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Abstract
In this paper, we build a multispecies predator-prey model with mutual interference
and time delays. By means of the comparison theorem, Ascoli theorem and Lebesgue
dominated convergence theorem, we establish the sufficient conditions of
permanence and investigate the existence of a unique almost periodic solution. By
constructing a suitable Lyapunov function, we obtain that the positive almost
periodic solution is globally attractive. Finally, we give numerical simulations to
indicate the complex dynamical behaviors of this system.

Keywords: almost periodic solution; global attractivity; mutual interference;
numerical simulation

1 Introduction
In population dynamics, the linkages between predator and prey are usually expressed
by different functional response functions, which reflect different dynamical behaviors.
Holling [1] carried out a large number of experiments on predator and prey and got
some different functional response functions. For example, the mathematical expression
of Holling xi (i = 1, 2) model is as follows [2]:

�(X) =
αX2

β2 + X2 .

Besides, in ecosystems, mutual interference between species is always present. The au-
thors [3] proposed a mutual interference factor that tended to leave when the host or
parasite met. A lot of articles studied the ecosystem with interference factors. Their ob-
tained results showed that the effect of this factor should not be ignored [4–7]. For ex-
ample, Wang et al. [6] concluded that mutual interference had great effect on the relative
properties of predator-prey models.

In real life, time delay always exists. Food digestion time, resource regeneration time,
mature time, pregnancy period and so on, these all can be expressed by time delay. Usu-
ally time delay plays a key role in many systems. For example, time delay can destroy the
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stability of the positive equilibrium. The obtained results showed that delayed differential
equations exhibited more complex dynamical properties than ordinary differential equa-
tions [8–14]. Du et al. [10] gave the following model:

⎧
⎨

⎩

ẋ = x(t)(r1(t) – b1(t)x(t – τ (t))) – c1(t)x2(t)
x2(t)+k2 ym(t),

ẏ = y(t)(–r2(t) – b2(t)y(t)) + c2(t)x2(t)
x2(t)+k2 ym(t),

(1.1)

where all parameter meanings can be seen in [10]. The time delay of system (1.1) made
the system very unstable and led to more complex dynamical behaviors. At the same time,
the research methods were also very different from other systems.

From the point of view of the interaction between biology and environment, Darwin
thought that biological variation, heredity and natural selection could lead to the adaptive
change of organisms. We know that natural environment is not a constant, and organisms
can change their habits to adapt to the new environment, which is called adaptive con-
trol. In recent years, adaptive control has been widely used in biological control systems,
aerospace systems, satellite tracking systems, and so on [15, 16].

On the other hand, in Ref. [10], the authors assume that the coefficients r1(t), b1(t), τ (t),
c1(t), r2(t), b2(t), c2(t) of system (1.1) are continuous positive almost periodic functions. It
is well known that the assumption of almost periodicity of the coefficients in (1.1) is a way
of incorporating the time-dependent variability of the environment, especially when the
factors of the environment exhibit periodical changes with not necessarily commensurate
periods, such as weather, food, mating habits, harvest, etc. In view of these factors, it is
necessary to study the relevant properties of ecosystems by using almost periodic coeffi-
cients. Recently, many scholars have studied the almost periodic solution and got some
nice results, which showed that the almost periodic solution of a population dynamical
system with mutual interference and time delay had wider application value [10, 17–19].

However, in the actual ecosystem, predator and prey always coexist, which is a common
and widespread phenomenon. The dynamical property of a multispecies predator-prey
system is much more complex than the system with only two or three species, and the
analytical methods are very different [11, 20–22].

Based on the above discussion, we establish a multispecies predator-prey model with al-
most periodic coefficients, mutual interference and time delays. The corresponding math-
ematical model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = xi(t)[ri(t) –

∑n
k=1 bik(t)xk(t – τk(t)) –

∑m
k=1

cik (t)xi(t)
x2

i (t)+fik (t) yα
k (t)],

i = 1, 2, . . . , n,

y′
j(t) = yj(t)[–rj(t) –

∑m
k=1 pjk(t)yk(t) +

∑n
k=1

qkj(t)x2
k (t)

x2
k (t)+fkj(t) yα–1

j (t)],

j = 1, 2, . . . , m,

(1.2)

with the initial conditions

xi(χ ) = φi(χ ), yj(χ ) = ψj(χ ); φi(χ ),ψj(χ ) ∈ C
(
[–τ , 0], R+

)
,χ ∈ [–τ , 0], (1.3)

where τ = maxt∈R{τk(t), k = 1, 2, . . . , m}, τk(t) is a nonnegative and continuously differen-
tiable almost periodic function on R and mint∈R{1 – τ ′

k(t)} > 0. ri(t), bik(t), cik(t), fik(t), rj(t),
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Table 1 Notations used to denote parameters

Parameters Description

xi(t) The population of species of the ith prey at t.
yj(t) The population of species of the ith predator at t.
ri(t) The population growth of prey without predators.
rj(t) The decay rate of predator population without prey.
α The mutual interference of predator and 0 < α < 1.
bik (t) The number of prey decreased due to inter-specific competition.
pjk (t) The number of predator decreased due to inter-specific competition.
cik (t) The amount of prey eaten by predator.
qkj(t) Conversion of energy from prey to predators.

pjk(t), qkj(t), fkj(t) are all continuous positive almost periodic functions on R and the brief
description about other parameters used in system (1.2) is presented in Table 1.

In this article, we aim to investigate the dynamical properties of almost periodic system
(1.2), which can greatly enrich the biological background.

The structure of the article as follows. In Section 2, we introduce several important defi-
nitions and lemmas. We discuss the permanence of the system in Section 3. Next, we prove
the global attractivity of system (1.2) in Section 4. In Section 5, we give conditions of the
existence and uniqueness of almost periodic solutions for the system. We put numerical
simulations in Section 6. In Section 7, we give a brief conclusion to this paper.

2 Main descriptions
In this part, we give some definitions and lemmas.

For continuous and bounded f on R, we denote f u = supt∈R f (t), f l = inft∈R f (t).

Definition 2.1 The positive solution (x(t), y(t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . ,
ym(t))T of system (1.2) is said to be globally attractive if, for any other positive solution
(x̄(t), ȳ(t))T = (x̄1(t), x̄2(t), . . . , x̄n(t), ȳ1(t), ȳ2(t), . . . , ȳm(t))T of (1.2), the following condition
holds:

lim
t→+∞

( n∑

i=1

∣
∣xi(t) – x̄i(t)

∣
∣ +

n∑

j=1

∣
∣yj(t) – ȳj(t)

∣
∣

)

= 0.

Definition 2.2 ([23]) A function f (t, x) is said to be almost periodic in t uniformly with
respect to x ∈ X if f (t, x) is continuous and, for ∀ε > 0, it is possible to find a constant
I(ε) > 0 such that, for any interval of length I(ε), there exists τ such that

∣
∣f (t + τ , x) – f (t, x)

∣
∣ < ε,

where the number τ is called an ε-translation number of f (t, x).

By the continuity of almost periodic functions, we obtain that the almost periodic coef-
ficients satisfy mini=1,2,...,n;j=1,2,...,m{rl

i , rl
j , bl

ik , pl
jk , cl

ik , ql
kj} > 0 and maxi=1,2,...,n;j=1,2,...,m{ru

i , ru
j , bu

ik ,
pu

jk , cu
ik , qu

kj} < +∞. For, the characteristics and relevant definitions of almost periodic func-
tions, the reader may refer to [10, 17, 24].
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Definition 2.3 ([25]) An almost periodic function f : R → R is said to be asymptotic if
there exist an almost periodic function q(t) and a continuous function r(t) such that

f (t) = q(t) + r(t), r(t) → 0 as t → ∞.

Lemma 2.1 ([26]) If the function f (t) is nonnegative, integral and uniformly continuous
on [0, +∞), then limt→∞ f (t) = 0.

Lemma 2.2 The set {(x(t), y(t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T ∈ Rn+m|
xi(t0) > 0, i = 1, 2, . . . , n; yj(t0) > 0, j = 1, 2, . . . , m,∃t0 ∈ R} is positive invariant with respect
to system (1.2).

Proof For xi(t0) > 0, yj(t0) > 0, we have

xi(t) = xi(t0) exp

{∫ t

t0

[

ri(s) –
n∑

k=1

bik(s)xk
(
s – τk(s)

)
–

m∑

k=1

cik(s)xi(s)
x2

i (s) + fik(s)
yα

k (s)

]

ds

}

> 0,

yj(t) = yj(t0) exp

{∫ t

t0

[

–rj(s) –
m∑

k=1

pjk(s)yk(s) +
n∑

k=1

qkj(s)x2
k(s)

x2
k(s) + fkj(s)

yα–1
j (s)

]

ds

}

> 0.

Then Lemma 2.2 is obtained. �

Lemma 2.3 ([27]) Suppose that the continuous operator A maps the closed and bounded
convex set Q ⊂ Rn onto itself, then the operator A has at least one fixed point in the set Q.

Lemma 2.4 ([28]) If x′ ≥(≤) x(b – axα), where a > 0, b > 0 and α is a positive constant, then

lim
t→∞ sup x(t) ≤

(
b
a

) 1
α

(

lim
t→∞ inf x(t) ≥

(
b
a

) 1
α
)

.

Lemma 2.5 ([29]) If x′ ≥(≤) xm(t)(b – ax1–m(t)), x(0) > 0, a > 0, b > 0, then ∀t ≥ 0, we have

x(t) ≥(≤)
(

b
a

+
(

x1–m(0) –
b
a

)

e–a(1–m)t
) 1

1–m
.

3 Permanence of system (1.2)
Theorem 3.1 If the following condition holds:

[H1] ĝi = rl
i –

n∑

k=1,k �=i

bu
ik(t)Mk –

m∑

k=1

cu
ikMiNk

f l
ik

> 0,

then system (1.2) is permanent, that is, there exists T > 0, for t > T > 0, the solution
(x(t), y(t))T of (1.2) satisfies mi ≤ xi(t) ≤ Mi, nj ≤ yj(t) ≤ Nj, where

mi =
ĝi

bu
ii

exp
((

ĝi – bu
iiMi

)
τ
)
, Mi =

ru
i

bl
iie

–ru
i τ

,

nj =
( ∑n

k=1 ql
kjm

2
k

2(
∑n

k=1(M2
k + f u

kj ))(r
u
j +

∑m
k=1 pu

jkNk)

) 1
1–α

, Nj =
(3

∑n
k=1 qu

kj(t)
2rl

j

) 1
1–α

for i = 1, 2, . . . , n; j = 1, 2, . . . , m. In this article, the values of i, j are no longer repeated.
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Proof By the first equation of (1.2), we get

x′
i(t) ≤ xi(t)ri(t). (3.1)

Integrating (3.1), we have xi(t) ≤ xi(t – τ ) exp(ru
i τ ), t > τ , that is,

xi(t – τ ) ≥ xi(t) exp
(
–ru

i τ
)
, t > τ . (3.2)

Combining (3.2) and the first equation of (1.2), we have

x′
i(t) ≤ xi(t)

[
ru

i – bl
iixi(t) exp

(
–ru

i τ
)]

, t > τ . (3.3)

By applying Lemma 2.4 to (3.3), we obtain

lim
t→+∞ sup xi(t) ≤ ru

i

bl
iie

–ru
i τ

≡ Mi. (3.4)

By (3.4), there exists T1 > τ , when t ≥ T1 and T1 → ∞, then

xi(t) ≤ Mi. (3.5)

By (3.5), there also exists T2 = T1 + τ , when t ≥ T2, then

xi(t – τ ) ≤ Mi. (3.6)

Combining (3.6) and the second equation of (1.2), we have

y′
j(t) ≤ yj(t)

[ n∑

k=1

qu
kj(t)yα–1

j (t) – rl
j (t)

]

≤ yα
j (t)

[ n∑

k=1

qu
kj(t) – rl

j (t)y1–α(t)

]

, t ≥ T2. (3.7)

Using Lemma 2.5 to (3.7), then

yj(t) ≤
[∑n

k=1 qu
kj(t)

rl
j (t)

+
(

y1–α(0) –
∑n

k=1 qu
kj(t)

rl
j (t)

)

e–rl
j (t)(1–α)t

] 1
1–α

, ∀t ≥ 0. (3.8)

Therefore, there exists T3 > 0 such that

yj(t) ≤
(3

∑n
k=1 qu

kj(t)
2rl

j

) 1
1–α ≡ Nj, t > T3. (3.9)

Combining (3.5), (3.6), (3.9) and the first equation of (1.2), we get

x′
i(t) ≥ xi(t)

[

rl
i –

n∑

k=1,k �=i

bu
ik(t)Mk – bu

iixi
(
t – τi(t)

)
–

m∑

k=1

cu
ikMiNα

k

f l
ik

]

. (3.10)
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Suppose xi(t̃) is any local minimal value of xi(t), then we have

0 = x′
i(t̃) ≥ xi(t̃)

[

rl
i –

n∑

k=1,k �=i

bu
ik(t)Mk – bu

iixi
(
t̃ – τi(t̃)

)
–

m∑

k=1

cu
ikMiNα

k

f l
ik

]

. (3.11)

Let

ĝi = rl
i –

n∑

k=1,k �=i

bu
ik(t)Mk –

m∑

k=1

cu
ikMiNα

k

f l
ik

. (3.12)

From (3.11) and (3.12), we have

xi
(
t̃ – τi(t̃)

) ≥ ĝi

bu
ii

. (3.13)

Integrating (3.10) on [t̃ – τi(t̃), t̃] and noticing that ĝi – bu
iixi(t̃ – τi(t̃)) ≤ 0, we obtain

ln

(
xi(t̃)

xi(t̃ – τi(t̃))

)

≥
∫ t̃

t̃–τi(t̃)

(
ĝi – bu

iixi
(
t̃ – τi(t̃)

))
dt ≥ (

ĝi – bu
iiMi

)
τ . (3.14)

From (3.13) and (3.14), then

xi(t̃) ≥ ĝi

bu
ii

exp
((

ĝi – bu
iiMi

)
τ
)
. (3.15)

Hence, for T4 > 0 and t > T4, we have

xi(t) ≥ xi(t̃) ≥ ĝi

bu
ii

exp
((

ĝi – bu
iiMi

)
τ
) ≡ mi. (3.16)

Combining (3.9), (3.16) and the second equation of (1.2), when T5 ≥ max{T3, T4} > 0, for
t > T5, we get

y′
j(t) ≥ yj(t)

[

–ru
j –

m∑

k=1

pu
jkNk +

n∑

k=1

ql
kjm

2
k

M2
k + f u

kj
yα–1

j (t)

]

= yα
j (t)

[ n∑

k=1

ql
kjm

2
k

M2
k + f u

kj
–

(

ru
j +

m∑

k=1

pu
jkNk

)

y1–α
j (t)

]

.

It follows from Lemma 2.5 that there exists T6 > 0 such that

yj(t) ≥
(

∑n
k=1

ql
kjm

2
k

M2
k +f u

kj

ru
j +

∑m
k=1 pu

jkNk
+

(

y1–α
j (0) –

∑n
k=1

ql
kjm

2
k

M2
k +f u

kj

ru
j +

∑m
k=1 pu

jkNk

)

e–(ru
j +

∑m
k=1 pu

jk Nk )(1–α)t
) 1

1–α

≥
( ∑n

k=1 ql
kjm

2
k

2(
∑n

k=1(M2
k + f u

kj ))(r
u
j +

∑m
k=1 pu

jkNk)

) 1
1–α ≡ nj.

Make T ≥ max{T2, T5, T6} > 0, for t > T , we get mi ≤ xi(t) ≤ Mi, nj ≤ yj(t) ≤ Nj.
Therefore system (1.2) is permanent.
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Next, we prove that system (1.2) has at least one bounded positive solution for t ≥ 0.
Define 
 = {(x(t), y(t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T ∈ Rn+m|(x(t), y(t))T

is the solution of system (1.2), satisfying mi ≤ xi(t) ≤ Mi, nj ≤ yj(t) ≤ Nj, t ∈ R} . �

Theorem 3.2 For system (1.2), the set 
 �= ∅.

Proof According to the characteristics of an almost periodic function, for a sequence of
{tγ }, tγ → ∞ as γ → ∞, then ri(t + tγ ) → ri(t), rj(t + tγ ) → rj(t), bil(t + tγ ) → bil(t), pjk(t +
tγ ) → pjk(t), cik(t + tγ ) → cik(t), qlj(t + tγ ) → qlj(t), τi(t + tγ ) → τi(t), fij(t + tγ ) → fij(t)
(i, l = 1, 2, . . . , n; j, k = 1, 2, . . . , m) uniformly on R as γ → ∞. By Lemma 2.3, system (1.2)
has at least one solution z(t) = (x(t), y(t))T satisfying mi ≤ xi(t) ≤ Mi, nj ≤ yj(t) ≤ Nj when
t > T .

Obviously, the sequence z(t + tγ ) is uniformly bounded and equi-continuous on any
bounded subset of R. By the Ascoli theorem, we know there exists a subsequence z(t + tλ)
which converges to a continuous function

g(t) =
(
g1(t), g2(t)

)T =
(
g11(t), g21(t), . . . , gn1(t), g12(t), g22(t), . . . , gm2(t)

)T

as λ → ∞ uniformly on any bounded subset of R.
Make T7 ∈ R, suppose T7 + tλ ≥ T for all λ. When t ≥ 0, we obtain

xi(t + tλ + T7) – xi(tλ + T7)

=
∫ t+T7

T7

xi(s + tλ)

(

ri(s + tλ) –
n∑

k=1

bik(s + tλ)xk
(
(s + tλ) – τk(s + tλ)

)

–
m∑

k=1

cik(s + tλ)xi(s + tλ)
x2

i (s + tλ) + fik(s + tλ)
yα

k (s + tλ)

)

ds, (3.17)

yj(t + tλ + T7) – yj(tλ + T7)

=
∫ t+T7

T7

yj(tλ + s)

(

–rj(s + tλ) –
m∑

k=1

pjk(s + tλ)yk(s + tλ)

+
n∑

k=1

qkj(s + tλ)x2
k(s + tλ)

x2
k(s + tλ) + fkj(s + tλ)

yα–1
j (s + tλ)

)

ds. (3.18)

Letting λ → ∞ in (3.17) and (3.18), for ∀t ≥ 0, by the Lebesgue dominated convergence
theorem, we get

gi1(t + T7) – gi1(T7)

=
∫ t+T7

T7

gi1(s)

(

ri(s) –
n∑

k=1

bik(s)gk1
(
s – τk(s)

)
–

m∑

k=1

cik(s)gi1(s)
g2

i1(s) + fik(s)
gα

k2(s)

)

ds,

gj2(t + T7) – gj2(T7)

=
∫ t+T7

T7

gj2(s)

(

–rj(s) –
m∑

k=1

pjk(s)gk2(s) +
n∑

k=1

qkj(s)g2
k1(s)

g2
k1(s) + fkj(s)

gα–1
j2 (s)

)

ds.

Since T7 ∈ R is arbitrarily given, g(t) is a solution of system (1.2) on R.
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It is easy to know mi ≤ gi1(t) ≤ Mi, nj ≤ gj2(t) ≤ Nj for any t ∈ R. Thus, the set 
 �= ∅,
that is, system (1.2) has at least one bounded positive solution. �

4 Global attractivity of system (1.2)
Theorem 4.1 If the parameters of system (1.2) satisfy condition [H1] and the following
conditions:

[H2] lim
t→+∞ inf Ai(t) > 0,

[H3] lim
t→+∞ inf Bj(t) > 0,

where

Ai(t) = –
m∑

k=1

cik(t)Eik +
n∑

k=1

bik(t)

–
n∑

k=1

[

rk(s) +
n∑

j=1

bkj(s)Mj +
m∑

j=1

qkj(s)MkNα
j

f l
kj + m2

k

]∫ ϕ–1
k (t)

t
bik(u) du

–
n∑

k=1

m∑

j=1

cik(t)MkEkj

∫ ϕ–1
k (t)

t
bik(u) du

–
n∑

k=1

n∑

j=1

Mkbkj(ϕ–1
j (t))

1 – τ ′
j (ϕ–1

j (l))

∫ ϕ–1
k (ϕ–1

j (t))

ϕ–1
j (t)

bik(u) du –
m∑

k=1

qkj(t)
2MiNα–1

j

fik(t) + m2
i

,

Bj(t) = –
m∑

k=1

cik(t)Fik –
n∑

k=1

m∑

j=1

qkj(t)MkEkj

∫ ϕ–1
k (t)

t
bik(u) du +

m∑

k=1

pjk(t),

Eik =
f u
ik Nα

k + 3M2
i Nα

k
(fik + m2

i )2 , Fik =
f u
ik Mi + M3

i

(fik + m2
i )2

and ϕ–1
i is the inverse function of ϕi(t) = t – τi(t), then the solution of system (1.2) is globally

attractive.

Proof Let (x(t), y(t))T , (x̄(t), ȳ(t))T be any two solutions of system (1.2). From Theorem 3.1,
for ∀t > T , we get

mi ≤ xi(t), x̄i(t) ≤ Mi; nj ≤ yj(t), ȳj(t) ≤ Nj. (4.1)

Next, we set up several Lyapunov functions. Let

Vi1(t) =
∣
∣ln x̄i(t) – ln xi(t)

∣
∣. (4.2)

By calculating the upper right derivative of Vi1(t) along system (1.2), we have

D+Vi1(t) = sign
(
x̄i(t) – xi(t)

)
(

x̄′
i(t)

x̄i(t)
–

x′
i(t)

xi(t)

)

= sign
(
x̄i(t) – xi(t)

)
{

–
n∑

k=1

bik(t)
[
x̄k

(
t – τk(t)

)
– xk

(
t – τk(t)

)]
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–
m∑

k=1

[
cik(t)x̄i(t)ȳα

k (t)
x̄2

i (t) + fik(t)
–

cik(t)xi(t)yα
k (t)

x2
i (t) + fik(t)

]}

= sign
(
x̄i(t) – xi(t)

)
{

–
n∑

k=1

bik(t)
[
x̄k

(
t – τk(t)

)
– xk

(
t – τk(t)

)]

–
m∑

k=1

cik(t)
[

fik(t)ȳα
k (t) + ȳα

k (t)x2
i (t) – xi(t)yα

k (t)(xi(t) + x̄i(t))
(x̄2

i (t) + fik(t))(x2
i (t) + fik(t))

(
x̄i(t) – xi(t)

)

+
fik(t)xi(t) + x3

i (t)
(x̄2

i (t) + fik(t))(x2
i (t) + fik(t))

(
ȳα

k (t) – yα
k (t)

)
]}

≤
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣

–
n∑

k=1

bik
∣
∣x̄k(t) – xk(t)

∣
∣ +

n∑

k=1

bik

∣
∣
∣
∣

∫ t

t–τk (t)
x̄′

k(s) – x′
k(s) ds

∣
∣
∣
∣, (4.3)

where

Eik =
f u
ik Nα

k + 3M2
i Nα

k
(fik + m2

i )2 , Fik =
f u
ik Mi + M3

i

(fik + m2
i )2 .

Substituting (1.2) into (4.3), we get

D+Vi1(t)

≤
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

bik(t)

∣
∣
∣
∣
∣

∫ t

t–τk (t)

{

x̄k(s)

[

rk(s) –
n∑

j=1

bkj(s)x̄j
(
s – τj(s)

)
–

m∑

j=1

ckj(s)x̄k(s)ȳα
j (s)

fkj(s) + x̄2
k(s)

]

– xk(s)

[

rk(s) –
n∑

j=1

bkj(s)xj
(
s – τj(s)

)
–

m∑

j=1

ckj(s)xk(s)yα
j (s)

fkj(s) + x2
k(s)

]}

ds

∣
∣
∣
∣
∣

=
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)Eik
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

bik(t)

∣
∣
∣
∣
∣

∫ t

t–τk (t)

{[

rk(s) –
n∑

j=1

bkj(s)x̄j
(
s – τj(s)

)
–

m∑

j=1

ckj(s)x̄k(s)ȳα
j (s)

fkj(s) + x̄2
k(s)

]

× (
x̄k(s) – xk(s)

)
– xk(s)

n∑

j=1

bkj(s)
(
x̄j

(
s – τj(s)

)
– xj

(
s – τj(s)

))

– xk(s)
m∑

j=1

ckj(s)
fkj(s)ȳα

j (s) + ȳα
j (s)x2

k(s) – yα
j (s)xk(s)(xk(s) + x̄k(s))

(fkj(s) + x2
k(s))(fkj(s) + x̄2

k(s))
(
x̄k(s) – xk(s)

)

– xk(s)
m∑

j=1

ckj(s)
fkj(s)xk(s) + x3

k(s)
(fkj(s) + x2

k(s))(fkj(s) + x̄2
k(s))

(
ȳα

j (s) – yα
j (s)

)
}

ds

∣
∣
∣
∣
∣
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≤
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

bik(t)
∫ t

t–τk (t)

{[

rk(s) +
n∑

j=1

bkj(s)x̄j
(
s – τj(s)

)
+

m∑

j=1

ckj(s)x̄k(s)ȳα
j (s)

fkj(s) + x̄2
k(s)

]

× ∣
∣x̄k(s) – xk(s)

∣
∣ + xk(s)

n∑

j=1

bkj(s)
∣
∣
(
x̄j

(
s – τj(s)

)
– xj

(
s – τj(s)

))∣
∣

+ xk(s)
m∑

j=1

ckj(s)Ekj
∣
∣x̄k(s) – xk(s)

∣
∣ + xk(s)

m∑

j=1

ckj(s)Fkj
∣
∣ȳα

j (s) – yα
j (s)

∣
∣

}

ds. (4.4)

Considering (4.1) and (4.4), for t ≥ T + τ , we get

D+Vi1(t)

≤
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

bik(t)
∫ t

t–τk (t)

{[

rk(s) +
n∑

j=1

bkj(s)Mj +
m∑

j=1

ckj(s)MkNα
j

f l
kj + m2

k

]
∣
∣x̄k(s) – xk(s)

∣
∣

+ Mk

n∑

j=1

bkj(s)
∣
∣
(
x̄j

(
s – τj(s)

)
– xj

(
s – τj(s)

))∣
∣

+ Mk

n∑

j=1

ckj(s)Ekj
∣
∣x̄k(s) – xk(s)

∣
∣ + Mk

m∑

j=1

ckj(s)Fkj
∣
∣ȳα

j (s) – yα
j (s)

∣
∣

}

ds

≡
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

bik(t)
∫ t

t–τk (t)
Gk(s) ds. (4.5)

Define

Vi2(t) =
n∑

k=1

∫ ϕ–1
k (t)

t

∫ t

τk (u)
bik(u)Gk(s) ds du. (4.6)

Combining (4.5) and (4.6), for t ≥ T + τ , we get

D+Vi1(t) + V ′
i2(t) ≤

m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣

+
m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

∫ ϕ–1
k (t)

t
bik(u) duGk(t). (4.7)
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Next, we define

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t), (4.8)

where

Vi3(t) =
n∑

k=1

n∑

j=1

Mk

∫ t

t–τj(t)

∫ ϕ–1
k (ϕ–1

j (l))

ϕ–1
j (l)

bik(u)bkj(ϕ–1
j (l))

1 – τ ′
j (ϕ–1

j (l))
∣
∣x̄j(l) – xj(l)

∣
∣du dl. (4.9)

Considering (4.7)-(4.9), for t ≥ T + τ , we get

D+Vi(t)

≤
m∑

k=1

cik(t)Eik
∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

k=1

cik(t)Fik
∣
∣ȳα

k (t) – yα
k (t)

∣
∣ –

n∑

k=1

bik(t)
∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

[

rk(s) +
n∑

j=1

bkj(s)Mj +
m∑

j=1

ckj(s)MkNα
j

f l
kj + m2

k

]∫ ϕ–1
k (t)

t
bik(u) du

∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

m∑

j=1

cik(t)MkEkj

∫ ϕ–1
k (t)

t
bik(u) du

∣
∣x̄k(t) – xk(t)

∣
∣

+
n∑

k=1

m∑

j=1

ckj(t)MkFkj

∫ ϕ–1
k (t)

t
bik(u) du

∣
∣ȳα

j (t) – yα
j (t)

∣
∣

+
n∑

k=1

n∑

j=1

Mkbkj(ϕ–1
j (t))

1 – τ ′
j (ϕ–1

j (l))

∫ ϕ–1
k (ϕ–1

j (t))

ϕ–1
j (t)

bik(u) du
∣
∣x̄j(t) – xj(t)

∣
∣. (4.10)

Define

Vj(t) =
∣
∣ln yj(t) – ln ȳj(t)

∣
∣. (4.11)

Calculating its Dini derivative along system (1.2), we get

D+Vj(t) = sign
(
yj(t) – ȳj(t)

)
(y′

j(t)
yj(t)

–
ȳ′

j(t)
ȳj(t)

)

= sign
(
yj(t) – ȳj(t)

)
[

–
m∑

k=1

pjk(t)
(
yj(t) – ȳj(t)

)

+
m∑

k=1

qkj(t)
( x2

k(t)yα–1
j (t)

fik(t) + x2
k(t)

–
x̄2

k(t)ȳα–1
j (t)

fik(t) + x̄2
k(t)

)]

= –
m∑

k=1

pjk(t)
∣
∣yj(t) – ȳj(t)

∣
∣

+
m∑

k=1

qkj(t) sign
(
yj(t) – ȳj(t)

)
( x2

k(t)yα–1
j (t)

fik(t) + x2
k(t)

–
x̄2

k(t)ȳα–1
j (t)

fik(t) + x̄2
k(t)

)

= –
m∑

k=1

pjk(t)
∣
∣yj(t) – ȳj(t)

∣
∣ +

m∑

k=1

qkj(t) sign
(
yj(t) – ȳj(t)

)
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×
( x2

k(t)yα–1
j (t)

fik(t) + x2
k(t)

–
x2

k(t)ȳα–1
j (t)

fik(t) + x2
k(t)

+
x2

k(t)ȳα–1
j (t)

fik(t) + x2
k(t)

–
x̄2

k(t)ȳα–1
j (t)

fik(t) + x̄2
k(t)

)

= –
m∑

k=1

pjk(t)
∣
∣yj(t) – ȳj(t)

∣
∣ +

m∑

k=1

qkj(t) sign
(
yj(t) – ȳj(t)

)

×
(

x2
k(t)

fik(t) + x2
k(t)

(
yα–1

j (t) – ȳα–1
j (t)

)

+
fik(t)(xk(t) + x̄k(t))ȳα–1

j (t)
(fik(t) + x2

k(t))(fik(t) + x̄2
k(t))

(
xk(t) – x̄k(t)

)
)

≤ –
m∑

k=1

pjk(t)
∣
∣yj(t) – ȳj(t)

∣
∣ +

m∑

k=1

qkj(t)
(xk(t) + x̄k(t))ȳα–1

j (t)
fik(t) + x2

k(t)
∣
∣xk(t) – x̄k(t)

∣
∣

≤ –
m∑

k=1

pjk(t)
∣
∣yj(t) – ȳj(t)

∣
∣ +

m∑

k=1

qkj(t)
2MiNα–1

j

fik(t) + m2
i

∣
∣xk(t) – x̄k(t)

∣
∣. (4.12)

Define the Lyapunov functional V (t) as follows:

V (t) =
n∑

i=1

Vi(t) +
m∑

j=1

Vj(t). (4.13)

Considering (4.10), (4.11) and (4.12), for t ≥ T + τ , we have

D+V (t) ≤ –
n∑

i=1

Ai(t)
∣
∣x̄i(t) – xi(t)

∣
∣ –

m∑

j=1

Bj(t)
∣
∣ȳj(t) – yj(t)

∣
∣, (4.14)

where Ai(t), Bj(t) are given in Theorem 4.1.
From conditions [H2] and [H3], there exist αi,βj > 0 and T0 ≥ T + τ such that

0 < αi ≤ Ai(t), 0 < βj ≤ Bj(t) for t ≥ T0. (4.15)

Let α0 = min{α1,α2, . . . ,αn;β1,β2, . . . ,βm}, combining (4.14) and (4.15), then

D+V (t) ≤ –α0

( n∑

i=1

∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

j=1

∣
∣ȳj(t) – yj(t)

∣
∣

)

. (4.16)

Integrating (4.16) on [T0, t], we get

V (t) + α0

∫ t

T0

( n∑

i=1

∣
∣x̄i(u) – xi(u)

∣
∣ +

m∑

j=1

∣
∣ȳj(u) – yj(u)

∣
∣

)

du ≤ V (T0), t ≥ T0. (4.17)

So,
∫ +∞

T0
(
∑n

i=1 |x̄i(u) – xi(u)| +
∑m

j=1 |ȳj(u) – yj(u)|) du < +∞ and V (t) is bounded on the
interval [T0, +∞). Combining Theorem 3.1 and (1.2), we get x̄i(t) – xi(t), ȳj(t) – yj(t) and
(x̄i(t)–xi(t))′, (ȳj(t)–yj(t))′ are bounded on the interval [T0, +∞). Then

∑n
i=1 |x̄i(u)–xi(u)|+

∑m
j=1 |ȳj(u) – yj(u)| is uniformly continuous.
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Using Lemma 2.1, we get

lim
t→+∞

( n∑

i=1

∣
∣x̄i(t) – xi(t)

∣
∣ +

m∑

j=1

∣
∣ȳj(t) – yj(t)

∣
∣

)

= 0 and

lim
t→+∞

∣
∣x̄i(t) – xi(t)

∣
∣ = 0, lim

t→+∞
∣
∣ȳj(t) – yj(t)

∣
∣ = 0.

(4.18)

Therefore, system (1.2) is globally attractive. �

5 Existence of almost periodic solution
Theorem 5.1 Suppose [H1], [H2] and [H3] hold, then system (1.2) has a unique almost
periodic solution.

Proof From Theorem 3.2, we know (x(t), y(t))T , t ∈ R is a bounded positive solution. Then
there exists a sequence {t′

λ}, t′
λ → ∞ as λ → +∞ such that (x(t + t′

λ), y(t + t′
λ))T is a solution

of the following system (5.1):

⎧
⎪⎨

⎪⎩

x′
i(t) = xi(t)[ri(t + t′

λ) –
∑n

k=1 bik(t + t′
λ)xk(t – τk(t)) –

∑m
k=1

cik (t+t′λ)xi(t)
x2

i (t)+fik (t+t′λ) yα
k (t)],

y′
j(t) = yj(t)[–rj(t + t′

λ) –
∑m

k=1 pjk(t + t′
λ)yk(t) +

∑n
k=1

qkj(t+t′λ)x2
k (t)

x2
k (t)+fkj(t+t′λ) yα–1

j (t)].
(5.1)

From the above and Theorem 3.1, we know (x(t + t′
λ), y(t + t′

λ))T and (x′(t + t′
λ), y′(t + t′

λ))T are
uniformly bounded. Clearly, the sequence (x(t + t′

λ), y(t + t′
λ))T is equi-continuous. By the

Ascoli theorem, there exists a uniformly convergent subsequence {(x(t + tλ), y(t + tλ))T } ⊆
{(x(t + t′

λ), y(t + t′
λ))T } such that, for any ∀ε > 0, there exists λ0(ε) > 0 with the property that

if λ, � > λ0(ε), then

∣
∣xi(t + t� ) – xi(t + tλ)

∣
∣ < ε,

∣
∣yj(t + t� ) – yj(t + tλ)

∣
∣ < ε,

which indicates that (x(t + tλ), y(t + tλ))T is an almost periodic and asymptotic function.
Then there exist functions gi1(t), gj2(t), hi1(t), hj2(t) such that

xi(t) = gi1(t) + hi1(t), yj(t) = gj2(t) + hj2(t),

where

lim
λ→+∞ gi1(t + tλ) = gi1(t), lim

λ→+∞ gj2(t + tλ) = gj2(t),

lim
λ→+∞ hi1(t + tλ) = 0, lim

λ→+∞ hj2(t + tλ) = 0,

gi1(t), gj2(t) are almost periodic functions. It shows that

lim
λ→+∞ xi(t + tλ) = gi1(t), lim

λ→+∞ yj(t + tλ) = gj2(t).

Besides, we still have

lim
λ→+∞ x′

i(t + tλ) = lim
λ→+∞ lim

h̄→0

xi(t + tλ + h̄) – xi(t + tλ)
h̄

= lim
h̄→0

gi1(t + h̄) – gi1(t)
h̄

, (5.2)
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lim
λ→+∞ y′

j(t + tλ) = lim
λ→+∞ lim

h̄→0

yj(t + tλ + h̄) – yj(t + tλ)
h̄

= lim
h̄→0

gj2(t + h̄) – gj2(t)
h̄

. (5.3)

Therefore, the derivatives g ′
i1(t), g ′

j2(t) exist.
Next, we prove g(t) = (g1(t), g2(t))T is an almost periodic solution of system (1.2).
By the characteristics of almost periodic solution, there exists a sequence {tγ }, tγ →

∞ as γ → +∞ such that ri(t + tγ ) → ri(t), rj(t + tγ ) → rj(t), bil(t + tγ ) → bil(t), pjk(t +
tγ ) → pjk(t), cik(t + tγ ) → cik(t), qlj(t + tγ ) → qlj(t), τi(t + tγ ) → τi(t), fij(t + tγ ) → fij(t)
(i, l = 1, 2, . . . , n; j, k = 1, 2, . . . , m) as γ → ∞ uniformly on R. Obviously, limγ→+∞ xi(t + tγ ) =
gi1(t), limγ→+∞ yj(t + tγ ) = gj2(t). So we have

g ′
i1(t) = lim

γ→+∞ x′
i(t + tγ )

= lim
γ→+∞ xi(t + tγ )

[

ri(t + tγ ) –
n∑

k=1

bik(t + tγ )xk
(
(t + tγ ) – τk(t + tγ )

)

–
m∑

k=1

cik(t + tγ )xi(t + tγ )yα
k (t + tγ )

x2
i (t + tγ ) + fik(t + tγ )

]

= gi1(t)

[

ri(t) –
n∑

k=1

bik(t)gk1
(
t – τk(t)

)
–

m∑

k=1

cik(t)gi1(t)gα
k2(t)

g2
i1(t) + fik(t)

]

,

g ′
j2(t) = lim

γ→+∞ y′
j(t + tγ )

= lim
γ→+∞ yj(t + tγ )

[

–rj(t + tγ ) –
m∑

k=1

pjk(t + tγ )xk
(
(t + tγ ) – τk(t + tγ )

)

+
n∑

k=1

qik(t + tγ )x2
k(t + tγ )yα–1

k (t + tγ )
x2

k(t + tγ ) + fkj(t + tγ )

]

= gj2(t)

[

–rj(t) –
m∑

k=1

bik(t)gk2(t) +
n∑

k=1

qkj(t)g2
k1(t)gα–1

k2 (t)
g2

k1(t) + fkj(t)

]

.

From the above, we know g(t) satisfies (1.2), that is, it is a positive almost periodic solution.
Next, we prove that the positive almost periodic solution of system (1.2) is unique.
Let g(t) > 0 and ḡ(t) > 0 be any two almost periodic solutions of system (1.2), then we

claim that g1(t) ≡ ḡ1(t) and g2(t) ≡ ḡ2(t) for ∀t ∈ R. Otherwise, there is at least one ξ ∈ R
such that gi1(ξ ) �= ḡi1(ξ ), that is, |gi1(ξ ) – ḡi1(ξ )| := δ > 0. Then

δ =
∣
∣gi1(ξ ) – ḡi1(ξ )

∣
∣ = lim

γ→+∞
∣
∣xi(ξ + tγ ) – x̄i(ξ + tγ )

∣
∣ = lim

t→+∞
∣
∣xi(t) – x̄i(t)

∣
∣ > 0,

which is a contradiction to (4.18). Thus ∀t ∈ R, g1(t) ≡ ḡ1(t) holds. By the same method,
we can prove that ∀t ∈ R, g2(t) ≡ ḡ2(t). �

Remark 5.1 If τi(t) ≡ τi, where τi (i = 1, 2, . . . , n) is a nonnegative constant, then assump-
tions [H2] and [H3] can be redefined. So, we give the following Corollary 5.1.
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Corollary 5.1 Make τi(t) ≡ τi, where τi ≥ 0. If system (1.2) satisfies both [H1] and the fol-
lowing two conditions:

lim
t→+∞ inf

{

–
m∑

k=1

cik(t)Eik +
n∑

k=1

bik(t)

–
n∑

k=1

[

rk(s) +
n∑

j=1

bkj(s)Mj +
m∑

j=1

qkj(s)MkNj

f l
kj + m2

k

]∫ t+τi

t
bik(u) du

–
n∑

k=1

m∑

j=1

cik(t)MkEkj

∫ t+τi

t
bik(u) du –

n∑

k=1

n∑

j=1

Mkpkj(t + τi)
∫ t+τk +τi

t+τi

bik(u) du

–
m∑

k=1

qkj(t)
2MiNα–1

j

fik(t) + m2
i

}

> 0,

lim
t→+∞ inf

{

–
m∑

k=1

cik(t)Fik –
n∑

k=1

m∑

j=1

qkj(t)MkEkj

∫ t+τi

t
bik(u) du +

m∑

k=1

qjk(t)

}

> 0,

then system (1.2) has a unique positive almost periodic solution which is globally attractive.

6 Model simulation
We give examples to verify the correctness of our theoretical results in this part.

Example 6.1 Consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = x(t)[(3 + 0.1 sin
√

7t) – (2 – 0.1 sin t)x(t – 0.01)

– (0.05–0.01 sin t)x(t)
x2(t)+1 y0.2(t)],

y′(t) = y(t)[–(0.02 + 0.01 sin
√

3t) – (0.05 – 0.01 sin t)y(t)

+ (0.2+0.01 sin t)x2(t)
x2(t)+1 y–0.8(t)],

(6.1)

with the initial conditions (φ(0),ψ(0)) = (1, 1) and (φ(0),ψ(0)) = (2.5, 2).
By calculation, the parameters of (6.1) meet the conditions of Theorem 3.1 and Corol-

lary 5.1. Using MATLAB, by simulation, time series diagrams of (6.1) are shown in Fig-
ure 1. Figure 1 indicates that (6.1) is persistent and has a unique positive almost periodic
solution which is globally attractive.

In order to demonstrate the dynamical behaviors of a multispecies predator-prey sys-
tem, we give the time series diagrams with only three species in system (1.2).

Example 6.2 Consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)[(1 + 0.1 sin

√
7t) – (1.3 – 1.1 sin t)x1(t – 0.01)

– (1.4 – 1.2 sin t)x2(t – 0.01) – (0.05–0.01 sin t)x1(t)
x2

1(t)+30 y0.5(t)],

x′
2(t) = x2(t)[(1 + 0.1 sin

√
7t) – (1.3 – 1.1 sin t)x1(t – 0.01)

– (1.4 – 1.2 sin t)x2(t – 0.01) – (0.05–0.01 sin t)x2(t)
x2

2(t)+30 y0.5(t)],

y′(t) = y(t)[–(0.02 + 0.01 sin
√

3t) – (0.05 – 0.01 sin t)y(t)

+ (0.5+0.01 sin t)x1(t)y–0.5(t)
x2

1(t)+30 + (0.5+0.01 sin t)x2(t)y–0.5(t)
x2

2(t)+30 ],

(6.2)
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(a) (b)

(c) (d)

Figure 1 (a), (b) The time series diagrams with two initial values of prey and predator, respectively.
(c) Two-dimensional periodic diagram of predator-prey. (d) Three-dimensional periodic diagram of
predator-prey-time.

with the initial conditions (φ1(0),φ2(0),ψ(0)) = (2, 2, 2) and (φ1(0),φ2(0),ψ(0)) = (0.1,
0.1, 0.1).

By calculation, these parameters of (6.2) meet the conditions of Theorem 3.1 and Corol-
lary 5.1. Using MATLAB, by simulation, time series diagrams of (6.2) are shown in Fig-
ure 2. Figure 2 shows that (6.2) is persistent and has a unique positive almost periodic
solution which is globally attractive.

7 Conclusion
We construct a multispecies predator-prey model with mutual interference and time
delays in this article. We obtain the conditions of permanence, global attractivity and
uniqueness of positive almost periodic solutions of the system by using the Ascoli the-
orem, Lebesgue dominated convergence theorem, Lyapunov functions and comparison
theorem. Finally, simulation results indicate the correctness of the theoretical results and
demonstrate the complex dynamical behaviors of the system.

Compared with Ref. [10], Du only considered the basic dynamics of two species, which
can not be effectively promoted and applied in actual production and life. However, we
comprehensively integrate the universal phenomenon of multispecies coexistence in the
real ecosystem. By studying the dynamics of multispecies predator-prey system, we can
better protect the ecosystem and practice the concept of green development.
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(a) (b)

(c) (d)

Figure 2 (a), (b) Time series diagrams with two initial values of prey xi (i = 1, 2), respectively. (c) The time
series diagram with two initial values of predator y. (d) Three-dimensional periodic diagram.
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