ),

Dα
0+ u(0) = 0, Dα

0+ u(1) = bDα
0+ u(η),

where 1 < α,γ ≤ 1, Dα
0+ , Dγ

0+ are Riemann-Liouville fractional derivatives. By using the
method of lower and upper solutions, the existence results of at least one nonnegative
solution of the boundary value problem are established.

In [27], Mahmudov and Unul studied the following integral boundary value problem of
fractional p-Laplacian equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ

0+ (ϕp(Dα
0+ u(t))) = f (t, u(t), Dγ

0+ u(t)), t ∈ (0, 1),

u(0) + μ1u(1) = σ1
∫ 1

0 g(s, u(s)) ds,

u(1) + μ2u′(1) = σ2
∫ 1

0 h(s, u(s)) ds,

Dα
0+ u(0) = 0, Dα

0+ u(1) = υDα
0+ u(η),

where Dα
0+ , Dβ

0+ are Caputo fractional derivatives with 1 < α,β ≤ 2. By the fixed point the-
orems, the existence and uniqueness results of the solutions are established.

The purpose of this paper is to establish a method of lower and upper solutions for
the general boundary value problems of fractional p-Laplacian equations and prove the
existence of positive solutions for some specific nonlinear integral boundary value prob-
lems of the fractional p-Laplacian equations. Our paper is organized as the following
parts. In Section 2, we give some basic definitions and lemmas to prove our main re-
sults. In Section 3, we establish the lower and upper solutions method for the general
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boundary value problem (1.1)-(1.2). In Section 4, by using the lower and upper solu-
tions method obtained in Section 3, the existence of positive solutions for fractional
p-Laplacian equation (1.1) with the following nonlinear boundary conditions are ob-
tained:

⎧
⎪⎪⎨

⎪⎪⎩

u′(0) = (ϕp(CDβ

0+ u(0)))′ = 0,

u(1) =
∫ 1

0 g1(s, u(s), CDβ

0+ u(s)) ds,
CDβ

0+ u(1) =
∫ 1

0 g2(s, u(s), CDβ

0+ u(s)) ds,

(1.3)

⎧
⎪⎪⎨

⎪⎪⎩

u′(0) = (ϕp(CDβ

0+ u(0)))′ = 0,

r1u(1) – r2u(ξ ) =
∫ 1

0 g1(s, u(s), CDβ

0+ u(s)) ds,

m1
CDβ

0+ u(1) + m2
CDβ

0+ u(η) =
∫ 1

0 g2(s, u(s), CDβ

0+ u(s)) ds,

(1.4)

and

⎧
⎪⎪⎨

⎪⎪⎩

u′(0) = (ϕp(CDβ

0+ u(0)))′ = 0,

u(1) =
∫ 1

0 g1(s, u(s), CDβ

0+ u(s)) d�1(s),
CDβ

0+ u(1) =
∫ 1

0 g2(s, u(s), CDβ

0+ u(s)) d�2(s),

(1.5)

respectively. In Section 5, as applications, some examples are presented to illustrate our
main results.

2 Preliminary definitions and lemmas
For the convenience of reading, in this section, we provide the background knowledge on
the fractional calculus and fractional differential equations.

Definition 2.1 (see [1, 2]) The Riemann-Liouville fractional integral of order γ > 0 of a
function y : [0, +∞) →R is defined by

Iγ

0+ y(t) =
1

�(γ )

∫ t

0
(t – s)γ –1y(s) ds,

and the Caputo derivative is given by

cDγ

0+ y(t) = Dγ

0+ y(t) –
n–1∑

k=0

y(n)(0)
�(k – γ + 1)

tk–γ ,

where

Dγ

0+ y(t) =
1

�(n – γ )
dn

dtn

∫ t

0

y(s)
(t – s)γ –n+1 ds

is the standard Riemann-Liouville fractional derivative of order γ > 0 of a function
y : [0, +∞) → R, n is an integer with n – 1 < γ < n, provided the right-hand integral con-
verges.
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Lemma 2.1 (see [1, 2]) For γ > 0, the general solution of fractional differential equation
CDγ

0+ y(t) = 0 is given by

y(t) = c0 + c1t + c2t2 + · · · + cn–1tn–1,

where cj ∈R, j = 0, 1, 2, . . . , n – 1, and n is an integer with n – 1 < γ < n.

Lemma 2.2 For any given function h ∈ C[0, 1] and real numbers a, b ∈ R, the following
boundary value problem of fractional differential equations

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ u(t))) = h(t), t ∈ (0, 1),

u′(0) = (ϕp(CDβ

0+ u(0)))′ = 0,

u(1) = b, CDβ

0+ u(1) = a

(2.1)

has a unique solution u = u(t), which is given by

u(t) = b –
∫ 1

0
Gβ (t, s)ϕq

(
ϕp(a) –

∫ 1

0
Gα(s, τ )h(τ ) dτ

)
ds (2.2)

and

CDβ

0+ u(t) = ϕq

(
ϕp(a) –

∫ 1

0
Gα(t, s)h(s) ds

)
, (2.3)

where

Gα(t, s) =
1

�(α)

⎧
⎨

⎩
(1 – s)α–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

(1 – s)α–1, 0 ≤ t < s ≤ 1,
(2.4)

and

Gβ (t, s) =
1

�(β)

⎧
⎨

⎩
(1 – s)β–1 – (t – s)β–1, 0 ≤ s ≤ t ≤ 1,

(1 – s)β–1, 0 ≤ t < s ≤ 1.
(2.5)

Proof Let ϕp(CDβ

0+ u(t)) = v(t), we can easily show that boundary value problem (2.1) can
be decomposed into the following coupled boundary value problems:

⎧
⎨

⎩

CDα
0+ v(t) = h(t), t ∈ (0, 1),

v′(0) = 0, v(1) = ϕp(a),
(2.6)

and

⎧
⎨

⎩

CDβ

0+ u(t) = ϕq(v(t)), t ∈ (0, 1),

u′(0) = 0, u(1) = b.
(2.7)
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It follows from Lemma 2.1 that the general solution of fractional differential equation
CDα

0+ v(t) = h(t) is given by

v(t) = Iα
0+ h(t) + c0 + c1t

=
1

�(α)

∫ t

0
(t – s)α–1h(s) ds + c0 + c1t, cj ∈R, j = 0, 1.

The boundary condition v′(0) = 0 implies that c1 = 0, and by the boundary condition v(1) =
ϕp(a), we can obtain that

c0 = ϕp(a) –
1

�(α)

∫ 1

0
(1 – s)α–1h(s) ds.

So, boundary value problem (2.6) has a unique solution, which is given by

v(t) = ϕp(a) –
1

�(α)

(∫ 1

0
(1 – s)α–1h(s) ds –

∫ t

0
(t – s)α–1h(s) ds

)

= ϕp(a) –
∫ 1

0
Gα(t, s)h(s) ds. (2.8)

In the same way, we can get that the unique solution of boundary value problem (2.7) is
given by

u(t) = b +
1

�(β)

∫ t

0
(t – s)β–1ϕq

(
v(s)

)
ds –

1
�(β)

∫ 1

0
(1 – s)β–1ϕq

(
v(s)

)
ds

= b –
∫ 1

0
Gβ (t, s)ϕq

(
v(s)

)
ds. (2.9)

Therefore, boundary value problem (2.1) has a unique solution u = u(t) which is given
by (2.2), and CDβ

0+ u(t) is given by (2.3). �

From (2.4) and (2.5), it is obvious that Gα(t, s) and Gβ (t, s) satisfy the following lemma.

Lemma 2.3 The functions Gα(t, s) and Gβ (t, s) are continuous and Gα(t, s) ≥ 0, Gβ (t, s) ≥ 0
for (t, s) ∈ [0, 1] × [0, 1].

3 The method of lower and upper solutions for the general nonlinear
boundary value problem

In this section, we present a new method of lower and upper solutions for the general
boundary value problem (1.1)-(1.2) and prove the existence of positive solutions for the
problem.

Definition 3.1 We say a function x = x(t) is a positive solution of boundary value prob-
lem (1.1)-(1.2) if and only if x(t) ≥ 0, t ∈ [0, 1], and x = x(t) satisfies equation (1.1) and
conditions (1.2).

We denote by AC1[0, 1] the space of functions which are absolutely continuous on [0, 1]
(see [1, 2]).
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Definition 3.2 Let x ∈ AC1[0, 1], and we say that x = x(t) is a lower solution of boundary
value problem (1.1)-(1.2) if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ x(t))) ≤ f (t, x(t), CDβ

0+ x(t)), t ∈ (0, 1),

x′(0) = (ϕp(CDβ

0+ x(0)))′ = 0,

x(1) ≤ T1[x(t)],
CDβ

0+ x(1) ≥ T2[x(t)].

(3.1)

Let y ∈ AC1[0, 1], and we say that y = y(t) is an upper solution of boundary value problem
(1.1)-(1.2) if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ y(t))) ≥ f (t, y(t), CDβ

0+ y(t)), t ∈ (0, 1),

y′(0) = (ϕp(CDβ

0+ y(0)))′ = 0,

y(1) ≥ T1[y(t)],
CDβ

0+ y(1) ≤ T2[y(t)].

(3.2)

We denote that E = Cβ [0, 1] := {u : u ∈ C[0, 1], CDβ

0+ u ∈ C[0, 1]} and endowed with
the norm ‖u‖β = ‖u‖∞ + ‖CDβ

0+ u‖∞, where ‖u‖∞ = max0≤t≤1 |u(t)| and ‖CDβ

0+ u‖∞ =
max0≤t≤1 |CDβ

0+ u(t)|. Then (E,‖ · ‖β ) is a Banach space. We denote that

P =
{

u : u ∈ E, u(t) ≥ 0, CDβ

0+ u(t) ≤ 0, t ∈ [0, 1]
}

.

It is obvious that P is a normal cone on E. We denote x 	 y if and only if y – x ∈ P for
x, y ∈ E.

Definition 3.3 Let P be a cone on a Banach space, a functional T = T[u(t)] is called in-
creasing on P if and only if T[x(t)] ≤ T[y(t)] for any x 	 y ∈ P. And it is called decreasing
on P if and only if T[x(t)] ≥ T[y(t)] for any x 	 y ∈ P.

We assume the following conditions hold:
(H1) f ∈ C([0, 1] × [0, +∞) × (–∞, 0]), 0 ≤ f (t, w1, z1) ≤ f (t, w2, z2) for any t ∈ [0, 1] and

0 ≤ w1 ≤ w2, 0 ≥ z1 ≥ z2 ∈ R.
(H2) The functional T1 is continuous nonnegative increasing on P, and T2 is

continuous nonpositive decreasing on P.

Theorem 3.1 Assume that (H1) and (H2) hold, boundary value problem (1.1)-(1.2) has a
lower solution x0 ∈ P and an upper solution y0 ∈ P with x0 	 y0. Then the general boundary
value problem (1.1)-(1.2) has positive solutions x∗, y∗ ∈ P. Furthermore,

x0(t) ≤ x∗(t) ≤ y∗(t) ≤ y0(t)

and

CDβ

0+ y0(t) ≤ CDβ

0+ y∗(t) ≤ CDβ

0+ x∗(t) ≤ CDβ

0+ x0(t) ≤ 0, t ∈ [0, 1].
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In order to prove Theorem 3.1, we provide the following two lemmas and the corre-
sponding proofs.

Lemma 3.2 Assume that conditions (H1) and (H2) hold, and there exists xk ∈ P, a non-
negative lower solution of boundary value problem (1.1)-(1.2). Then the following boundary
value problem of fractional p-Laplacian equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ xk+1(t))) = f (t, xk(t), CDβ

0+ xk(t)), t ∈ (0, 1),

x′
k+1(0) = (ϕp(CDβ

0+ xk+1(0)))′ = 0,

xk+1(1) = T1[xk(t)],
CDβ

0+ xk+1(1) = T2[xk(t)]

(3.3)

has a unique solution xk+1 = xk+1(t) which is a nonnegative lower solution of boundary value
problem (1.1)-(1.2), and xk 	 xk+1.

Proof In view of Lemma 2.2, for the given xk ∈ P, boundary value problem (3.3) has a
unique solution xk+1 = xk+1(t) which is given by

xk+1(t) = T1
[
xk(t)

]
–

∫ 1

0
Gβ (t, s)ϕq

(
ϕp

(
T2

[
xk(s)

])

–
∫ 1

0
Gα(s, τ )f

(
τ , xk(τ ), CDβ

0+ xk(τ )
)

dτ

)
ds, (3.4)

and

CDβ

0+ xk+1(t) = ϕq

(
ϕp

(
T2

[
xk(t)

])
–

∫ 1

0
Gα(t, s)f

(
s, xk(s), CDβ

0+ xk(s)
)

ds
)

. (3.5)

From Lemma 2.3, conditions (H1) and (H2), we easily get that xk+1(t) ≥ 0 and
CDβ

0+ xk+1(t) ≤ 0, which implies xk+1 ∈ P.
Next, we will prove that xk 	 xk+1 and xk+1 = xk+1(t) is a lower solution of boundary value

problem (1.1)-(1.2).
Since xk is a lower solution of boundary value problem (1.1)-(1.2), then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ xk(t))) ≤ f (t, xk(t), CDβ

0+ xk(t)), t ∈ (0, 1),

x′
k(0) = (ϕp(CDβ

0+ xk(0)))′ = 0,

xk(1) ≤ T1[xk(t)],
CDβ

0+ xk(1) ≥ T2[xk(t)].

(3.6)

By (3.3) and (3.6), we can get that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ xk+1(t)) – ϕp(CDβ

0+ xk(t))) ≥ 0, t ∈ (0, 1),

x′
k+1(0) – x′

k(0) = (ϕp(CDβ

0+ xk+1(0)))′ – (ϕp(CDβ

0+ xk(0)))′ = 0,

xk+1(1) – xk(1) ≥ 0,
CDβ

0+ xk+1(1) – CDβ

0+ xk(1) ≤ 0.

(3.7)
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Denote

ϕp
(CDβ

0+ xk+1(t)
)

– ϕp
(CDβ

0+ xk(t)
)

:= v(t).

Then

(
ϕp

(CDβ

0+ xk+1(0)
))′ –

(
ϕp

(CDβ

0+ xk(0)
))′ = v′(0) = 0.

And since

CDβ

0+ xk+1(1) – CDβ

0+ xk(1) ≤ 0,

we get that

v(1) = ϕp
(CDβ

0+ xk+1(1)
)

– ϕp
(CDβ

0+ xk(1)
) ≤ 0.

Denote

CDα
0+

(
ϕp

(CDβ

0+ xk+1(t)
)

– ϕp
(CDβ

0+ xk(t)
))

:= hk+1(t)

and

v(1) = ϕp
(CDβ

0+ xk+1(1)
)

– ϕp
(CDβ

0+ xk(1)
)

:= ak+1,

then we obtain the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+ v(t) = hk+1(t) ≥ 0, t ∈ (0, 1),

v′(0) = 0,

v(1) = ak+1 ≤ 0.

(3.8)

By (2.8) and Lemma 2.3, ϕp(CDβ

0+ xk+1(t)) – ϕp(CDβ

0+ xk(t)) = v(t) = ak+1 –
∫ 1

0 Gα(t, s) ×
hk+1(s) ds ≤ 0, t ∈ [0, 1]. According to the monotonicity of p-Laplacian operator ϕp, we
have

CDβ

0+ xk+1(t) – CDβ

0+ xk(t) = CDβ

0+
(
xk+1(t) – xk(t)

) ≤ 0.

Then we obtain the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

CDβ

0+ (xk+1(t) – xk(t)) := δk+1(t) ≤ 0, t ∈ (0, 1),

x′
k+1(0) – x′

k(0) = 0,

xk+1(1) – xk(1) := bk+1 ≥ 0.

(3.9)

So that, xk+1(t) – xk(t) = bk+1 –
∫ 1

0 Gβ (t, s)δk+1(s) ds ≥ 0 and CDβ

0+ (xk+1(t) – xk(t)) = δk+1(t) ≤
0, which implies xk 	 xk+1.
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From conditions (H1) and (H2), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ xk+1(t))) = f (t, xk(t), CDβ

0+ xk(t)) ≤ f (t, xk+1(t), CDβ

0+ xk+1(t)),

x′
k+1(0) = (ϕp(CDβ

0+ xk+1(0)))′ = 0,

xk+1(1) = T1[xk(t)] ≤ T1[xk+1(t)],
CDβ

0+ xk+1(1) = T2[xk(t)] ≥ T2[xk+1(t)],

(3.10)

which implies that x = xk+1(t) is a lower solution of boundary value problem
(1.1)-(1.2). �

Similar to Lemma 3.2, we can get the following lemma.

Lemma 3.3 Assume that conditions (H1) and (H2) hold, and yk ∈ P is an upper solution
of boundary value problem (1.1)-(1.2). Then the following boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ yk+1(t))) = f (t, yk(t), CDβ

0+ yk(t)), t ∈ (0, 1),

y′
k+1(0) = (ϕp(CDβ

0+ yk+1(0)))′ = 0,

yk+1(1) = T1[yk(t)],
CDβ

0+ yk+1(1) = T2[yk(t)]

(3.11)

has a unique solution yk+1 = yk+1(t) which is a nonnegative upper solution of boundary
value problem (1.1)-(1.2), yk+1 ∈ P and yk+1 	 yk .

Proof of Theorem 3.1 Starting from the initial functions x0, y0 ∈ P, we define iterative se-
quences {xk} and {yk} by (3.3) and (3.11), respectively.

From Lemma 3.2 and Lemma 3.3, x = xk(t), k = 0, 1, 2, . . . , are lower solutions of bound-
ary value problem (1.1)-(1.2), and xk 	 xk+1 such that {xk} ⊂ P is monotonically increasing.
Moreover, y = yk(t), k = 0, 1, 2, . . . , are upper solutions, and yk+1 	 yk such that {yk} ⊂ P is
monotonically decreasing.

Since xk 	 yk , then xk(t) ≤ yk(t) and CDβ

0+ xk(t) ≥ CDβ

0+ yk(t), and from (H1), (H2), we have
that

f
(
t, xk(t), CDβ

0+ xk(t)
) ≤ f

(
t, yk(t), CDβ

0+ yk(t)
)
,

T1
[
xk(t)

] ≤ T1
[
yk(t)

]
, and T2

[
xk(t)

] ≥ T2
[
yk(t)

]
.

By (3.3) and (3.11), we get

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+ (ϕp(CDβ

0+ yk+1(t)) – ϕp(CDβ

0+ xk+1(t))) ≥ 0, t ∈ (0, 1),

y′
k+1(0) – x′

k+1(0) = (ϕp(CDβ

0+ yk+1(0)))′ – (ϕp(CDβ

0+ xk+1(0)))′ = 0,

yk+1(1) – xk+1(1) ≥ 0, CDβ

0+ yk+1(1) – CDβ

0+ xk+1(1) ≤ 0.

(3.12)

We can show that xk+1 	 yk+1 in the same way as above.
Therefore,

x0 	 x1 	 · · · 	 xk 	 · · · 	 · · · 	 yk 	 · · · 	 y1 	 y0.
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Since P is a normal cone on E, the sequences {xk} and {yk} are uniformly bounded. Be-
cause Gα , Gβ , ϕp, ϕq and f are continuous, we can easily get that {xk} and {yk} are equicon-
tinuous. Hence, {xk} and {yk} are relatively compact. Then there exist x∗ and y∗ such that

lim
k→∞

xk = x∗, lim
k→∞

CDβ

0+ xk(t) = CDβ

0+ x∗(t), (3.13)

and

lim
k→∞

yk = y∗, lim
k→∞

CDβ

0+ yk(t) = CDβ

0+ y∗(t), (3.14)

which imply that x∗ is a lower solution, y∗ is an upper solution of boundary value problem
(1.1)-(1.2), and x∗ 	 y∗ ∈ P.

In the following, we prove that both x∗ and y∗ are solutions of boundary value problem
(1.1)-(1.2).

From (3.4), (3.13), and by the continuity of ϕp, f , Gα , Gβ and the Lebesgue dominated
convergence theorem, we have

x∗(t) = T1
[
x∗(t)

]
–

∫ 1

0
Gβ (t, s)ϕq

(
ϕp

(
T2

[
x∗(s)

])

–
∫ 1

0
Gα(s, τ )f

(
τ , x∗(τ ), CDβ

0+ x∗(τ )
)

dτ

)
ds. (3.15)

In view of Lemma 2.2, x∗ is a solution of boundary value problem (1.1)-(1.2).
In the same way, we can show that y∗ is a solution of boundary value problem (1.1)-(1.2),

too.
Furthermore, x0(t) ≤ x∗(t) ≤ y∗(t) ≤ y0(t), CDβ

0+ y0(t) ≤ CDβ

0+ y∗(t) ≤ CDβ

0+ x∗(t) ≤
CDβ

0+ x0(t) ≤ 0. �

4 The existence of positive solutions for some nonlinear boundary value
problems

In this section, we deal with fractional p-Laplacian equations (1.1) with nonlinear integral
boundary value conditions (1.3), (1.4) and (1.5).

(H3) Assume that gi ∈ C([0, 1] × [0, +∞) × (–∞, 0]) (i = 1, 2),
0 ≤ g1(t, w1, z1) ≤ g1(t, w2, z2) and 0 ≥ g2(t, w1, z1) ≥ g2(t, w2, z2) for any t ∈ [0, 1]
and 0 ≤ w1 ≤ w2, 0 ≥ z1 ≥ z2 ∈R.

Theorem 4.1 Assume that (H1) and (H3) hold, boundary value problem (1.1)-(1.3) has
a nonnegative lower solution x0 and an upper solution y0 such that x0, y0 ∈ P and x0 	 y0.
Then boundary value problem (1.1)-(1.3) has positive solutions x∗, y∗, both x∗ and y∗ ∈ P.
Furthermore,

x0(t) ≤ x∗(t) ≤ y∗(t) ≤ y0(t)

and

CDβ

0+ y0(t) ≤ CDβ

0+ y∗(t) ≤ CDβ

0+ x∗(t) ≤ CDβ

0+ x0(t) ≤ 0, t ∈ [0, 1].
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Proof Boundary value problem (1.1)-(1.3) is a special case of the general boundary value
problem (1.1)-(1.2) when Ti[u(t)] =

∫ 1
0 gi(s, u(s), CDβ

0+ u(s)) ds, i = 1, 2. By assumption (H3),
T1 is a continuous nonnegative increasing functional on P, and T2 is a continuous non-
positive decreasing functional on P. Then assumption (H2) holds. By using Theorem 3.1,
the results in this theorem can be obtained. �

Theorem 4.2 Assume that (H1) and (H3) hold, the constants r1, m1 > 0, r2, m2 ≥ 0, and
boundary value problem (1.1)-(1.4) has a nonnegative lower solution x0 ∈ P and an upper
solution y0 ∈ P with x0 	 y0. Then boundary value problem (1.1)-(1.4) has positive solutions
x∗, y∗ ∈ P. Furthermore,

x0(t) ≤ x∗(t) ≤ y∗(t) ≤ y0(t)

and

CDβ

0+ y0(t) ≤ CDβ

0+ y∗(t) ≤ CDβ

0+ x∗(t) ≤ CDβ

0+ x0(t) ≤ 0, t ∈ [0, 1].

Proof Boundary value problem (1.1)-(1.4) is a special case of the general boundary value
problem (1.1)-(1.2) when

T1
[
u(t)

]
=

1
r1

(
r2u(ξ ) +

∫ 1

0
g1

(
s, u(s), CDβ

0+ u(s)
)

ds
)

and

T2
[
u(t)

]
=

1
m1

(
–m2

CDβ

0+ u(η) +
∫ 1

0
g2

(
s, u(s), CDβ

0+ u(s)
)

ds
)

.

By (H1) and (H3), all the conditions in Theorem 4.1 hold. In view of Theorem 4.1, the
results can be obtained. �

(H4) Assume that �i(t) are increasing bounded variation functions,
gi ∈ C([0, 1] × [0, +∞) × (–∞, 0]) (i = 1, 2), 0 ≤ g1(t, w1, z1) ≤ g1(t, w2, z2) and
0 ≥ g2(t, w1, z1) ≥ g2(t, w2, z2) for any t ∈ [0, 1] and 0 ≤ w1 ≤ w2, 0 ≥ z1 ≥ z2 ∈R.

In the same way as Theorem 4.1, we can get the following results.

Theorem 4.3 Assume that (H1) and (H4) hold, boundary value problem (1.1)-(1.5) has
a nonnegative lower solution x0 and an upper solution y0 such that x0, y0 ∈ P and x0 	 y0.
Then boundary value problem (1.1)-(1.5) has positive solutions x∗, y∗ ∈ P. Furthermore,

x0(t) ≤ x∗(t) ≤ y∗(t) ≤ y0(t)

and

CDβ

0+ y0(t) ≤ CDβ

0+ y∗(t) ≤ CDβ

0+ x∗(t) ≤ CDβ

0+ x0(t) ≤ 0, t ∈ [0, 1].
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5 Illustration
Assume that f (t, w, z) = 1

10�( 1
3 )

t 1
3 ew–z–10, g1(t, w, z) = f (t, w, z) = 1

10�( 1
3 )

t 1
3 ew–z–10, g2(t, w, z) =

–f (t, w, z) = –1
10�( 1

3 )
t 1

3 ew–z–10. We can easily check that the functions f , g1 and g2 satisfy
conditions (H1) and (H3).

Let α = 5
3 , β = 5

4 , p = 3
2 , We consider the following nonlinear fractional p-Laplacian equa-

tion:

CD
5
3
0+

(
ϕ 3

2

(CD
5
4
0+ u(t)

))
= f

(
t, u(t), CD

5
4
0+ u(t)

)

=
1

10�( 1
3 )

t
1
3 eu(t)–C D

5
4
0+ u(t)–10, t ∈ (0, 1), (5.1)

with the nonlinear integral boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(0) = (ϕ 3
2

(CD
5
4
0+ u(0)))′ = 0,

u(1) =
∫ 1

0 g1(s, u(s), CD
5
4
0+ u(s)) ds =

∫ 1
0

1
10�( 1

3 )
s 1

3 eu(s)–C D
5
4
0+ u(s)–10 ds,

CD
5
4
0+ u(1) =

∫ 1
0 g2(s, u(s), CD

5
4
0+ u(s)) ds = –

∫ 1
0

1
10�( 1

3 )
s 1

3 eu(s)–C D
5
4
0+ u(s)–10 ds,

(5.2)

which is a special case of boundary value problem (1.1)-(1.2).
Let x0 = 0, we can easily check that x0 = x0(t) ≡ 0 is a lower solution of boundary value

problem (5.1)-(5.2).
Let

y0(t) = 10 –
16t 5

4 (13,923 – 3808t2 + 512t4)
69,615�( 5

4 )
.

In the following, we check that y0 = y0(t) is an upper solution of boundary value problem
(5.1)-(5.2).

We can easily get that

y′
0(t) = –

16t 5
4 (–7616t + 2048t3)

69,615�( 5
4 ))

–
4t 1

4 (13,923 – 3808t2 + 512t4)
13,923�( 5

4 )
,

CD
5
4
0+ y0(t) = –

(
2 – t2)2, ϕ 3

2

(CD
5
4
0+ y0(t)

)
= t2 – 2,

(
ϕ 3

2

(CD
5
4
0+ y0(t)

))′ = 2t,

and

CD
5
3
0+

(
ϕ 3

2

(CD
5
4
0+ y0(t)

))
= CD

5
3
0+

(
t2 – 2

)
=

6
�( 1

3 )
t

1
3 .

Then

y′
0(0) = 0,

(
ϕ 3

2

(CD
5
4
0+ y0(0)

))′ = 0,

and

y0(1) = 10 –
170,032

69,615�( 5
4 )

≈ 7.30532, CD
5
4
0+ y0(1) = –1.
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We can easily check that

0 ≤ f
(
t, y0(t), CD

5
4
0+ y0(t)

)

=
1

10�( 1
3 )

t
1
3 exp

(
–

16t 5
4 (13,923 – 3808t2 + 512t4)

69,615�( 5
4 )

+
(
–2 + t2)2

)
< 1;

0 ≤ g1
(
t, y0(t), CD

5
4
0+ y0(t)

)

=
1

10�( 1
3 )

t
1
3 exp

(
–

16t 5
4 (13,923 – 3808t2 + 512t4)

69,615�( 5
4 )

+
(
–2 + t2)2

)
< 1;

0 ≥ g2
(
t, y0(t), CD

5
4
0+ y0(t)

)

=
–1

10�( 1
3 )

t
1
3 exp

(
–

16t 5
4 (13,923 – 3808t2 + 512t4)

69,615�( 5
4 )

+
(
–2 + t2)2

)
> –1.

Then

CD
5
3
0+

(CD
5
4
0+ y0(t)

)
=

6
�( 1

3 )
t

1
3 ≥ f

(
t, y0(t), CD

5
4
0+ y0(t)

)
, t ∈ (0, 1),

y′
0(0) = 0,

(
ϕ 3

2

(CD
5
4
0+ y0(0)

))′ = 0,

y0(1) = 10 –
170,032

69,615�( 5
4 )

≈ 7.30532 > 1

>
∫ 1

0
g1

(
s, y0(s), CD

5
4
0+ y0(s)

)
ds

=
∫ 1

0

1
10�( 1

3 )
s

1
3 ey0(s)–C D

5
4
0+ y0(s)–10 ds,

and

CD
5
4
0+ y0(1) = –1

<
∫ 1

0
g2

(
s, y0(s), CD

5
4
0+ y0(s)

)
ds

= –
∫ 1

0

1
10�( 1

3 )
s

1
3 ey0(s)–C D

5
4
0+ y0(s)–10 ds.

Therefore, y0(t) = 10 – 16t
5
4 (13,923–3808t2+512t4)

69,615�( 5
4 )

is an upper solution of boundary value
problem (5.1)-(5.2).

Based on the above discussion, we can get that x0 	 y0. So all the conditions in Theo-
rem 3.1 hold. According to Theorem 3.1, boundary value problem (1.3) has the maximum
lower solution x∗ and the minimal upper solution y∗, both x∗ and y∗ are solutions of the
boundary value problem. Furthermore,

0 ≤ x∗(t) ≤ y∗(t) ≤ 10 –
16t 5

4 (13,923 – 3808t2 + 512t4)
69,615�( 5

4 )
= y0(t),
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and

–1 ≤ –
(
2 – t2)2 = CDβ

0+ y0(t) ≤ CDβ

0+ y∗(t) ≤ CDβ

0+ x∗(t) ≤ CDβ

0+ x0(t) = 0, t ∈ [0, 1].

Remark Since x0 = x0(t) ≡ 0 is a lower solution of boundary value problem (1.3) but not a
solution of the problem. Therefore, the solutions x∗ = x∗(t) and y∗ = y∗(t) are the nontrivial
solutions of boundary value problem (1.3).
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