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Abstract
In this paper, we propose a within-host HIV-1 epidemic model with cell-to-virus and
cell-to-cell transmission. By mathematical analysis, we obtain the basic reproduction
numberR0, which determines the viral persistence and the basic reproduction
numberRcc

0 with respect to cell-to-cell transmission which is not strong enough, i.e.,
it is less than 1. If the basic reproduction number is less than 1, then the viral-free
steady state E0 is globally asymptotically stable, which is proved by fluctuation lemma
and comparison method; ifR0 > 1 is greater than 1, the endemic steady state E∗ is
globally asymptotically stable, which is proved by constructing the Lyapunov
functional. Antiretoviral therapy is implemented to suppress the viral replication.
Protease inhibitors for cell-to-cell transmission play an important role in controlling
cell-to-cell infection. Under some circumstances, the effects of the cell-to-cell
infection process are more sensitive than those of cell-to-virus transmission.

Keywords: infection age; antiretroviral therapy; cell-to-cell transmission; Lyapunov
functional

1 Introduction
Since the discovery of the first case of acquired immunodeficiency syndrome (AIDS), the
disease has been in a major concern in global health. Nearly 43 million peopled are in-
fected by human immunodeficiency virus (HIV) and about 29 million people died due
to AIDS. Such accumulative cases are still increasing each year. Many infected individ-
uals are receiving highly active antiretroviral therapy (HAART), an effective treatment
that suppresses HIV-1 replication and progression. Even though the treatment does not
lead to permanent cure of HIV infection, it extends the life of HIV-1-infected individuals
and individuals under such treatment survive in asymptomatic chronic stages with low
viral load. In particular, HAART is able to suppress viral replication to undetectable lev-
els (<50 HIV-1 RNA copies/ml) in adherent patients [1, 2]. The process of in-host HIV
infection is as follows. After entering the CD4+ T cells, HIV viruses reversely transcribe
from RNA to DNA and integrate viral DNA into the hosts DNA. Then infected CD4+ T
cells release viruses through transcription and translation. Because of the comprehensive
infection process for HIV, applying antiretroviral drugs at different infection stages may
have different treatment effects.
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Mathematical models [3–9] have been used to investigate the within-host viral dynamics
to explore the effects of drug treatment. In order to discover the effects of drug treatment
applied to the infectives at different infection stages, Lloyd [3] proposed a within-host
model with multiple infection stages and find that treatment at initial infection stage is
much more sensitive than treatment at other stages. The model is described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = λx – μx(t) – βx(t)v(t),

dy1(t)
dt = βx(t)v(t) – δ1y1(t),

dy2(t)
dt = q1δ1y1(t) – δ2y2(t),

...
dyn(t)

dt = qn–1δn–1yn–1(t) – δnyn(t),
dv(t)

dt =
∑n

i=1 piyj(t) – μv(t).

(1.1)

Here x(t) denotes the number of target cells, yi(t), i = 1, 2, . . . , n denote the number of
productively infected cells at different infection phases and v(t) denotes the number of
free virus particles. CD4+ T lymphoblasts have birth rate λ. Viruses are released from
HIV infected cells at rate pj, and cleared at rate μ; δj is the transfer rate from the jth stage
to the j + 1th stage and qj is the chance that a cell leaves the jth stage and enters the j + 1
stage. The model focuses on single target cell-lymphoblasts. Recent investigations show
that macrophages are another type of target cells during the viral attack. Sedaghat et al.
in [4] constructed a mathematical model with two targets and two transmission phases to
investigate the decay dynamics of HIV-1. They focused on the effects of drug treatment
applied to the patient at the last infectious stage. The authors show that drug applied at
the last stage has better effects than that applied at other stages. Such a conclusion is in
good agreement with results from clinical experiment. Then Wang et al. [5] proposed a
mathematical model to study viral decay dynamics with multiple stages and analyze its
long-term dynamical behaviors. The model is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dxi(t)
dt = λi – μixi(t) – βixi(t)v(t),

∂yi(t,a)
∂t + ∂yi(t,a)

∂a = –δi(a)yi(t, a),
yi(t, a) = hi(xi(t), v(t)),
dv(t)

dt =
∑n

i=1
∫ ∞

0 pi(a)yi(t, a) da – cv(t).

(1.2)

All parameters in (1.2) have the same biological meaning as those in (1.1). (Parameters
in system (1.1) and (1.2) may have different subscripts.) Here xi(t) and yi(t, a) denote the
amount of target uninfected CD4+ cells and infected cells, respectively. hi is the incidence
rate function satisfying some conditions (see assumptions from (H1) to (H4) [5]). The au-
thors showed that if the therapy is 100% effective, then applying the drug at late infectious
stage results in a faster decay of viremia.

Dixit and Perelson [10] studied the decay of viral load of individuals infected with HIV
under monotherapy. They showed that such scenario can exhibit complicated dynami-
cal behaviors depending on the relative magnitudes of the pharmacokinetic, intracellular,
and intrinsic viral dynamic time-scales. The investigation indicated that exponential de-
cay dynamics can be considered as a special case of HAART. Dixit et al. [11] constructed a
mathematical model with increased accuracy to investigate HIV dynamics when the drug
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is not 100% effective. Mathematical models have also been proposed to consider the life
cycle of virus [12–14] and immune effects [15–17]. The authors compared therapeutic
efficacy of medications applied at different infectious stages on the reduction of viremia.
They showed that multiple stages, intracellular delay and different target cells have signif-
icant effects on viral dynamics.

Motivated by these works, we propose a mathematical model incorporating the three
factors mentioned above to investigate the dynamics of life cycle of virus. We assume the
multiple stages don’t satisfy the Markov process. This indicates that their distributions
are not exponential and they satisfy a general distribution. The mathematical model is
proposed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dxi(t)
dt = λi – μixi(t) – βixi(t)v(t) – xi(t)

∫ ∞
0 qi(a)yi(t, a) da,

∂yi(t,τ )
∂t + ∂yi(t,τ )

∂τ
= –δi(τ )yi(t, τ ),

yi(t, 0) = βixi(t)v(t) + xi(t)
∫ ∞

0 qi(a)yi(t, a) da,
dv(t)

dt =
∑n

i=1
∫ ∞

0 pi(τ )yi(t, τ ) dτ – cv,

(1.3)

with initial condition

xi(0) = xi0 ≥ 0, yi(0, τ ) = yi0(τ ) ∈ L1
+, v(0) = v0 ≥ 0,

where L1
+ is the set of integrable functions from (0,∞) into R+ = (0,∞). Here yi(t, τ ) is

the density of target cells at time t with infection age τ , respectively. The disease-related
death rate δi(τ ) is a function of the infection age τ and all other disease parameters have
the same meaning as those in (1.2).

Define the phase space for system (1.3) as X = (R+)n × (L1
+)n ×R+ with the norm given

by

∥
∥
(
xi(t), yi(t, ·), v(t)

)∥
∥

X =
n∑

i=1

(
∣
∣xi(t)

∣
∣ +

∫ ∞

0
yi(t, a) da

)

+
∣
∣v(t)

∣
∣.

It follows from [18–20] that we can define a solution semi-flow � : (R+)n × (L1
+)n ×R+ → X

of (1.3) for t ∈R+ and (xi0, yi0, v0) ∈ X as

�
(
t,

(
xi0, yi0(·), v0

))
=

(
xi(t), yi(t, ·), v(t)

)
. (1.4)

Actually, standard existence and uniqueness results follows from a similar process in The-
orem 1.1 in [21].

For the continuability of the semi-flow �(t, (xi0, yi0(·), v0)), we assume that the initial
condition satisfies the compatibility condition

yi0(0) = βixi0v0 + xi0

∫ ∞

0
qi(a)yi0(a) da.

In order to get some theoretical results, we make the following assumptions.

Assumption 1.1 For all i ∈ Nn = {1, 2, . . . , n}
(1) λi,μi,βi, c > 0;
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(2) qi(a), pi(a) ∈ L∞
+ , that is, there exist essential upper bounds q+

i and p+
i such that

q+
i = ess. sup

a∈[0,∞)
qi(a), p+

i = ess. sup
a∈[0,∞)

pi(a);

(3) qi(a) is bounded and uniformly continuous from [0,∞) to [0, +∞);
(4) there exists δi > 0 such that δi(τ ) ≥ δi for τ ∈ R+ and i ∈Nn.

Under Assumption 1.1, we can obtain the nonnegativity of system (1.3).

Proposition 1.1 If xi0 ≥ 0, yi0(a) ∈ L1
+, v0 ≥ 0, system (1.3) has nonnegative solution.

Proof Suppose (xi(t), yi(t, τ ), v(t)) ∈ X is a solution of system (1.3) with nonnegative initial
condition. For convenience, define zi(t) = yi(t, 0). Integrating the second and third equa-
tions of (1.3) with initial condition yields

yi(t, τ ) =

{
zi(t – τ )πi(τ ), t ≥ τ ,
yi0(τ – t) πi(τ )

πi(τ–t) , t < τ .
(1.5)

Substituting yi(t, τ ) into zi(t), we have

zi(t) = βxi(t)v(t) + xi(t)
∫ t

0
qi(a)zi(t – a)πi(a) da

+ xi(t)
∫ ∞

t
qi(a)yi0(a – t)

πi(a)
πi(a – t)

da. (1.6)

Solving the first equation of system (1.3), we obtain

xi(t) = xi0e–μit–
∫ t

0 zi(s) ds + λi

∫ t

0
e–μi(t–s)–

∫ t
s zi(ξ ) dξ ds. (1.7)

By the nonnegativity of the initial condition and Assumption 1.1, xi(t) is nonnegative.
Next, we will show that zi(t) and v(t) are nonnegative for all t ∈R+. To achieve this goal,

we define

s = min
{
inf

{
t ∈ R+|zi(t) < 0

}
, inf

{
t ∈R+|v(t) < 0, for some i ∈Nn

}}
.

Suppose

s = inf
{

t ∈R+|zi(t) < 0, for some i ∈Nn
}

.

It follows from (1.6) that v(s) < 0, which results in a contradiction with v(s) ≥ 0 since s <
inf{t ∈R+|v(t) < 0}. Hence, zi(t) is nonnegative for all t ∈R+. Otherwise,

s = inf
{

t ∈R+|v(t) < 0
}

.

This implies that, for all t ∈ (0, s) v(t) > 0, zi(s) > 0, v(s) = 0 and v′(s) ≤ 0. From the last
equation of system (1.3), it follows that

v′(s) =
n∑

i=1

∫ ∞

0
pi(a)zi(s – a)π (a) da ≥ 0.
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This implies that s > inf{t ∈ R+|v(t) < 0}, which is in contradiction to the definition of s.
Therefore, v(t) is also nonnegative for all t ∈R+. �

Let L(t) =
∑n

i=1(xi(t) +
∫ ∞

0 yi(t, a) da). Then

L′(t) =
n∑

i=1

λi –
n∑

i=1

[

μixi +
∫ ∞

0
δi(a)yi(t, a) da

]

.

This implies that L(t) ≤ ∑n
i=1

λi
μ

, μ = mini∈N{μi, δi}. Then by the last equation of (1.3),

v(t) ≤ ∑n
i=1

p+
i λi
cμ . Therefore, we can define the following set:


 =

{
(
xi, yi(·), v

) ∈ X :
n∑

i=1

(

xi(t) +
∫ ∞

0
yi(t, a) da

)

≤
n∑

i=1

λi

μ
, v(t) ≤

n∑

i=1

p+
i λi

cμ

}

. (1.8)

It is easy to verify that 
 is positively invariant, i.e., �(t, (xi0, yi0(·), v0)) ∈ 
 for all t > 0 if
(xi0, yi0(·), v0) ∈ 
. This also means that � is point dissipative and hence there is a bounded
set attracting all solutions in 
.

For convenience, define

� � max

{ n∑

i=1

λi

μ
,

n∑

i=1

p+
i λi

cμ

}

,

Qi(t) =
∫ ∞

0
qi(a)yi(t, a) da, Pi(t) =

∫ ∞

0
pi(a)yi(t, a).

From what has been discussed, we have the following prior estimates.

Lemma 1.2 Let Assumption 1.1 hold. For t ≥ 0 and (xi0, yi0(·), v0) ∈ 
, the following esti-
mates hold:

(1) xi(t) ≤ �,
∫ ∞

0 yi(t, a) da ≤ �, v(t) ≤ �.
(2) Qi(t) ≤ q+

i �, Pi(t) ≤ p+
i �.

(3) zi(t) ≤ β̄�2, β̄i = β + q+
i .

Obviously, system (1.3) is an infinite system. Based on Theorem 4.2 of Chapter IV in
[22], we need to show the relative compactness of the orbit {�(t, (xi0, yi0(·), v0))|t ∈ R+}
in 
. From Proposition 3.13 in [23], �(t, (xi0, yi0(·), v0)) : R+ × 
 → 
 can be decomposed
into two operators defined by

�̂
(
t,

(
xi0, yi0(·), v0

))
=

(
0, ŷi(t, ·), 0

)
,

�̃
(
t,

(
xi0, yi0(·), v0

))
=

(
xi(t), ỹi(t, ·), v(t)

)
,

(1.9)

where

ỹi(t, τ ) =

{
yi(t, τ ) for 0 ≤ τ ≤ t,
0 for t < τ ,

=

{
zi(t)πi(τ ) for 0 ≤ τ ≤ t,
0 for t < τ ,

(1.10)
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and

ŷi(t, τ ) = yi(t, τ ) – ỹi(t, τ ) =

{
0 for 0 ≤ τ ≤ t,
yi0(τ – t) πi(τ )

πi(τ–t) for t < τ .
(1.11)

Then � = �̂ + �̃.

Lemma 1.3 (Proposition 3.13, [23]) Let �, 
, �̃, �̂ be defined by (1.4), (1.8) and (1.9),
respectively. Suppose �̃ and �̂ satisfy the following properties:

(1) For any (xi0, yi0(·), v0) ∈ 
, there exists a function θ : R+ ×R+ →R+ such that for any
r > 0 limt→+∞ θ (t, r) = 0 with ‖(xi0, yi0(·), v0)‖
 ≤ r, then
‖�(t, (xi0, yi0(·), v0))‖
 ≤ θ (t, r).

(2) For t ≥ 0 and (xi0, yi0(·), v0) ∈ 
, �̂(t, (xi0, yi0(·), v0)) maps any bounded set of 
 into
compact closure in 
.

Then � has a compact closure in 
.

From (2) and (3) of Assumption 1.1 and Lemma 1.2, it follows that xi(t) and v(t) have
Lipschitz features with Lipschitz coefficients denoted by Lxi and Lv. With the assistance of
Proposition 5 in [24] and Proposition 2.3 in [25], Qi(t) and Pi(t) are Lipschitz continuous
with Lipschitz coefficients denoted by LPi and LQi . Combining these Lipschitz characters
with Lemma 3.2.3 in [26], we can show that the semi-flow � is asymptotically smooth.

Proposition 1.4 Let �(t, (xi0, yi0(·), v0)) be defined by (1.4). The solution semi-flow �

of (1.3) in 
 is asymptotically smooth.

Proof Let C be any bounded set in 
. For all (xi0, yi0(·), v0) ∈ C, �(t, (xi0, yi0(·), v0)) =
(xi(t), yi(t, ·), v(t)) is a solution of system (1.3). Using (1.11), we obtain

∥
∥�̂

(
t, (xi0, yi0, v0)

)∥
∥



=

n∑

i=1

∥
∥ŷi(t, ·)∥∥1

=
n∑

i=1

∫ ∞

t
yi0(a – t)

πi(a)
πi(a – t)

da

=
n∑

i=1

∫ ∞

0
yi0(a)

πi(a + t)
πi(a)

da

≤
n∑

i=1

e–δt
∫ ∞

0
yi0(a) da

=
n∑

i=1

e–δt‖yi0‖1

≤
n∑

i=1

e–δt∥∥(xi0, yi0, v0)
∥
∥



,

where δ = mini∈N{δi} and ‖·‖ is the standard norm on L1. We note that if ‖(xi0, yi0, v0)‖
 < r
then ‖�̂(t, (xi0, yi0, v0))‖
 ≤ θ (t, r) → 0 as t → +∞. This implies that (1) of Lemma 1.3
holds.
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Next, we need to show that ỹi(t, a) remains in a pre-compact subset of L1
+ that is indepen-

dent of (xi0, yi0(·), v0) ∈ 
. This can be proven by verifying the following four conditions of
Lemma 3.2.3 in [26].

(i) The supremum of
∫ ∞

0 ỹi(t, a) da is finite;
(ii) limu→+∞

∫ ∞
u ỹi(a, t) da = 0;

(iii) limh→0+ |ỹi(t, a + h) – ỹi(t, a)|da = 0;
(iv) limh→0+

∫ h
0 ỹi(t, a) da = 0.

It follows from (3) of Lemma 1.2 that

z̃i(t) = ỹi(t, 0) ≤ β̄i�
2 � Lyi .

Then yi(t, a) = zi(t – a)πi(a) ≤ Lyi e–δia. Conditions (i), (ii) and (iv) immediately hold by the
boundedness of ỹi(t, ·) for t ∈ R+. In what follows, we demonstrate that the condition (iii)
is also satisfied. With the help of Proposition 6 in [24], zi(t) is also a Lipschitz function
with Lipschitz coefficient Lzi . For all h ∈ (0, t),

∥
∥ỹi(t, ·) – ỹi(t, · + h)

∥
∥

1

=
∫ ∞

0

∣
∣ỹi(t, a) – ỹi(t, a + h)

∣
∣da

=
∫ t–h

0

∣
∣zi(t – a – h)πi(a + h) – zi(t – a)πi(a)

∣
∣da +

∫ t

t–h
zi(t – a)πi(a) da

≤
∫ t–h

0
zi(t – a – h)

∣
∣πi(a + h) – πi(a)

∣
∣da + Lyi h

+
∫ t–h

0

∣
∣z(t – a – h) – z(t – a)

∣
∣πi(a) da

≤ Lyi

∫ t–h

0

∣
∣πi(a + h) – πi(a)

∣
∣da + Lyi h + Lzi h

∫ t–h

0
πi(a) da

≤ (
2Lyi + Lzi (t – h)

)
h,

where we use the fact
∫ t–h

0 |πi(a + h) – πi(a)|da ≤ h. By the definitions of Lyi and Lzi ,
they depend on �, which is dependent on the set C, but not on (xi0, yi0(·), v0). This in-
equality holds for any (xi0, yi0(·), v0) ∈ C, and hence condition (iii) holds directly. There-
fore, yi(t, ·) remains in a pre-compact subset Cyi of L1

+(0, +∞). It follows that �(t, C) ⊆
[0,�] × Cyi × [0,�] has a compact closure in 
. From what has been discussed, it fol-
lows from Lemma 1.3 that �(t, (xi0, yi0(·), v0)) is asymptotically smooth. This completes
the proof. �

The rest of this paper is organized as follows. In Section 2, we establish the existence
and local stability of the steady states of (1.3). Results on global dynamics of system (1.3)
are presented in Section 3. Section 4 gives the numerical simulations to illustrate the the-
oretical results. Conclusions and discussions are presented in Section 5.

2 Existence and local stability of steady states
Before investigating the dynamics of system (1.3), we present some definitions. The sur-
vival probability of an infected cell at infection age τ during the infectious period is given
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by

πj(τ ) = e–
∫ τ

0 δj(s) ds, j ∈Nn.

The total size of the viral particles and the total transmission probability with respect to
the jth target cells are defined by

Kj =
∫ ∞

0
pj(a)πj(a) da, Mj =

∫ ∞

0
qj(a)πj(a) da, j ∈Nn.

In order to estimate the transmission route with respect to cell-to-cell infection, we de-
fine the basic reproduction number as

Rcc
i0 =

λi

μi
Mi, i ∈Nn. (2.1)

Rcc
i0 is used to evaluate the ability of the ith infected cell infecting the target cells during

its infectious period.
In order to obtain the condition for the existence of an endemic steady state, we define

the basic reproduction number as

R0 =
n∑

i=1

βi
λi
μi

Ki

c(1 – λi
μi

Mi)
. (2.2)

From the expression of (2.2), it follows that Rcc
0 = maxi∈Nn{Rcc

i0 } < 1, which implies that
the transmission ability associated with cell-to-cell is not strong enough. In epidemiology,
the basic reproduction number R0 gives the average number of cases that one typical
free virus generates, if introduced into a susceptible population, over its whole infectious
period.

Theorem 2.1 Let Rcc
0 < 1 hold. If R0 < 1, then the only steady state is the viral-free steady

state E0; if R0 > 1, then besides the virus-free steady state E0, there exists an endemic steady
state E∗.

Proof Let (x̄i, ȳi(·), v̄) be a steady state of system (1.3), and then it satisfies the following
equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = λi – μix̄i – βix̄iv̄ – xi
∫ ∞

0 qi(a)yi(a) da,
dyi(τ )

dτ
= –δi(τ )yi(τ ),

yi(0) = βix̄v̄ + xi
∫ ∞

0 qi(a)yi(a) da,
0 =

∑n
i=1

∫ ∞
0 pi(a)yi(a) da – cv̄.

(2.3)

By the second and third equations of (2.3), one obtains

yi(a) = yi(0)πi(a), i ∈Nn.

It follows from the first equation of (2.3) that

x̄i =
λi – yi(0)

μi
, i ∈Nn.
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By the third equation of (2.3), we obtain

yi(0) =
(
βiv̄ + yi(0)Mi

)
x̄i, (2.4)

indicating that

yi(0) =
–(1 – λi

μi
Mi + βi

μi
v̄) ±

√
(1 – λi

μi
Mi + βi

μi
v̄)2 + 4βiλi

μ2
i

Miv̄
2Mi
μi

, i ∈Nn.

It is easy to see that there is only one positive solution to (2.4). Substituting the positive
solution into the last equation of (2.3) yields

g(v̄) �
n∑

i=1

yi(0)Ki – cv̄. (2.5)

Note that g(0) = 0 and g(+∞) < 0. Furthermore,

dg(v̄)
dv̄

∣
∣
∣
∣
v̄=0

=
n∑

i=1

βi
λi
μi

Ki

1 – λi
μi

Mi
– c.

Obviously, g(v̄) = 0 has a unique positive solution if and only if R0 > 1. Then system (1.3)
admits a unique endemic steady state E∗ = (x̄i, yi(0)πi(τ ), v̄). �

In what follows, we study the local stability of the steady states. The steady state is lo-
cally (asymptotically) stable if all eigenvalues of the corresponding characteristic equations
have negative real parts and it is unstable if at least one eigenvalue has a positive real part
(see [18]).

Theorem 2.2 Suppose Rcc
0 < 1. If R0 < 1, then the virus-free steady state E0 is locally

asymptotically stable and if R0 > 1, the unique endemic steady state E∗ is locally asymp-
totically stable.

Proof Linearizing system (1.3) at virus-free steady state E0, we obtain the associated char-
acteristic equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = –(λ + μi)xi – βix0
i v – x0

i
∫ ∞

0 qi(a)yi(a) da,
dyi(τ )

dτ
= –(λ + δi(τ ))yi(τ ),

yi(0) = βix0
i v + x0

i
∫ ∞

0 qi(a)yi(a) da,
0 =

∑n
i=1

∫ ∞
0 pi(a)yi(a) da – cv.

(2.6)

For convenience, denote

K̂j(λ) =
∫ ∞

0
pj(a)πj(a)e–λa da, M̂j(λ) =

∫ ∞

0
qj(a)πj(a)e–λa da, j ∈N.
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It follows from the second and the third equations of (2.6) that yi(a) = yi(0)πi(a)e–λa. By
the first and the last equations of (2.6), we have

x0
i =

–yi(0)
λ + μi

, v =
∑n

i=1 yi(0)K̂i(λ)
c

.

Then we substitute them into the third equation to obtain

yi(0) =
βix0

i
∑n

i=1 yi(0)K̂i(λ)
c

+ yi(0)x0
i M̂i(λ).

Thus, we have

yi(0) =
βix0

i
∑n

i=1 yi(0)K̂i(λ)

c(1 – x0
i M̂i(λ))

. (2.7)

Multiplying K̂i(λ) on both sides of (2.7) and summing up from 1 to n yield


(y) =
n∑

i=1

βix0
i K̂i(λ)

c(1 – x0
i M̂i(λ))


(y), (2.8)

where 
(y) =
∑n

i=1 yi(0)K̂i(λ). If 
(y) �= 0, then we cancel 
(y) on both sides of (2.7) and
obtain the following characteristic equation:

n∑

i=1

βix0
i K̂i(λ)

c(1 – x0
i M̂i(λ))

= 1. (2.9)

Since Rcc
0 < 1 for all i ∈ N, we claim that all roots of (2.9) have negative real parts. Other-

wise, let λ0 be a root of (2.9) with Re(λ0) ≥ 0. We notice that the module of the left hand
side of (2.9) is smaller than R0. This leads to a contradiction when R0 < 1. If 
(y) = 0, then
it follows from (2.7) that yi(0) = 0. Substituting it into the first equation of system (2.6), we
obtain λ = –μ < 0. Therefore, the virus-free steady state E0 is locally asymptotically stable
when R0 < 1.

Similarly, linearizing system (1.3) at the endemic steady state Ē∗ = (x∗
i , y∗

i (·), v∗(·)) yields
the following characteristic equation:

∣
∣
∣
∣
∣
∣
∣
∣

b1 –β1x∗
1

K̂2(λ)
c · · · –β1x∗

1
K̂n(λ)

c

–β2x∗
2

K̂1(λ)
c b2 · · · –β2x∗

2
K̂1(λ)

c

–βnx∗
n

K̂1(λ)
c –βnx∗

n
K̂2(λ)

c · · · bn

∣
∣
∣
∣
∣
∣
∣
∣

= 0, (2.10)

where bi = 1 – βix∗
i

K̂i(λ)
c + y∗

i (0)
x∗

i (λ+μi)
– x∗

i M̂i(λ). Equation (2.10) is equivalent to the following
equation:

(

1 +
y∗

1(0)
x∗

1(λ + μ1)
– x∗

1M̂1(λ)
)(

1 –
n∑

i=1

βix∗
i K̂i(λ)

c(1 + y∗
i (0)

x∗
i (λ+μi)

– x∗
i M̂i(λ))

)

= 0. (2.11)
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The characteristic roots of (2.11) are determined by

1 +
y∗

1(0)
x∗

1(λ + μ1)
– x∗

1M̂1(λ) = 0 (2.12)

and

1 =
n∑

i=1

βix∗
i K̂i(λ)

c(1 + ȳi(0)
x∗

i (λ+μi)
– x∗

i M̂i(λ))
. (2.13)

Next, we show that (2.12) and (2.13) have no eigenvalues with nonnegative real parts. By
way of contradiction, we assume that (2.12) has one eigenvalue λ0 with Re(λ0) ≥ 0. Then
it follows from the positivity of the endemic steady state E∗ that

∣
∣
∣
∣1 +

y∗
1(0)

x∗
1(λ0 + μ1)

– x∗
1M̂1(λ0)

∣
∣
∣
∣ ≥ ∣

∣1 – x∗
1M̂1(λ0)

∣
∣ > 0. (2.14)

This implies that (2.9) has no characteristic roots with positive real parts.
On the other hand, the right hand side of (2.13) is

∣
∣
∣
∣
∣

n∑

i=1

βix∗
i K̂i(λ0)

c(1 + y∗
i (0)

x∗
i (λ+μi)

– x∗
i M̂i(λ0))

∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣

n∑

i=1

βix∗
i K̂i(λ0)

c(1 – x∗
i M̂i(λ0))

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

n∑

i=1

βix∗
i Ki

c(1 – x∗
i Mi)

∣
∣
∣
∣
∣

= 1,

which leads to a contradiction with (2.13). From what has been discussed, the endemic
steady state E∗ is locally asymptotically stable if R0 > 1 and Rcc

0 < 1. �

3 Global stability analysis
In this section, we perform the global stability analysis of steady states. Such analysis char-
acterizes the dynamical behaviors of system (1.3) and provides insight into the virus dy-
namics. This is helpful for us to develop reasonable antiviral therapy against the disease.
The global dynamic of system (1.3) is established by employing the fluctuation lemma in
[20] and constructing the Lyapunov functional. First, we will show the attractivity of the
viral-free steady state E0. For convenience, we denote

lim sup
t→+∞

f (t) = f ∞, lim inf
t→+∞ f (t) = f∞.

Theorem 3.1 Suppose Rcc
0 < 1. If R0 < 1, then the virus-free steady state E0 = (x0

i , 0, 0) is
globally asymptotically stable.

Proof With the help of the first equation of (1.3), together with the positivity of the solu-
tion of system (1.3), we obtain xi(t) ≤ x0

i for t large enough. Borrowing (1.5), together with
the third equation of (1.3), we have

zi(t) = βixi(t)v(t) + xi

∫ t

0
qi(a)zi(t – a)π (a) da

+ xi

∫ ∞

t
q′

i(a)zi0(a – t)
πi(a)

πi(a – t)
da. (3.1)
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Then we take super limitation on both sides of (3.1) to obtain

z∞ ≤ βix0
i (t)v∞ + x0

i

∫ ∞

0
qi(a)πi(a) daz∞.

It follows from Rcc
0 < 1 and (3) of Assumption 1.1 that

z∞ ≤ βix0
i (t)v∞

1 – x0
i Qi

. (3.2)

From the last equation of (1.3) and the fluctuation lemma [20], we can take a time sequence
tn such that v(tn) = v∞ and v′(tn) → 0 as tn → ∞ and obtain

v∞ ≤
∑n

i=1
∫ ∞

0 pi(a)z∞πi(a) da
c

≤
∑n

i=1
∫ ∞

0 pi(a)πi(a) da βix0
i

1–x0
i Mi

c
v∞

= R0v∞. (3.3)

Inequality (3.3) implies that v∞ → 0 as t → ∞ when R0 < 1. It follows from (3.2)
that zi(t) → 0 as t goes to infinity. Using (1.5) again, we have yi(t, a) → 0, when t is
large enough. By Fluctuate Lemma again, we can choose a time sequence {sn} such that
lim infn→∞ xi(sn) = xi∞ and limn→∞ x′

i(sn) = 0. Then

0 ≥ λi – βixi∞v∞ – xi∞
∥
∥β ′

i
∥
∥yi∞ – μxi∞ = λi – μxi∞.

This implies that x0
i ≤ xi∞ ≤ x∞

i ≤ x0
i . Therefore, limt→∞ xi(t) = x0

i . From what has been
discussed, E0 is a global attractor if R0 < 1 and Rcc

0 < 1. �

Second, we will give the persistence of system (1.3). It follows from Proposition 1.4 that
the orbit �(t, (xi0, yi0(·), v0)) ∈ 
 is relative compact. Define ρ : 
 →R+ as

ρ
(
xi(t), yi(t, ·), v(t)

)
= βiv +

∫ ∞

0
qi(a)yi(t, a) da for

(
xi(t), yi(t, ·), v(t)

) ∈ 
.

Let


0 =
{(

xi0, yi0(·), v0
) ∈ 
 : t0 ∈R+ s.t. ρ

(
�

(
t0,

(
xi0, yi0(·), v0

)))
> 0

}
.

Obviously, if (xi0, yi0(·), v0) ∈ 
 \ 
0, then (xi(t), yi(t, ·), v(t)) → E0 as t → ∞.

Definition 3.1 ([27]) For (xi0, yi0, v0) ∈ 
0, if there exists an ε > 0, independent of
the initial conditions, such that lim supt→∞ ρ(�(t, (xi0, yi0(·), v0))) > ε, then (1.3) is
said to be uniformly weakly ρ-persistent; while if there exists a positive ε such that
lim inft→∞ ρ(�(t, (xi0, yi0(·), v0))) > ε, then (1.3) is said to be uniformly strongly
ρ-persistent.
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In order to prove the persistence of system (1.3) (see [27, Theorem 4.2]), we divided
the proof process into two steps: Step 1, we show that system (1.3) is uniformly weakly
ρ-persistent; Step 2, by the relative compactness of the orbit �(t, (xi0, yi0(·), v0)), system
(1.3) is uniformly strongly ρ-persistent.

Proposition 3.2 Suppose Rcc
0 < 1. If R0 > 1, then system (1.3) is uniformly weakly ρ-

persistent.

Proof For any ε0 > 0, define

xε0
i =

λi

μi + ε0
– ε0.

Since R0 > 1, there exists an ε0 > 0 such that

n∑

i=1

βixε0
i Ki

1 – xε0 Mi
> 1. (3.4)

By way of contradiction, there exists (xi0, yi0(·), v0) ∈ 
0 with

lim sup
t→∞

ρ
(
�

(
t,

(
xi0, yi0(·), v0

))) ≤ ε0

2
.

Thus there exists t0 ∈R+ such that

ρ
(
�

(
t,

(
xi0, yi0(·), v0

))) ≤ ε0 for t ≥ t0.

Without loss of generality, we can assume that t0 = 0. Then, for t ≥ 0, together with the
definition of ρ-persistence, we have

βiv(t) +
∫ ∞

0
qi(a)yi(t, a) da ≤ ε0. (3.5)

In view of the first equation of (1.3), together with (3.5), we have

x′
i(t) ≥ λi – (μi + ε0)xi(t),

which implies that xi∞ ≥ λi
μi+ε0

. Thus, there exists a t1 > 0 for all t > t1 such that xi(t) ≥ xε0
i .

It follows from the third equation of (1.3) that for all t > t1

zi(t) ≥ βixε0
i v(t) + xε0

i

∫ t

0
qi(a)zi(t – a)πi(a) da. (3.6)

Taking a Laplace transformation on both sides of (3.6), one has

ẑi(λ) ≥ xε0
i

(
βiv̂(λ) + M̂i(λ)ẑi(λ)

)
, (3.7)

which implies

ẑi(λ) ≥ βixε0
i v̂(λ)

1 – xε0
i M̂i(λ)

. (3.8)
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Substituting (1.5) into the last equation of (1.3) yields

v′(t) =
n∑

i=1

∫ t

0
pi(a)zi(t – a)πi(a) da +

n∑

i=1

Fi(t) – cv(t),

where Fi(t) =
∫ ∞

t pi(a)yi(a– t) πj(a)
πj(a–t) da, i ∈Nn, and limt→∞ Fi(t) = 0. Therefore, the deriva-

tive of v(t) is determined by

v′(t) ≥
n∑

i=1

∫ t

0
pi(a)zi(t – a)πi(a) da – cv(t). (3.9)

Taking the Laplace transformation on both sides of (3.9) yields

λv̂(λ) – v(0) ≥ K̂i(λ)ẑ(λ) – cẑ(λ). (3.10)

Equation (3.10), together with (3.8) implies that

v̂(λ) ≥
n∑

i=1

βixε0
i v̂(λ)

(λ + c)[1 – xε0
i M̂i(λ)]

. (3.11)

This inequality holds for any given ε0 > 0 and λ > 0. This leads to a contradiction with
(3.4). Hence the proof is complete. �

Combining Propositions 1.4 and Proposition 3.2 with Theorems 4.2 in [27] and Theo-
rem 3.2 in [28], we immediately have the following theorem.

Theorem 3.3 System (1.3) is uniformly strongly ρ-persistent if R0 > 1 and Rcc
0 < 1.

Theorem 3.3 indicates that system (1.3) has a global attractor A. A total trajectory of
� is a function X : R → R+ × L1

+ × R+ such that �(s, X(t)) = X(t + s) for all t ∈ R and all
s ∈R+. As in [29], for all s ∈R, the total trajectory of system (1.3) is defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dxi(s)
ds = λi – μix(s) – βixi(s)v(s) – xi(s)

∫ ∞
0 qi(a)yi(t, a) da,

∂yi(s,τ )
∂s + ∂yi(s,τ )

∂τ
= –δi(a)yi(s, τ ),

yi(s, 0) = βixi(s)v(s) + xi(s)
∫ ∞

0 qi(a)yi(t, a) da,
dv(s)

ds =
∑n

i=1
∫ ∞

0 pi(a)yi(s, a) da – cv(s).

(3.12)

Proposition 3.4 For a total trajectory X(·) in 
, xi(t) is strictly positive and either Qi(t)
and v(t) are identically zero or Qi(t) and v(t) are strictly positive.

Proof By the definition of the total trajectory, for any s ∈R the function Xs(t) = X(s + t) is
a semi-trajectory of system (1.3) with initial condition Xs(0) = X(s) ∈ 
.

If xi(s) = 0 for some s, then the first equation of system (3.12) implies that dxi(s)
ds > 0. From

the continuity of the solution, for sufficiently small ε > 0, we have xi(s – ε) < 0, which is a
contradiction with X(·) ∈ 
.

If yi(s, ·) and v(s) are both equal to zero for some s ∈ R and any t < s, we have 0 =
yi(s, s – t) = yi(t, 0)πi(s – t) = xi(t)(βiv(t) + Qi(t))πi(s – t). By the Assumption 1.1, πi(s – t)
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remains positive for t ∈ R, i ∈ Nn. Thus, v(t) and Qi(t) are identically zero for all t < s. For
t > s, it follows from (3.1) and Gronwall inequality that v(t) and Qi(t) are both equal to
zero.

Now we assume that yi(s, ·) is non-zero for each s ∈ R. Since X(·) ∈ 
, there exists a
sequence {sn} such that yi(sn, ·) is non-zero for each n. For each n, there exists a sequence
{an} such that 0 �= yi(sn, an) = yi(sn – an, 0)πi(a). This implies that yi(sn – an, 0) �= 0 as sn goes
to –∞. Solving the last equation of system (3.12), we obtain v(s) �= 0 for all s ∈R. �

The alpha limit set of a total trajectory f (t) passing through f (0) = f0 is

A0 = A∩ (
\
0).

The omega limit set of a total trajectory f (t) is A1 = A∩ 
0. Let C ⊂A be the set consist-
ing of (xi0, yi0(·), v0) ∈ A such that a total trajectory X(·) approaching A0 as t → –∞ and
approaching A1 as t → +∞.

Corollary 3.5 Suppose R0 > 1 and Rcc
0 < 1. Let (xi(s), yi(s, ·), v(s)) be a total trajectory in

A1. Then there exists an ε0 > 0 such that xi(s), v(s) > ε0 and yi(s, τ ) > ε0πi(τ ), for all s ∈R.

Proof Note that βiv(s) +
∫ ∞

0 qi(a)yi(t, a) da ≤ M + β ′+
i x0

i � M1
i for all s ∈ R. By the first

equation of (3.12), we have

dxi(s)
ds

≥ λi – μixi – M1
i xi,

which implies that xi(s) ≥ λi
μi+M1

i
� ε1 for all s ∈ R. It follows from Theorem 3.3 and the

basic reproduction number R0 > 1 that βiv(s) +
∫ ∞

0 qi(a)yi(t, a) da ≥ ε2. In view of the
second and fourth equations, we have

yi(s, τ ) ≥ ε1ε2πi(τ ) � ε3πi(τ ).

Then define

ε0 = min{ε1, ε2, ε3}

and hence the proof is complete. �

In order to get the global stability of system (1.3), we recall an energy function ϕ :
(0,∞) →R as

ϕ(x) = x – 1 – ln x.

ϕ attains a global minimum only at 1 with ϕ(1) = 0 and ϕ(x) > 0 for x �= 1. Next, we base
on ϕ and construct a class of Lyapunov functionals to finish our goal, which implies that
the endemic steady state E∗ is a global attractor. Now we are in the position to prove the
following result.

The following lemma is used to cancel some terms in the proof of Theorem 3.7.
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Lemma 3.6 Suppose Rcc
0 < 1. If R0 > 1, the following equalities hold:

yi(t, 0) =
x∗

i βi

c

n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
xi(t)v(t)

x∗
i v∗ da + x∗

i

∫ ∞

0
qi(a)y∗

i (a)
xi(t)yi(t, a)

x∗
i y∗

i (a)
da, (3.13)

y∗
i (0) =

x∗
i βi

c

n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
xi(t)v(t)y∗

i (0)
x∗

i v∗yi(t, 0)
da

+ x∗
i

∫ ∞

0
qi(a)y∗

i (a)
xi(t)yi(t, a)y∗

i (0)
x∗

i y∗
i (a)yi(t, 0)

da. (3.14)

Proof By the fact that

cv∗ =
n∑

i=1

∫ ∞

0
pi(a)y∗

i (a) da

and

yi(t, 0) = βixi(t)v(t) + xi(t)
∫ ∞

0
qi(a)yi(t, a) da,

we obtain

x∗
i βi

c

n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
xiv

x∗
i v∗ da + x∗

i

∫ ∞

0
qi(a)y∗

i (a)
xi(t)yi(t, a)

x∗
i y∗

i (a)
da

= βixi(t)v(t) + xi(t)
∫ ∞

0
qi(a)yi(t, a) da

= yi(t, 0). (3.15)

Similarly,

y∗
i (0) =

x∗
i βi

c

n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
xi(t)v(t)y∗

i (0)
x∗

i v∗yi(t, 0)
da

+ x∗
i

∫ ∞

0
qi(a)y∗

i (a)
xi(t)yi(t, a)y∗

i (0)
x∗

i y∗
i (a)yi(t, 0)

da

=
βi

c
xi(t)v(t)y∗

i (0)
v∗yi(t, 0)

n∑

i=1

∫ ∞

0
pi(a)y∗

i (a) da

+
xi(t)y∗

i (0)
yi(t, 0)

∫ ∞

0
qi(a)yi(t, a) da

=
[

βixi(t)v(t) + xi(t)
∫ ∞

0
qi(a)yi(t, a) da

]
y∗

i (0)
yi(t, 0)

= y∗
i (0). (3.16)

�

Employing Lemma 3.6 and Lyapunov functional methods, we obtain the global stability
of the endemic steady state E∗.
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Theorem 3.7 Suppose Rcc
0 < 1. If R0 > 1, then the endemic steady state E∗ is globally

asymptotically stable in 
0.

Proof By Theorem 2.2 and Proposition 1.4, it suffices to show A1 = {E∗}. Let X(t) =
(xi(t), yi(t, ·), v(t)) be a total trajectory in A. By Corollary 3.5, there exists ε0 > 0 for any
t ∈R and τ ∈R+ such that 0 ≤ ϕ(m) < ε0 for m = xi(t)

x∗
i

, yi(t,τ )
y∗

i (τ ) , and v(t)
v∗ .

Let

αi(a) =
∫ ∞

a

[

x∗
i

(

βi

n∑

j=1

pj(s) + qi(s)

)]

y∗
i (s) ds, i ∈Nn.

Then

dαi(a)
da

= –x∗
i

(

βi

n∑

j=1

pj(s) + qi(s)

)

y∗
i (a), i ∈Nn.

Define

Vi(t) = Vxi (t) + Vyi (t) + Vv(t), i ∈Nn,

where Vxi (t) = x∗
i ϕ( xi(t)

x∗
i

), Vyi (t) = x∗
i
∫ ∞

0 αy(a)ϕ( yi(t,a)
y∗

i (a) ) da, and Vv(t) = βix∗
i v∗
c ϕ( v(t)

v∗ ). Thus
V (t) is bounded.

In what follows, we show that the derivative Vi(t) along the solution of system (1.3) is
non-positive. By the definition of Vxi (t), we have

dVxi (t)
dt

=
(

1 –
x∗

i
xi(t)

)[

λi – μixi(t) – βixi(t)v(t) – xi

∫ ∞

0
qi(a)yi(t, a) da

]

= –μix∗
i

(
x∗

i
xi(t)

+
xi(t)
x∗

i
– 2

)

+ βix∗
i v∗

[

1 –
xi(t)v(t)

x∗
i v∗ –

x∗
i

xi
+

v(t)
v∗

]

+
∫ ∞

0
qi(a)y∗

i (a)
[

1 –
yi(t, a)
y∗

i (a)
–

x∗
i

xi(t)
+

x∗
i yi(t, a)

xi(t)y∗
i (a)

]

da

= –μix∗
i

(
x∗

i
xi(t)

+
xi(t)
x∗

i
– 2

)

+
βix∗

i
c

n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
[

1 –
xi(t)v(t)

x∗
i v∗ –

x∗
i

xi(t)
+

v(t)
v∗

]

da

+
∫ ∞

0
qi(a)y∗

i (a)
[

1 –
yi(t, a)
y∗

i (a)
–

x∗
i

xi(t)
+

x∗
i yi(t, a)

xi(t)y∗
i (a)

]

da.

By [19, Lemma 9.4], differentiating Vyi (t) with respect to t yields

dVyi (t)
dt

=
∫ ∞

0
x∗

i

(

βi

n∑

j=1

pi(a) + qi(a)

)

y∗
i (a)

[

ϕ

(
yi(t, 0)
y∗

i (0)

)

– ϕ

(
yi(t, a)
y∗

i (a)

)]

da

=
∫ ∞

0
x∗

i

(

βi

n∑

j=1

pi(a) + qi(a)

)

y∗
i (a)

[
yi(t, 0)
y∗

i (0)
–

yi(t, a)
y∗

i (a)
+ ln

yi(t, a)y∗
i (0)

y∗
i (a)yi(t, 0)

]

da.
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The derivative of Vv(t) can be further calculated as

dVv(t)
dt

=
βix∗

i
c

(

1 –
v∗

v(t)

)( n∑

i=1

∫ ∞

0
pi(a)yi(t, a) da – cv(t)

)

=
βix∗

i
c

(

1 –
v∗

v(t)

)( n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
yi(t, a)
y∗

i (a)
da – cv(t)

)

=
βix∗

i
c

[ n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
(

yi(t, a)
y∗

i (a)
–

v∗

v(t)
yi(t, a)
y∗

i (a)

)

– cv(t) + cv∗
]

=
βix∗

i
c

[ n∑

i=1

∫ ∞

0
pi(a)y∗

i (a)
(

yi(t, a)
y∗

i (a)
–

v∗

v(t)
yi(t, a)
y∗

i (a)

)

–
v(t)
v∗ + 1

]

.

Summing up dVxi (t)
dt , dVyi (t)

dt , and dVv(t)
dt yields

dVi(t)
dt

= –μix∗
i

(
x∗

i
xi(t)

+
xi(t)
x∗

i
– 2

)

+
βix∗

i
c

n∑

j=1

∫ ∞

0
pi(a)y∗

i (a)
(

2 –
x∗

i
xi(t)

–
v∗yi(t, a)

v(t)y∗
i

–
xi(t)v(t)

x∗
i v∗ +

yi(t, 0)
y∗

i (0)

+ ln
yi(t, a)y∗

i (0)
y∗

i (a)yi(t, 0)

)

da

+ x∗
i

∫ ∞

0
qi(a)y∗

i (a)
[

1 –
x∗

i
xi(t)

+
xi(t)yi(t, a)

x∗
i y∗

i
+

yi(0)
y∗

i (0)
+ ln

yi(t, a)y∗
i (0)

y∗
i (a)yi(0)

]

da

= –μix∗
i

(
x∗

i
xi(t)

+
xi(t)
x∗

i
– 2

)

–
βix∗

i
c

∫ ∞

0
pi(a)y∗

i (a)
[

ϕ

(
v∗yi(t, a)
v(t)y∗

i (a)

)

+ ϕ

(
x∗

i
xi

)

+ ϕ

(
xivy∗

i (0)
x∗

i (t)v∗(t)yi(t, 0)

)]

da

– x∗
i

∫ ∞

0
qi(a)y∗

i (a)
[

ϕ

(
x∗

i
xi(t)

)

+ ϕ

(
xi(t)y∗

i (0)yi(t, a)
x∗

i yi(t, 0)y∗
i (a)

)]

da

≤ 0.

Therefore, Vi(t) is nonincreasing with respect to time t. Since Vi(t) is bounded on X(·),
the ω-limit set of X(·) must be contained in M, the largest invariant subset of { dVi(t)

dt = 0}.
It follows from dVi(t)

dt = 0 that xi(t) = x∗
i and v(t)y∗

i (0) = v∗yi(t, 0). Thus dxi(t)
dt = 0 in M. This

implies that

0 = λi – μix∗
i – yi(t, 0)

for t ∈ R, which yields y∗
i (0) = yi(t, 0) for all t ∈ R. This, together with the expression of

yi(t, τ ) implies that yi(t, τ ) = y∗
i (τ ) and v(t) = v∗ for all t. Therefore, M = {E∗}.

The above analysis indicates that the ω-limit set of X(·) consists of just the endemic
steady state E∗ and hence V (X(t)) ≥ V (E∗) for all t ∈R. Thus A1 = {E∗}. �
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4 Numerical simulations
In this section, we present numerical simulations to illustrate the effects of different treat-
ment strategies on the evolution of HIV infection. Our simulations also serve the purpose
of verifying our theoretical results obtained in the previous sections. We perform the nu-
merical analysis using Matlab. Here, we are particularly interested in two types of target
cells, the CD4+ lymphoblasts and macrophages. The maximum infectious period is as-
sumed to be amax = 15 days. The cells-to-cells transmission rate is qj(a) = 0.00065 in [12]
and the death rate for lymphoblasts is defined as

δ1(a) =

{
δ0, 0 ≤ a ≤ a1,
δ0 + δ1(1 – e–
(a–a1)), a > a1.

The viral production kernel is defined as

p1(a) =

{
0, 0 ≤ a ≤ a2,
p1max(1 – e–γ (a–a1)), a > a2,

where γ is the saturation rate and a1 is the viral reproduction delay. The other parameters
are obtained from the literature and are listed in Table 1.

We choose production rates of CD4+ lymphoblasts and macrophages as λi = 1 ml/day,
i = 1, 2, respectively and the viral production rate for macrophage as p2(a) = 0.1 exp(–3 ×
0.00028a) in [5]. The basic reproduction number is obtained, R0 = 0.4417 < 1, which im-
plies that the virus-free steady state E0 is globally asymptotically stable by Theorem 2.2
and Theorem 3.1 (see Figure 1). For increased the production rates for the two target cells
λi = 10 ml/day, i = 1, 2, the basic reproduction number R0 = 4.4173 > 1. It follows from
Theorem 2.1 and Theorem 3.7 that the endemic steady state E∗ is globally asymptotically
stable (see Figure 2).

4.1 Effects of drug inhibitors
The drugs play an important role in inhibiting the replication of virus. Two types
of inhibitors are commonly used clinically in HAART regimens, including reverse-
transcriptase inhibitors (RT), and protease inhibitors (PI). RT inhibitors restrain RT’s en-
zymatic function and interdict viral replication from HIV-1 RNA to DNA. Such process
can be modeled by reducing viral infection rate βi with mathematical factor 1 – εRT

i . Pro-
tease inhibitors (PI) can effectively restrain HIV protease by cleaving the HIV polyproteins

Table 1 List of parameters

Parameters Biological meaning Values Source

β1 Transmission rate from virus-to-cell 4.6× 10–6 [5]
q1 Transmission rate from cell-to-cell 8× 10–5 [30]
δ0 Background death rate 0.05 [12]
δm Extra death rate 0.35 [5]
c Clearance rate of virus 23 [5]
μ1 Death rate for lymphoblasts 0.01 [31]
μ2 Death rate for macrophages 0.024 [31]
a1 Age at which reverse transcription is completed 0.25 [12]
a2 Window in viral reproduction 0.5 [12]
p1max Maximum production rate for lymphoblasts 850 [12]
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Figure 1 All the parameters are listed in Table 1 except λi = 1, i = 1, 2. Stability of equilibria of (1.3). The
virus-free equilibrium is globally asymptotically stable whenR0 < 1 andRcc

0 < 1. The graph trajectories of
yj(t,a), j = 1, 2 versus time t and age a are illustrated in (a) and (b). The graph trajectories of Yj(t), j = 1, 2 versus
time t are illustrated in (c) and (d).

into functional sub-units resulting in producing immature noninfectious virus particles.
This can be described as reducing cell-to-cell transmission rate and viral protease rate
with factors 1 – εPIc

i and 1 – ε
PIp
i , respectively. In order to reveal the antiretroviral therapy

effects of RT inhibitors and PI inhibitors, we propose the following model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxi(t)
dt = λi – μixi(t) – (1 – εRT

i )βixi(t)v(t)
– xi(t)

∫ ∞
0 (1 – εPIc

i )qi(a)yi(t, a) da,
∂yi(t,τ )

∂t + ∂yi(t,τ )
∂τ

= –δi(τ )yi(t, τ ),
yi(t, 0) = (1 – εRT

i )βixi(t)v(t) + xi(t)
∫ ∞

0 (1 – εPIc
i )qi(a)yi(t, a) da,

dv(t)
dt =

∑2
i=1

∫ ∞
0 (1 – ε

PIp
i )pi(τ )yi(t, τ ) dτ – cv.

(4.1)

In order to compare different antiretroviral therapy effects, we perform simulation using
ε

j
i = 0.11, and ε

j
i = 0.21, i = 1, 2, j = PIc, PIp, RT. From Figure 3, it is easy to say that Pro-

tease inhibitors are more effective on decreasing the load of particle virion than reverse-
transcriptase inhibitors. Furthermore, protease inhibitors have significant influences on
cell-to-cell transmission by preventing viral replication. Protease inhibitors decrease the
peak magnitude of the disease and postpone the arrival of such peak. Investigating the
cell-to-cell transmission is essential to developing optimal disease control strategies. Nu-
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Figure 2 All the parameters are listed in Table 1 except λi = 10, i = 1, 2. The antiretroviral therapy effects
for reverse-transcriptase inhibitors (RT) and protease inhibitors (PI).

Figure 3 The effects of the different antiretroviral therapies with respect to time t. (a) εPIc
1 = 0.11,

εPIc
1 = 0.21, (b) εPIp

1 = 0.11, εPIp
1 = 0.21, (c) εRT

1 = 0.11, εRT
1 = 0.21.

merical simulation indicates that decreasing the cell-to-cell transmission is more effective
in disease control than the other two treatments.

When investigating the effects of multi-target cells on the evolution of virus, we as-
sume the antiretroviral therapy for macrophages is more sensitive than the therapy for
lymphoblasts. This implies that ε

j
2 = 1 and εRT

1 = 0.4, εPIc
1 = 0.2, ε

PIp
1 = 0.6. As shown in

Figure 4, the evolutions of virion for multi-target cells and single cell has some common
properties. They increase as fast as possible and then reach the peak level, followed by a
decay. However, the viruses for single target cell have slower decay rate than that for two
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Figure 4 The virion evolves with respect to time. (a) Evolution of the virion for multi-target cell.
(b) Evolution of the virion for single target cell.

target cells, indicating that multi-target cells contribute to slowing down the accumulation
of virion and increase the difficulties of treatment.

4.2 Decay dynamics of the system
From initial HAART treatment, viremia decays and becomes undetectable (<50 HIV-1
RNA copies/ml) in adherent patients. During the first antiretroviral therapy period, the
evolution of viremia strongly depends on the distributions of the infected target cells.

Now, we assume that reverse-transcriptase inhibitors totally suppress reverse-
transcriptase’s enzymatic function and prevent the synthesis of viral DNA from HIV-1
RNA. This means εRT

i = 1. For convenience, we assume that εPIc
i = 1 since the mecha-

nism for cell-to-cell transmission is obscure. It follows from equation (1.3) that yi(t, τ ) =
yi0(τ – t)πi(t). Since the plasma viruses decay faster (lasting only 1/c ≈ 1 h) [4, 32, 33] than
uninfected target cells and infected target cells. The time scale of decay rate for infected
target cell is much lower than that for viremia. Therefore viremia reaches the quasisteady
state relative to infected target cells and uninfected target cells. Then

v(t) =
2∑

i=1

∫ ∞
0 pi(a)yi(t, a) da

c
=

2∑

i=1

∫ ∞
0 pi(a)yi0(a – t)πi(t) da

c
.

If we choose the initially infected target cells to be y10 = e–ma then

v(t) =
2∑

i=1

∫ ∞
0 pi(a)e–m(a–t)π (t) da

c
=

2∑

i=1

πi(t)emt
∫ ∞

0
pi(a)e–ma da/c.

The trend of the disease depends on the relations between the survival rate πi and the
decay rate of the initial target cells mi. If πi– is greater than m then it decreases. Otherwise
it increases.

Second, if protease inhibitors completely block the production of infected virion, i.e.
ε

PIp
i = 100%, we then have v(t) = v0e–ct . The decay of viremia is at the clearance rate.

5 Conclusion and discussion
As popular antireviral therapies, reverse-transcriptase (RT) inhibitor and protease in-
hibitor (PI) suppress the reproduction of virion particles. Recent investigations showed
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that the persistence of latent viral reservoirs is responsible for viral rebound. Such a reser-
voir is insensitive to HAART and able to self-re-establish. It is necessary to evaluate the ef-
fects that the cell-to-cell infection has on viral dynamics. HIV viruses weaken and damage
human immune systems, and invade many target cells. In this article, we propose a math-
ematical model with infection age to investigate the viral dynamics of HIV with different
therapies. Cell-to-cell and multi-target-cell infections are both integrated into the model
to consider their effects on the evolution of the virus under treatments. We obtain the basic
reproduction number of the model, which determines the persistence of the disease. We
show that when the basic reproduction number is less than one, the virus-free equilibrium
is globally stable. On the other hand, if it is greater than one, then the endemic equilibrium
is globally asymptotically stable. It follows from the expression of the basic reproduction
number that multi-target-cell and cell-to-cell infections contribute positively to the value
of the basic reproduction number. Such type of infections was underestimated. Revealing
the consequences of multi-target-cell and cell-to-cell infections provides insights into the
development of optimal therapy to control the disease.

We consider the decay dynamics of our model and analyze the effects of the reverse-
transcriptase inhibitors and protease inhibitors. If the protease inhibitor is effective
enough [4], the decay rate of the virus only depends on the clearance rate of the virion
particles. On the other hand, if the reverse-transcriptase inhibitors are effective enough,
the decay rate of the virus depends on the distribution of initially infected cells. Through
the comparison with the two kinds of inhibitors, it is easy to show that protease inhibitors
play a more effective role in controlling cell-to-cell transmission than other therapies.

In order to investigate global behaviors of our model with multi-target-cell and cell-to-
cell transmissions, we simplified the input rate of uninfected target cells as a constant. In
the literature, logistic growth [34] and mixed growth forms [35] have been used in mod-
eling such input rate. We thus change the input mechanism in our model and the model
may display complex dynamical behaviors. The drift phenomenon for free virus often hap-
pens in the virion disperse process. Fickian diffusion term models biologically meaning-
ful scenario in virus dynamics and as such incorporating the diffusion into HIV model is
necessary [36]. Therefore, we will incorporate such growth rates and diffusions into HIV
disease model to investigate viral dynamics under various antiretroviral treatments.
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