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1 Introduction
In this paper, we study the existence of positive solutions for a boundary value problem of
nonlinear fourth-order impulsive differential equation with multi-strip integral conditions
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(4)(t) = h(t)f (u(t), u′(t), u′′(t)), t ∈ J∗

�u(tk) = Ik(u(tk)), k = 1, 2, . . . , p,

�u′(tk) = Jk(u(tk), u′(tk)), k = 1, 2, . . . , p,

u′(0) = 0, u(1) + λu′(1) =
∑n

i=1 γi
∫ βi
αi

g1(t)u(t) dt,

u′′′(0) = 0, u′′(1) + μu′′′(1) =
∑n

i=1 ρi
∫ ηi
ξi

g2(t)u′′(t) dt,

(1.1)

where 0 < αi < βi < 1, 0 < ξi < ηi < 1, γi > 0, ρi > 0, i = 1, 2, . . . , n, λ > 0, μ > 0. J = [0, 1],
J∗ = J\{t1, t2, . . . , tp}, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1, �u(tk) = u(t+

k ) – u(t–
k ) denotes the

jump of u(t) at t = tk , u(t+
k ) and u(t–

k ) represent the right and left limits of u(t) at t = tk ,
respectively, �u′(tk) has a similar meaning for u′(t).

In fact, multi-strip conditions correspond to a linear combination of integrals of un-
known function on the sub-intervals of J . The multi-strip conditions appear in the math-
ematical modelings of the physical phenomena, for instance, see [1, 2]. They have various
applications in realistic fields such as blood flow problems, semiconductor problems, hy-
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drodynamic problems, thermoelectric flexibility, underground water flow and so on. For
a detailed description of multi-strip integral boundary conditions, we refer the reader to
the papers [3–6].

Impulsive differential equations, which provide a natural description of observed evolu-
tion processes, are regarded as important mathematical tools for a better understanding
of several real world problems in the applied sciences. For an overview of existing results
and of recent research areas of impulsive differential equations, see [7–10].

The existing literature indicates that research of fourth-order nonlocal integral bound-
ary value problems is excellent, and the relevant methods are developed to be various.
Generally, the fixed point theorems in cones, the method of upper and lower solutions,
the monotone iterative technique, the critical point theory and variational methods play
extremely important roles in establishing the existence of solutions to boundary value
problems. It is well known that the classical shooting method could be effectively used
to prove the existence results for differential equation boundary value problems. To some
extent, this approach has an advantage over the traditional methods. Readers can see [11–
16] and the references therein for details.

To the best of our knowledge, no paper has considered the existence of positive solu-
tions for a fourth-order impulsive differential equation multi-strip integral boundary value
problem with the shooting method till now. Motivated by the excellent work mentioned
above, in this paper, we try to employ the shooting method to establish the criteria for the
existence of positive solutions to BVP (1.1).

The rest of the paper is organized as follows. In Section 2, we provide some necessary
lemmas. In particular, we transform fourth-order impulsive problem (1.1) into a second-
order differential integral equation BVP (2.10), and by using the shooting method, we con-
vert BVP (2.10) into a corresponding IVP (initial value problem). In Section 3, the main
theorem is stated and proved. Finally, an example is discussed for the illustration of the
main work.

Throughout the paper, we always assume that:

(H1) f ∈ C(R+ × R
– × R

–,R+), Ik ∈ C(R+,R–), Jk ∈ C(R+ × R,R–) for 1 ≤ k ≤ p, here
R

+ = [0,∞), R– = (–∞, 0];
(H2) h, g1 and g2 ∈ C(J ,R+);
(H3) λ,μ,γi,ρi > 0 for i = 1, 2, . . . , n and 0 < 
 =

∑n
i=1 γi

∫ βi
αi

g1(t) dt < 1.

2 Preliminaries
For v(t) ∈ C(J), we consider the equation

u(4)(t) = v(t), t ∈ J∗, (2.1)

subject to the boundary conditions of (1.1).
We need to reduce BVP (1.1) to two second-order BVPs. To this end, first of all, by means

of the transformation

u′′(t) = –y(t), t ∈ J∗, (2.2)
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we convert problem (2.1) into the BVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′(t) + y(t) = 0, t ∈ J∗,

�u(tk) = Ik(u(tk)), k = 1, 2, . . . , p,

�u′(tk) = Jk(u(tk), u′(tk)), k = 1, 2, . . . , p,

u′(0) = 0, u(1) + λu′(1) =
∑n

i=1 γi
∫ βi
αi

g1(t)u(t) dt

(2.3)

and the BVP
⎧
⎨

⎩

y′′(t) + v(t) = 0, t ∈ J∗,

y′(0) = 0, y(1) + μy′(1) =
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t) dt.
(2.4)

Lemma 2.1 Assume that conditions (H1)-(H3) hold. Then, for any y(t) ∈ C(J), BVP (2.3)
has a unique solution as follows:

u(t) =
∫ 1

0
H(t, s)y(s) ds –

p∑

k=1

H(t, tk)Jk
(
u(tk), u′(tk)

)
– �

(
t, Ik

(
u(tk)

))
, (2.5)

where

H(t, s) = G(t, s) +
1

1 – 


n∑

i=1

γi

∫ βi

αi

G(t, s)g1(t) dt,

G(t, s) =

⎧
⎨

⎩

1 + λ – t, 0 ≤ s ≤ t ≤ 1,

1 + λ – s, 0 ≤ t ≤ s ≤ 1,

and

�
(
t, Ik

(
u(tk)

))
=

∑

tk≥t
Ik

(
u(tk)

)
+

1
1 – 


n∑

i=1

γi

∫ βi

αi

g1(t)
∑

tk≥t
Ik

(
u(tk)

)
dt.

Proof Integrating (2.3), we get

u′(t) = u′(0) –
∫ t

0
y(s) ds +

∑

tk <t
Jk

(
u(tk), u′(tk)

)

= –
∫ t

0
y(s) ds +

∑

tk <t
Jk

(
u(tk), u′(tk)

)
. (2.6)

By the same way, we get

u(t) = u(0) –
∫ t

0
(t – s)y(s) ds +

∑

tk <t
Ik

(
u(tk)

)
+

∑

tk <t
Jk

(
u(tk), u′(tk)

)
(t – tk). (2.7)

Setting t = 1 in (2.6) and (2.7), yields that
⎧
⎨

⎩

u′(1) = –
∫ 1

0 y(s) ds +
∑p

k=1 Jk(u(tk), u′(tk)),

u(1) = u(0) –
∫ 1

0 (1 – s)y(s) ds +
∑p

k=1 Ik(u(tk)) +
∑p

k=1 Jk(u(tk), u′(tk))(1 – tk).
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Taking into account the integral boundary condition of (2.3), we have

u(0) =
∫ 1

0
λy(s) ds +

∫ 1

0
(1 – s)y(s) ds +

n∑

i=1

γi

∫ βi

αi

g1(t)u(t) dt

–
p∑

k=1

λJk
(
u(tk), u′(tk)

)
–

p∑

k=1

Jk
(
u(tk), u′(tk)

)
(1 – tk) –

p∑

k=1

Ik
(
u(tk)

)
.

Combining with (2.7), we have

u(t) =
∫ 1

0
λy(s) ds +

∫ 1

0
(1 – s)y(s) ds –

∫ t

0
(t – s)y(s) ds +

n∑

i=1

γi

∫ βi

αi

g1(t)u(t) dt

–
p∑

k=1

λJk
(
u(tk), u′(tk)

)
–

p∑

k=1

Jk
(
u(tk), u′(tk)

)
(1 – tk) –

p∑

k=1

Ik
(
u(tk)

)

+
∑

tk <t
Ik

(
u(tk)

)
+

∑

tk <t
Jk

(
u(tk), u′(tk)

)
(t – tk)

=
∫ 1

0
G(t, s)y(s) ds +

n∑

i=1

γi

∫ βi

αi

g1(t)u(t) dt

–
p∑

k=1

G(t, tk)Jk
(
u(tk), u′(tk)

)
–

∑

tk≥t
Ik

(
u(tk)

)
, (2.8)

where G(t, s) is defined in Lemma 2.1.
Further, it holds that

n∑

i=1

γi

∫ βi

αi

g1(t)u(t) dt

=
n∑

i=1

γi

∫ βi

αi

g1(t)
∫ 1

0
G(t, s)y(s) ds dt + 


( n∑

i=1

γi

∫ βi

αi

g1(t)u(t) dt

)

–
n∑

i=1

γi

∫ βi

αi

g1(t)
p∑

k=1

G(t, tk)Jk
(
u(tk), u′(tk)

)
dt

–
n∑

i=1

γi

∫ βi

αi

g1(t)
∑

tk≥t
Ik

(
u(tk)

)
dt,

where 
 is given by (H3). Therefore,

n∑

i=1

γi

∫ βi

αi

g1(t)u(t) dt =
1

1 – 


[ n∑

i=1

γi

∫ βi

αi

g1(t)
∫ 1

0
G(t, s)y(s) ds dt

–
n∑

i=1

γi

∫ βi

αi

g1(t)
p∑

k=1

G(t, tk)Jk
(
u(tk), u′(tk)

)
dt

–
n∑

i=1

γi

∫ βi

αi

g1(t)
∑

tk≥t
Ik

(
u(tk)

)
dt

]

. (2.9)



Zhu and Pang Advances in Difference Equations  (2018) 2018:5 Page 5 of 13

Substituting (2.9) into (2.8), we get

u(t) =
∫ 1

0

[

G(t, s) +
1

1 – 


n∑

i=1

γi

∫ βi

αi

G(t, s)g1(t) dt

]

y(s) ds

–
p∑

k=1

[

G(t, tk) +
1

1 – 


n∑

i=1

γi

∫ βi

αi

G(t, tk)g1(t) dt

]

Jk
(
u(tk), u′(tk)

)

–
∑

tk >t
Ik

(
u(tk)

)
–

1
1 – 


n∑

i=1

γi

∫ βi

αi

g1(t)
∑

tk≥t
Ik

(
u(tk)

)
dt

=
∫ 1

0
H(t, s)y(s) ds –

p∑

k=1

H(t, tk)Jk
(
u(tk), u′(tk)

)
– �

(
t, Ik

(
u(tk)

))
,

where H(t, s) and �(t, Ik(u(tk))) are given previously. �

Lemma 2.2 Assume that conditions (H2)-(H3) hold. G(t, s) and H(t, s) are given as in the
statement of Lemma 2.1. Then G(t, s) ≥ 0, H(t, s) ≥ 0 for any t, s ∈ [0, 1].

We consider the operator A defined by

(Ay)(t) =
∫ 1

0
H(t, s)y(s) ds –

p∑

k=1

H(t, tk)Jk
(
u(tk), u′(tk)

)
– �

(
t, Ik

(
u(tk)

))
,

and the operator B defined by

(By)(t) = (Ay)′(t) = –
∫ t

0
y(s) ds +

∑

tk <t
Jk

(
u(tk), u′(tk)

)
.

Then BVP (1.1) is equivalent to the following second-order differential integral equation
BVP:

⎧
⎨

⎩

y′′(t) + h(t)f ((Ay)(t), (By)(t), –y(t)) = 0, t ∈ (0, 1),

y′(0) = 0, y(1) + μy′(1) =
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t) dt.
(2.10)

Lemma 2.3 If y is a positive solution of (2.10), then u is a positive solution of (1.1).

Proof Assume y is a positive solution of (2.10), then y(t) > 0 for t ∈ (0, 1), and it follows
from u(t) = (Ay)(t) that u(t) satisfies (2.5). By (H1) and Lemma 2.2, we can obtain

u(t) > 0, t ∈ (0, 1).

This ends the proof. �

The principle of the shooting method converts the BVP into an IVP by finding suitable
initial value m such that the equation in (2.10) comes with the initial value condition as



Zhu and Pang Advances in Difference Equations  (2018) 2018:5 Page 6 of 13

follows:
⎧
⎨

⎩

y′′(t) + h(t)f ((Ay)(t), (By)(t), –y(t)) = 0, t ∈ (0, 1),

y′(0) = 0, y(0) = m.
(2.11)

Under assumptions (H1)-(H3), denote by y(t, m) the solution of IVP (2.11). We assume
that f is strong continuous enough to guarantee that y(t, m) is uniquely defined and that
y(t, m) depends continuously on both t and m. The studies of this kind of problem can be
available in [17]. Consequently, the solution of IVP (2.11) exists.

Denote

k(m) = –
μy′(1, m)
y(1, m)

+
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t, m) dt
y(1, m)

for m > 0.

Then solving (2.10) is equivalent to finding m∗ such that k(m∗) = 1.

Lemma 2.4 ([18]) If there exist two initial values m1 > 0 and m2 > 0 such that
(i) the solution y(t, m1) of (2.11) remains positive in (0, 1) and k(m1) ≤ 1;

(ii) the solution y(t, m2) of (2.11) remains positive in (0, 1) and k(m2) ≥ 1.
Then BVP (2.10) has a positive solution with y(0) = m∗ between m1 and m2.

Now we introduce the Sturm comparison theorem derived from [19].

Lemma 2.5 Let y(t, m), z(t, m), Z(t, m) be the solutions of the following IVPs, respectively:

y′′(t) + F(t)y(t) = 0, y(0) = m, y′(0) = 0,

z′′(t) + g(t)z(t) = 0, z(0) = m, z′(0) = 0,

Z′′(t) + G(t)Z(t) = 0, Z(0) = m, Z′(0) = 0,

and suppose that F(t), g(t) and G(t) are continuous functions defined on [0, 1] satisfying

g(t) ≤ F(t) ≤ G(t), t ∈ [0, 1].

If Z(t, m) does not vanish in [0, 1], for any 0 ≤ t ≤ 1, we have

z(t, m)
z(1, m)

≤ y(t, m)
y(1, m)

≤ Z(t, m)
Z(1, m)

, (2.12)

further

∑n
i=1 ρi

∫ ηi
ξi

g2(t)z(t, m) dt
z(1, m)

≤
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t, m) dt
y(1, m)

≤
∑n

i=1 ρi
∫ ηi
ξi

g2(t)Z(t, m) dt
Z(1, m)

. (2.13)

Proof The classical Sturm comparison theorem gives us the inequalities

z′(t)
z(t)

≥ y′(t)
y(t)

≥ Z′(t)
Z(t)

for all t ∈ [0, 1].
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Integrating these inequalities over [t, 1] yields (2.12). In view of (H2), (H3) and the conti-
nuity of the integral, (2.13) can be obtained. �

Lemma 2.6 Under assumptions (H1)-(H3), the shooting solution y(t, m) of IVP (2.11) has
the following properties:

y(t2, m) ≤ y(t1, m) ≤ m, y′(t2, m) ≤ y′(t1, m) ≤ 0 for any 0 ≤ t1 ≤ t2 ≤ 1.

Proof Integrating both sides of equation (2.11) from 0 to t, we have

y′(t, m) = –
∫ t

0
h(s)f

(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds,

y(t, m) = m –
∫ t

0
(t – s)h(s)f

(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds.

Indeed,

y′(t1, m) – y′(t2, m) =
∫ t2

t1

h(s)f
(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds ≥ 0,

y(t1, m) – y(t2, m) =
∫ t2

t1

(t2 – s)h(s)f
(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds

+
∫ t1

0
(t2 – t1)h(s)f

(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds ≥ 0.

This ends the proof. �

Lemma 2.7 Let
∑n

i=1 ρi
∫ ηi
ξi

g2(t) dt > 1, then BVP (2.10) has no positive solution.

Proof Assume that BVP (2.10) has a positive solution y(t), then y(t, m) is the positive solu-
tion of IVP (2.11). For any given m > 0, the solution y(t, m) of IVP (2.11) will be compared
with the solution z(t) = m of

z′′(t) + 0z(t) = 0, z(0) = m, z′(0) = 0.

By Lemmas 2.4 and 2.5, we have

k(m) = –
μy′(1, m)
y(1, m)

+
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t, m) dt
y(1, m)

≥
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t, m) dt
y(1, m)

≥
∑n

i=1 ρi
∫ ηi
ξi

g2(t)z(t, m) dt
z(1, m)

=
n∑

i=1

ρi

∫ ηi

ξi

g2(t) dt.

In fact, k(m) = 1, which means
∑n

i=1 ρi
∫ ηi
ξi

g2(t) dt ≤ 1. �

In the rest of the paper, we always assume

(H4) 0 < � =
∑n

i=1 ρi
∫ ηi
ξi

g2(t) dt < 1.
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3 Existence results
For the sake of convenience, we denote

max
0≤t≤1

{
h(t)

}
= hL, min

0≤t≤1

{
h(t)

}
= hl;

max
0≤t≤1

{
g2(t)

}
= gL

2 , min
0≤t≤1

{
g2(t)

}
= gl

2.

Lemma 3.1 Let gL
2
∑n

i=1 ρi(ηi – ξi) ≤ 1, then there exist a real number x = A1 ∈ (0, π
2 ) sat-

isfying the inequality

f1(x) = μx tan x +
gL

2
∑n

i=1 ρi[sin(ηix) – sin(ξix)]
x cos x

≤ 1

and another real number x = A2 ∈ (0, π
2 ) satisfying the inequality

f2(x) = μx tan x +
gL

2
∑n

i=1 ρi(ηi – ξi)[cos(ηix) + cos(ξix)]
2 cos(ηnx)

≥ 1.

Proof It is easy to show that

lim
x→0+

f1(x) = 0 + lim
x→0+

gL
2
∑n

i=1 ρi[sin(ηix) – sin(ξix)]
x cos x

= lim
x→0+

2gL
2
∑n

i=1 ρi sin (ηi–ξi)x
2 cos (ηi+ξi)x

2
x cos x

= gL
2

n∑

i=1

ρi(ηi – ξi) ≤ 1.

Since the function f1(x) is continuous on (0, π
2 ), there exists a real number A1 ∈ (0, π

2 )
such that f1(A1) ≤ 1.

Analogously,

lim
x→ π

2 –
f2(x) = +∞ > 1.

Thus, there exists a real number A2 ∈ (0, π
2 ) such that f2(A2) ≥ 1. �

Set

f x = lim
w→x

sup max
(u,v)∈(R+,R–)

f (u, v, –w)
w

,

fx = lim
w→x

inf min
(u,v)∈(R+,R–)

f (u, v, –w)
w

.

Theorem 3.1 Assume that (H1)-(H4) hold. Suppose that one of the following conditions
holds:

(i) 0 ≤ f 0 < A2

hL , f∞ > Ā2

hl ;

(ii) 0 ≤ f ∞ < A2

hL , f0 > Ā2

hl .
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Then problem (2.10) has at least one positive solution, where

A = min{A1, A2}, Ā = max{A1, A2},

A1 and A2 are defined by Lemma 3.1.

Proof (i) Since 0 ≤ f 0 < A2

hL , there exists a positive number r such that

f (Ay, By, –y)
y

<
A2

hL ≤ A2
1

hL , ∀0 < y ≤ r. (3.1)

Let 0 < m1 < r, it gives y(t, m1) ≤ y(0, m1) = m1 < r. According to (H1) and (H2), we have

0 ≤ h(t)f ((Ay)(t, m1), (By)(t, m1), –y(t, m1))
y(t, m1)

< hL A2
1

hL = A2
1, ∀t ∈ [0, 1]. (3.2)

Let Z(t) = m1 cos(A1t) for t ∈ [0, 1], then Z(t) satisfies the following IVP:

Z′′(t) + A2
1Z(t) = 0, Z(0) = m1, Z′(0) = 0. (3.3)

Applying the Sturm comparison theorem, from (3.2), Lemma 2.5 and Lemma 3.1, we have

k(m1) = –
μy′(1, m1)
y(1, m1)

+
∑n

i=1 ρi
∫ ηi
ξi

g2(t)y(t, m1) dt
y(1, m1)

≤ –
μZ′(1, m1)
Z(1, m1)

+
∑n

i=1 ρi
∫ ηi
ξi

g2(t)Z(t, m1) dt
Z(1, m1)

≤ μA1 tan A1 +
gL

2
∑n

i=1 ρi
∫ ηi
ξi

cos(A1t) dt
cos A1

= μA1 tan A1 +
gL

2
∑n

i=1 ρi[sin(ηiA1) – sin(ξiA1)]
A1 cos A1

≤ 1. (3.4)

Conversely, the second part of condition (i) guarantees that there exists a number L large
enough such that

f (Ay, By, –y)
y

>
Ā2

hl ≥ A2
2

hl , ∀y ≥ L, (3.5)

and there exists some fixed positive constant ε < min{A2, π
2 – A2} small enough such that

f (Ay, By, –y)
y

>
(A2 + ε)2

hl , ∀y ≥ L. (3.6)

In what follows, we need to find a positive number m2 satisfying k(m2) > 1.

Claim There exists an initial value m2 and a positive number σ such that

0 < max

{
A2

A2 + ε
,ηn

}

≤ σ ≤ 1 and y(t, m2) ≥ L for t ∈ [0,σ ].
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Since the function y(t, m) is concave and y′(0, m) = 0, the function y(t, m) and the line
y = L intersects at most one time for the constant L defined in (3.5) and t ∈ (0, 1]. The
intersecting point is denoted as δ̄m provided it exists. Furthermore, we set Im = (0, δ̄m] ⊆
(0, 1]. If y(1, m) ≥ L, then δ̄m = 1.

Next, we divide the discussion into three steps.
Step 1. We declare that there exists m0 large enough such that 0 ≤ y(t, m0) ≤ L for t ∈

[δ̄m0 , 1] and y(t, m0) ≥ L for t ∈ Im0 .
If not, provided y(t, m) ≤ L for all t ∈ (0, 1] as m → ∞, then by integrating both sides of

equation (2.10) over [0, t], we get

y(t, m) = m –
∫ t

0
(t – s)h(s)f

(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds.

Set t = 1, we have

m = y(1, m) +
∫ 1

0
(1 – s)h(s)f

(
(Ay)(s, m), (By)(s, m), –y(s, m)

)
ds ≤ L + Lf hL,

where Lf = maxy∈[0,L] f (Ay, By, –y), which is a contradiction as m → ∞. Hence we have the
claim.

Step 2. There exists a monotone increasing sequence {mk} such that the sequence {δ̄mk }
is increasing on mk . That is,

Im0 ⊂ Im1 ⊂ · · · ⊂ Imk ⊂ · · · ⊆ (0, 1] and y(t, mk) ≥ L for t ∈ Imk .

We prove that

δ̄mk–1 < δ̄mk , k = 1, 2, . . . , for mk–1 < mk . (3.7)

Since f guarantees that y(t, m) is uniquely defined, the solutions y(t, mk–1) and y(t, mk)
have no intersection in the interval [δ̄mk–1 , 1). It follows from

y(0, mk) = mk > mk–1 = y(0, mk–1)

that

y(δ̄mk–1 , mk) > y(δ̄mk–1 , mk–1).

Therefore, (3.7) is obtained.
Step 3. Search a suitable m∗

2 and a positive number σ such that 0 < max{ A2
A2+ε

,ηn} ≤ σ ≤ 1
and y(t, m∗

2) ≥ L for t ∈ (0,σ ].
From Step 1, Step 2 and the extension principle of solutions, there exists a positive inte-

ger n large enough such that

δ̄mn ≥ max

{
A2

A2 + ε
,ηn

}

.
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If we take m∗
2 = mn, σ = δ̄mn , then

σ (A2 + ε) ≥ A2. (3.8)

Next, we show that k(m∗
2) ≥ 1 for the chosen m∗

2 and σ .
Take z(t) = m∗

2 cos((A2 + ε)t), then z(t) satisfies the following IVP:

z′′(t) + (A2 + ε)2z(t) = 0, z(0) = m∗
2, z′(0) = 0, t ∈ [0,σ ],

where σ ≤ 1. Noting (3.6), we have

h(t)f ((Ay)(t, m∗
2), (By)(t, m∗

2), –y(t, m∗
2))

y(t, m∗
2)

> hl (A2 + ε)2

hl = (A2 + ε)2, t ∈ (0,σ ].

Taking into account Lemmas 2.4, 2.5 and 3.1, we have

k
(
m∗

2
)

= –
μy′(1, m∗

2)
y(1, m∗

2)
+

∑n
i=1 ρi

∫ ηi
ξi

g2(t)y(t, m∗
2) dt

y(1, m∗
2)

≥ –
μy′(σ , m∗

2)
y(σ , m∗

2)
+

gl
2
∑n

i=1 ρi(ηi – ξi)[y(ξi, m∗
2) + y(ηi, m∗

2)]
2y(σ , m∗

2)

≥ –
μz′(σ , m∗

2)
z(σ , m∗

2)
+

gl
2
∑n

i=1 ρi(ηi – ξi)[z(ξi, m∗
2) + z(ηi, m∗

2)]
2z(σ , m∗

2)

= μ(A2 + ε) tanσ (A2 + ε) +
gl

2
∑n

i=1 ρi(ηi – ξi)[cos(A2 + ε)ξi + cos(A2 + ε)ηi]
2 cos(A2 + ε)σ

.

For t ∈ (0, π
2 ), define

Ci(t) =
cos ξit
cosσ t

, i = 1, 2, . . . , n,

where 0 < ξi ≤ σ ≤ 1 for i = 1, 2, . . . , n. Through calculating, we have

C′
i(t) =

σ sinσ t cos ξit – ξi sin ξit cosσ t
(cosσ t)2 .

Since sinσ t ≥ sin ξit, cos ξit ≥ cosσ t, we have C′
i(t) ≥ 0, for i = 1, 2, . . . , n, which implies

that Ci(t) is nondecreasing for t ∈ (0, π
2 ). Similarly, we can show that cosηit

cosσ t is nondecreasing
for t ∈ (0, π

2 ), i = 1, 2, . . . , n.
The above discussion guarantees that

k
(
m∗

2
) ≥ μA2 tan A2 +

gL
2
∑n

i=1 ρi(ηi – ξi)[cos(A2ξi) + cos(A2ηi)]
2 cos(A2σ )

≥ μA2 tan A2 +
gL

2
∑n

i=1 ρi(ηi – ξi)[cos(A2ξi) + cos(A2ηi)]
2 cos(A2ηn)

≥ 1. (3.9)

On account of Lemma 2.4, some initial value m∗ can be found such that y(t, m∗) is the
solution of (2.10). Consequently, u(t, m∗) = (Ay)(t, m∗) is the solution of BVP (1.1).

We omit the derivation for (ii) since it is similar to the above proof. �
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4 Example
Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(4)(t) = (t + 1)f (u(t), u′(t), u′′(t)), t ∈ J∗,

�u(tk) = Ik(u(tk)), k = 1, 2,

�u′(tk) = Jk(u(tk), u′(tk)), k = 1, 2,

u′(0) = 0, u(1) + 1
5 u′(1) =

∑2
i=1 γi

∫ βi
αi

(2t + 1)u(t) dt,

u′′′(0) = 0, u′′(1) + 1
5 u′′′(1) =

∑2
i=1 ρi

∫ ηi
ξi

(2t + 1)u′′(t) dt,

(4.1)

with γ1 = ρ1 = 1
2 , γ2 = ρ2 = 3

5 and

tk =
k
3

, Ik(x) = –2x, Jk(y, z) = –y – z2, k = 1, 2,

[α1,β1] = [ξ1,η1] =
[

1
8

,
3
8

]

, [α2,β2] = [ξ2,η2] =
[

5
8

,
7
8

]

,

f (u, v, w) = sin(uv) –
1

10
w + 2 for (u, v, w) ∈ (

R
+ ×R

– ×R
–)

.

It is easy to check that (H1) and (H2) are satisfied. Simple calculation shows that 
 = � =
9

16 < 1, which implies that (H3) and (H4) are satisfied.
Let A1 = 1

2 and A2 = 3
2 such that f1(A1) = 0.9552 < 1 and f2(A2) > 4.2304 > 1.

Hence,

f ∞ =
1

10
<

1
8

=
A2

hL , f0 = ∞ >
9
4

=
Ā2

hl .

Then condition (ii) of Theorem 3.1 is satisfied. Consequently, Theorem 3.1 guarantees
that problem (4.1) has at least one positive solution u(t).
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