
Zhang and Liu Advances in Difference Equations  (2018) 2018:15 
https://doi.org/10.1186/s13662-017-1463-0

R E S E A R C H Open Access

https://doi.org/10.1186/s13662-017-1463-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1463-0&domain=pdf
mailto:wblium@163.com


Zhang and Liu Advances in Difference Equations  (2018) 2018:15 Page 2 of 19

fractional boundary value problems:

CD� 1x1(t) = f1
(
t ,x1(t),x2(t), . . . ,xk(t),I � 11x1(t),I � 12x2(t), . . . ,I � 1kxk(t)

)
,

CD� 2x2(t) = f1
(
t ,x1(t),x2(t), . . . ,xk(t),I � 21x1(t),I � 22x2(t), . . . ,I � 2kxk(t)

)
,

...

CD� kxk(t) = f1
(
t ,x1(t),x2(t), . . . ,xk(t),I � k1x1(t),I � k2x2(t), . . . ,I � kkxk(t)

)
,

which are associated with the boundary conditions

xi(0) +xi (1) = ai ,
k∑

j=1

I � ij xi (� j ) +
k∑

j=1

I � ij xi (� j ) = bi

∫ 1

0
xi (s)ds,

wherek is a natural number,i = 1, 2, . . . ,k, 1 � � i < 2, CD� i denotes the Caputo fractional

derivative. By using the shifted Chebyshev and Legendre polynomials approach, the au-

thors obtained the numerical solutions for the abovek-dimensional system.

A boundary value problem is called resonance if the corresponding homogeneous
boundary value problem has a nontrivial solution. Recently, fractional boundary value

problems at resonance have attracted many scholars• attention (see [21…25]). To our

knowledge, the most e�ective method for solving fractional resonance boundary value

problems is Mawhin•s continuation theorem (see [31, 32]). For example, in [22], Chen and

Tang considered the solvability of the following fractional-order multi-point boundary
value problems at resonance by using Mawhin•s continuation theorem.

{
(a(t)CD�

0+u(t))� = f (t,u(t),u�(t),CD�
0+u(t)), t � [0, 1],

u(0) = 0, CD�
0+u(0) = 0, u(1) =

∑m…1
j=1 � ju(� j),

where CD�
0+ is the Caputo fractional derivative with 1 <� � 2, 0 < � j � R, � j � (0, 1),∑m…1

j=1 � j � j = 1, f : [0, 1]× R
3 � R satis“es the Carathéodory conditions.

In [23], Bai and Zhang considered the solvability of the following fractional multi-
point boundary value problems at resonance with two-dimensional kernels by employing

Mawhin•s continuation theorem.

{
D�

0+u(t) = f (t,u(t),D� …2
0+ u(t),D� …1

0+ u(t)), t � (0, 1),

I 3…�
0+ u(0) = 0, D� …1

0+ u(0) = D� …1
0+ u(� ), u(1) =

∑m
i=1 � iu(� i ),

where D�
0+ is the standard Riemann-Liouville fractional derivative with 2 <� � 3,

0 < � � 1, 0 <� 1 < · · · < � m < 1,m � 2,
∑m

i=1 � i � � …1
i =

∑m
i=1 � i � � …2

i = 1, f : [0,+� ) × R
3 � R

satis“es the Carathéodory conditions. In order to make sure that the linear operatorQ is

well de“ned, the author assumed that the following condition holds:

R=
� � 	 (� )	 (� … 1)

�	 (2� … 1)

(
1 …

m∑
i=1

� i � 2� …2
i

)
…

� � …1(	 (� ))2

(� … 1)	 (2� )

(
1 …

m∑
i=1

� i � 2� …1
i

)
�= 0.

In [24], Jiang studied the existence of solutions for the following fractional multi-

point boundary value problems at resonance with two-dimensional kernels by applying
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Mawhin•s continuation theorem.

{
D�

0+u(t) = f (t,u(t),D� …1
0+ u(t)), a.e.t � [0, 1],

u(0) = 0, D� …1
0+ u(0) =

∑m
i=1 aiD� …1

0+ u(� i ), D� …2
0+ u(1) =

∑n
j=1 bjD� …2

0+ u(� j),

where D�
0+ is the standard Riemann-Liouville fractional derivative with 2 <� < 3, 0 <

� 1 < � 2 < · · · < � m < 1, 0 <� 1 < � 2 < · · · < � n < 1,
∑m

i=1 ai =
∑n

j=1 bj =
∑n

j=1 bj� j = 1, f :

[0, 1]× R
2 � R satis“es the Carathéodory conditions. In order to make sure that the linear

operatorQ is well de“ned, the author assumed that the following condition holds:

1
6

(
1 …

n∑
j=1

bj� 3
j

)
m∑

i=1

ai � i …
1
4

(
1 …

n∑
j=1

bj� 2
j

)
m∑

i=1

ai � 2
i �= 0.

Thus, motivated by the results mentioned, in this paper, we discuss the existence of

solutions for the following multi-point boundary value problems by using Mawhin•s con-

tinuation theorem.

⎧⎪⎨
⎪⎩

D�
0+u(t) = f (t,u(t),D� …3

0+ u(t),D� …2
0+ u(t),D� …1

0+ u(t)), t � (0, 1),

I 4…�
0+ u(t)|t=0 = 0, D� …1

0+ u(0) =
∑l

i=1 � iD� …1
0+ u(� i ),

D� …2
0+ u(0) =

∑m
j=1 � jD� …2

0+ u(� j), D� …3
0+ u(1) =

∑n
k=1 
 kD� …3

0+ u(� k),

(1.1)

whereD�
0+ is the standard Riemann-Liouville fractional derivative with 3 <� � 4, 0 <� 1 <

· · · < � l < � 1 < · · · < � m < 1, 0 <� 1 < · · · < � k < 1, � i , � j , 
 k � R, f � [0, 1] × R
4 � R is a

Carathéodory function.

Throughout this paper, we assume that the following resonance conditions of (1.1) hold.

(H1)
∑l

i=1 � i = 1,
∑m

j=1 � j = 1,
∑n

k=1 
 k = 1,
∑m

j=1 � j � j = 0,
∑n

k=1 
 k� k = 1,
∑n

k=1 
 k� 2
k = 1.

Compared with previous work in the “eld, in this paper several new features can be

shown as follows. Firstly, to the best of author•s knowledge, there are only few papers that

consider the integral-order resonance BVPs with three-dimensional kernels (see [33…36]);

and for fractional resonance boundary value problems, most of the discussions are lim-

ited to the kernels of operator dimension less than or equal to two. So, our results are a

generalization of some previous publications. Secondly, compared with [23, 24, 35, 36],

in this paper, based on analysis as proved, we needn•t ensure that the linear operatorQ is

well de“ned by assumed conditions. Compared with [33, 34], it is more di�cult to de“ne

the linear isomorphism operatorJand also it is even more di�cult to give an example that

satis“es all the assumptions in the paper. Furthermore, when we take� = 4, BVPs (1.1) are

reduced to the fourth-order di�erential equation resonance BVPs.

We organized the rest of the article as follows. In Section2, we recall some de“nitions

and lemmas. In Section3, based on Mawhin•s continuation theorem, we establish an ex-

istence theorem for problem (1.1). In Section4, we present an example to illustrate our

main result. In the last section, we give a short conclusion.

2 Preliminaries
In this section, we recall some de“nitions and lemmas which are used throughout this

paper.
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Let X andY be two Banach spaces with the norms	 · 	 X and	 · 	 Y , respectively. De“ne
L : dom(L) 
 X � Y to be a Fredholm operator with index zero,P : X � X, Q : Y � Y to
be two projectors such that

Im P= Ker L, Im L = Ker Q, X = Ker L � Ker P, Y = Im L � Im Q,

L|dom L� Ker P : dom L � Im L is invertible, we denote the inverse byKp. Let � be an open
bounded subset ofX anddom L � ¯� �= 
 , the mapN : X � Y is called L-compact on¯� , if
QN( ¯� ) is bounded andKP,QN = Kp(I …Q)N : ¯� � X is compact (see [31, 32]).

Lemma 2.1 (see [31, 32]) Let L : dom L 
 X � Y be a Fredholm operator of index zero
and N : X � Y be L-compact on̄� . Assume that the following conditions are satis“ed:

(i) Lu �= 
 Nu for any u � (dom L \ Ker L) � �� , 
 � (0, 1);
(ii) Nu /� Im L for any u � Ker L � �� ;

(iii) deg(QN|Ker L, � � Ker L,0)�= 0.
Then the equation Lx= Nx has at least one solution indom L � ¯� .

Definition 2.1 (see [2, 3]) The Riemann-Liouville fractional integral of order� > 0 for a
function u : (0,+� ) � R is given by

I �
0+u(t) =

1
	 (� )

∫ t

0
(t …s)� …1u(s)ds

provided that the right-hand side integral is pointwise de“ned on (0,+� ).

Definition 2.2 (see [2, 3]) The Riemann-Liouville fractional derivative of order� > 0 for
a function u : (0,+� ) � R is given by

D�
0+u(t) =

dn

dtn
I n…�
0+ u(t) =

1
	 (n …� )

dn

dtn

∫ t

0
(t …s)n…� …1u(s)ds,

where n = [� ] + 1, provided that the right-hand side integral is pointwise de“ned on
(0,+� ).

Lemma 2.2 (see [2, 3, 18, 24]) Let � > 0.Assume that u,D�
0+u � L1(0,1),then the following

equality holds:

I �
0+D�

0+u(t) = u(t) + c1t � …1+ c2t � …2+ · · · + cnt � …n,

where n= [� ] + 1, ci � R, i = 1, 2, . . . ,n.

Lemma 2.3 (see [2, 3, 18, 24]) Assume that u� L1(0,1),� � � � 0, then

I �
0+I �

0+u(t) = I � +�
0+ u(t), D�

0+I �
0+u(t) = I � …�

0+ u(t).

Lemma 2.4 (see [2, 3, 18, 24]) Assume that� > 0, 
 > …1,t > 0,then

I �
0+t 
 =

	 (
 + 1)
	 (
 + 1 + � )

t � +
 , D�
0+t 
 =

	 (
 + 1)
	 (
 + 1 …� )

t 
 …� ,

in particular D �
0+t � …m = 0, m = 1, 2, . . . ,n, where n= [� ] + 1.
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3 Main result
Take

X =
{
u : u,D� …1

0+ u � C[0,1]
}
, Y = L1[0,1].

It is easy to check thatX andY are two Banach spaces with norms

	 u	 X = max
{
	 u	 � ,

∥∥D� …3
0+ u

∥∥
� ,
∥∥D� …2

0+ u
∥∥

� ,
∥∥D� …1

0+ u
∥∥

�

}
, 	 y	 Y = 	 y	 1,

respectively, where	 u	 � = supt � [0,1] |u(t)|, 	 y	 1 =
∫ 1

0 |y(t)| dt.

De“ne the linear operatorL : dom L 
 X � Y and the nonlinear operatorN : X � Y as

follows:

Lu(t) = D�
0+u(t), u(t) � dom L,

Nu(t) = f
(
t ,u(t),D� …3

0+ u(t),D� …2
0+ u(t),D� …1

0+ u(t)
)
, u(t) � X,

where

dom L =
{
u � X : D�

0+u(t) � Y,u satis“es boundary value conditions of (1.1)
}
.

Then problem (1.1) is equivalent to the operator equationLu = Nu, u � dom L.

Lemma 3.1 Assume that(H1) holds, then the operator L: dom L 
 X � Y satis“es

Ker L =
{
u � dom L : u(t) = at� …1+ bt� …2+ ct� …3,a,b,c � R

}
, (3.1)

Im L = {y � Y : Q1y = Q2y = Q3y = 0}, (3.2)

where

Q1y =
l∑

i=1

� i

∫ � i

0
y(s)ds, Q2y =

m∑
j=1

� j

∫ � j

0
(� j …s)y(s)ds,

Q3y =
∫ 1

0
(1 …s)2y(s)ds…

n∑
k=1


 k

∫ � k

0
(� k …s)2y(s)ds.

Proof If Lu = D�
0+u = 0, by Lemma2.2, we have

u(t) = at� …1+ bt� …2+ ct� …3+ dt� …4, a,b,c,d � R.

It follows from the boundary conditionI4…�
0+ u(t)|t=0 = 0 that d = 0, then

u(t) = at� …1+ bt� …2+ ct� …3.

So,

Ker L 

{
u � dom L : u(t) = at� …1+ bt� …2+ ct� …3,a,b,c � R

}
.
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Conversely, takeu(t) = t � …1+ t� …2+ t� …3, it is easy to check thatD�
0+u = 0 andu(t) satis“es

boundary value conditions of (1.1). Thus,

{
u � dom L : u(t) = at� …1+ bt� …2+ ct� …3,a,b,c � R

}

 Ker L.

For y � Im L, there existsu � dom L such thatD�
0+u(t) = y(t). By Lemmas2.2and2.4, com-

bined with the boundary conditionI4…�
0+ u(t)|t=0 = 0, one has

u(t) = I �
0+y(t) + c1t � …1+ c2t � …2+ c3t � …3.

Considering the boundary conditions

D� …1
0+ u(0) =

l∑
i=1

� iD� …1
0+ u(� i ), D� …2

0+ u(0) =
m∑
j=1

� jD� …2
0+ u(� j),

D� …3
0+ u(1) =

n∑
k=1


 kD� …3
0+ u(� k),

by Lemmas2.3and2.4, we obtain

D� …1
0+ u(0) = c1	 (� ) =

l∑
i=1

� iD� …1
0+ u(� i )

=
l∑

i=1

� i

[∫ � i

0
y(s)ds+ c1	 (� )

]

=
l∑

i=1

� i

∫ � i

0
y(s)ds+ c1	 (� ),

D� …2
0+ u(0) = c2	 (� … 1) =

m∑
j=1

� jD� …2
0+ u(� j)

=
m∑
j=1

� j

[∫ � j

0
(� j …s)y(s)ds+ c1	 (� )� j + c2	 (� … 1)

]

=
m∑
j=1

� j

∫ � j

0
(� j …s)y(s)ds+ c2	 (� … 1)

and

D� …3
0+ u(1) =

1
2

∫ 1

0
(1 …s)2y(s)ds+

1
2

c1	 (� ) + c2	 (� … 1) +c3	 (� … 2)

=
n∑

k=1


 kD� …3
0+ u(� k)

=
n∑

k=1


 k

[
1
2

∫ � k

0
(� k …s)2y(s)ds+

1
2

c1	 (� )� 2
k + c2	 (� … 1)� k + c3	 (� … 2)

]

=
1
2

n∑
k=1


 k

∫ � k

0
(� k …s)2y(s)ds+

1
2

c1	 (� ) + c2	 (� … 1) +c3	 (� … 2).
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Thus,

Q1y = Q2y = Q3y = 0, (3.3)

that is,

Im L 
 { y � Y : Q1y = Q2y = Q3y = 0}.

Conversely, lety � Y satisfy (3.3), takingu(t) = I �
0+y(t), we can easily check thatu � dom L

andLu(t) = y(t). Then we have{y � Y : Q1y = Q2y = Q3y = 0} 
 Im L. �

Let R1,R2,R3 : Y � Y be three linear operators de“ned as

R1y =
µ(µ + 1)(µ + 2)

� (µ ,� , � )
[A11Q1y + A12Q2y + A13Q3y],

R2y =
� (� + 1)(� + 2)

� (µ ,� , � )
[A21Q1y + A22Q2y + A23Q3y],

R3y =
� (� + 1)(� + 2)

� (µ ,� , � )
[A31Q1y+ A32Q2y + A33Q3y],

where

� (µ ,� , � ) =

∣∣∣∣∣∣∣
(µ + 1)(µ + 2)

∑l
i=1 � i �

µ
i (µ + 2)

∑m
j=1 � j �

µ+1
j 2(1 …

∑n
k=1 
 k� µ+2

k )

(� + 1)(� + 2)
∑l

i=1 � i � �
i (� + 2)

∑m
j=1 � j � � +1

j 2(1 …
∑n

k=1 
 k� � +2
k )

(� + 1)(� + 2)
∑l

i=1 � i � �
i (� + 2)

∑m
j=1 � j � � +1

j 2(1 …
∑n

k=1 
 k� � +2
k )

∣∣∣∣∣∣∣ .

We note

� (µ ,� , � ) :=

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ ,

hereAij (i, j = 1,2,3) are the algebraic complements ofaij .

Lemma 3.2 Assume that(H1) holds, then there exist constantsµ � { 1, 2, . . . ,m…1}, � � Z
+,

� � µ + 1 and � � Z
+ large enough numbers such that� (µ ,� , � ) �= 0.

Proof By
∑l

i=1 � i = 1, we have that, for eachs � Z
+, there existsks � { sl + 1, . . . , (s+ 1)l}

such that
∑l

i=1 � i �
ks
i �= 0. If not, we get

∑l
i=1 � i �

ks
i = 0, ks � { sl+ 1, . . . , (s+ 1)l}, that is,

⎛
⎜⎜⎜⎜⎝

� sl+1
1 � sl+1

2 · · · � sl+1
l

� sl+2
1 � sl+2

2 · · · � sl+2
l

...
...

...
...

� (s+1)l
1 � (s+1)l

2 · · · � (s+1)l
l

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

� 1

� 2

...

� l

⎞
⎟⎟⎟⎟⎠ = 0.
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Since

∣∣∣∣∣∣∣∣∣∣

� sl+1
1 � sl+1

2 · · · � sl+1
l

� sl+2
1 � sl+2

2 · · · � sl+2
l

...
...

...
...

� (s+1)l
1 � (s+1)l

2 · · · � (s+1)l
l

∣∣∣∣∣∣∣∣∣∣
= (� 1� 2 · · · � l )sl+1

∏
1� i<j� l

(� j …� i ) �= 0.

So,� i = 0 (i = 1, 2, . . . ,l ), which is a contradiction with
∑l

i=1 � i = 1. Similarly, by
∑m

j=1 � j = 1

and
∑m

j=1 � j � j = 0, there existsµ � { 1, 2, . . . ,m … 1} such that
∑m

j=1 � j �
µ+1
j �= 0. Otherwise,

we have
∑m

j=1 � j �
µ+1
j = 0, µ = 0, 1, 2, . . . ,m … 1, that is,

⎛
⎜⎜⎜⎜⎝

� 1 � 2 · · · � m

� 2
1 � 2

2 · · · � 2
m

...
...

...
...

� m
1 � m

2 · · · � m
m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

� 1

� 2

...

� m

⎞
⎟⎟⎟⎟⎠ = 0.

Because

∣∣∣∣∣∣∣∣∣∣

� 1 � 2 · · · � m

� 2
1 � 2

2 · · · � 2
m

...
...

...
...

� m
1 � m

2 · · · � m
m

∣∣∣∣∣∣∣∣∣∣
= � 1� 2 · · · � m

∏
1� i<j� m

(� j …� i ) �= 0.

So,� j = 0 (j = 1,2, . . . ,m), which has con”icts with
∑m

j=1 � j = 1. Set

S=

{
ks � Z

+ :
(µ + 1)

∑l
i=1 � i �

µ
i

∑m
j=1 � j �

ks+1
j

(ks + 1)
∑l

i=1 � i �
ks
i

=
m∑
j=1

� j �
µ+1
j

}
.

We show thatS is a “nite set. If else, there exists a strictly monotonic sequence{kst }
�
t=1

such that

(µ + 1)
∑l

i=1 � i �
µ
i

∑m
j=1 � j �

kst +1
j

(kst + 1)
∑l

i=1 � i �
kst
i

=
m∑
j=1

� j �
µ+1
j .

It follows from 0 < � 1 < · · · < � l < � 1 < · · · < � m < 1,
∑m

j=1 � j �
µ+1
j �= 0 that

∑l
i=1 � i �

µ
i �= 0 and

m∑
j=1

� j �
µ+1
j = lim

kst ��

(µ + 1)
∑l

i=1 � i �
µ
i

∑m
j=1 � j �

kst +1
j

(kst + 1)
∑l

i=1 � i �
kst
i

= lim
kst ��

� l (µ + 1)
∑l

i=1 � i �
µ
i

∑m
j=1 � j(� j / � l )

kst +1

(kst + 1)
∑l

i=1 � i (� i / � l )
kst

= � .
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It is a contradiction. Thus, there existµ � { 1, 2, . . . ,m … 1}, � � Z
+, � � µ + 1 such that

A33 �= 0. Therefore, we have

lim
� ��

� (µ ,� , � ) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

0 0 2

∣∣∣∣∣∣∣ = 2A33 �= 0.

So, if we make sure� � Z
+ (the set of positive integers) is large enough, it can be such that

� (µ ,� , � ) �= 0. �

Lemma 3.3 Assume that(H1) holds, then L: dom L 
 X � Y is a Fredholm operator of
index zero. The linear projector operator P: X � X and Q : Y � Y can be de“ned as
follows:

(Pu)(t) =
1

	 (� )
D� …1

0+ u(0)t � …1+
1

	 (� … 1)
D� …2

0+ u(0)t � …2+
1

	 (� … 2)
D� …3

0+ u(0)t � …3,

(Qy)(t) =
(
R1y(t)

)
tµ…1+

(
R2y(t)

)
t � …1+

(
R3y(t)

)
t � …1,

where takingµ , � , � satis“es Lemma3.2.

Proof By the de“nition of P, we can easily check thatP is a continuous linear projector
operator and satis“esIm P= Ker L, X = Ker P� Ker L. According to Lemma3.2, there ex-
ist constantsµ � { 1, 2, . . . ,m … 1}, � � Z

+, � � µ + 1 and � � Z
+ large enough, such that

� (µ ,� , � ) �= 0. So,Q is a well-de“ned operator. It is clear thatQ is a continuous linear op-
erator anddim Im Q = 3. By the de“nitions of R1, R2, R3, we can calculate the following
equations:

R1
(
(R1y)tµ…1) = R1y, R1

(
(R2y)t � …1) = 0, R1

(
(R3y)t � …1) = 0,

R2
(
(R1y)tµ…1) = 0, R2

(
(R2y)t � …1) = R2y, R2

(
(R3y)t � …1) = 0,

R3
(
(R1y)tµ…1) = 0, R3

(
(R2y)t � …1) = 0, R3

(
(R3y)t � …1) = R3y.

Thus,

(
Q2y

)
(t) = Q

[(
R1y(t)

)
tµ…1+

(
R2y(t)

)
t � …1+

(
R3y(t)

)
t � …1]

=
{
R1
[(

R1y(t)
)
tµ…1+

(
R2y(t)

)
t � …1+

(
R3y(t)

)
t � …1]}tµ…1

+
{
R2
[(

R1y(t)
)
tµ…1+

(
R2y(t)

)
t � …1+

(
R3y(t)

)
t � …1]}t � …1

+
{
R3
[(

R1y(t)
)
tµ…1+

(
R2y(t)

)
t � …1+

(
R3y(t)

)
t � …1]}t � …1

=
(
R1y(t)

)
tµ…1+

(
R2y(t)

)
t � …1+

(
R3y(t)

)
t � …1= Qy(t).

So,Q is a projector operator. From Lemma3.1, we haveIm L 
 Ker Q. Now, we show the
fact that Ker Q 
 Im L. In fact, for y � Ker Q, thus Qy = 0, then we get a system of linear
equations with respect toQ1y, Q2y, Q3y as follows:

⎧⎪⎨
⎪⎩

A11Q1y + A12Q2y+ A13Q3y = 0,

A21Q1y + A22Q2y+ A23Q3y = 0,

A31Q1y + A32Q2y+ A33Q3y = 0.

(3.4)
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Since the determinant of coe�ciency for (3.4) is � 2(µ ,� , � ) �= 0, we get thatQ1y = Q2y =
Q3y = 0, thusKer Q 
 Im L. Therefore,Ker Q = Im L. Fory � Y, sety = (y …Qy) + Qy, then
(y …Qy) � Ker Q = Im L, Qy � Im Q. So,y = Im L + Im Q. Furthermore, for anyy � Im L �
Im Q, there exist constantsa,b,c � R such thaty(t) = atµ…1+ bt� …1+ ct� …1andQ1y = Q2y =
Q3y = 0. Then we also get a system of linear equations with respect toa, b, c as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑l
i=1 � i ( a

µ � µ
i + b

� � �
i + c

� � �
i ) = 0,∑m

j=1 � j [ a
µ (µ+1)�

µ+1
j + b

� (� +1) �
� +1
j + c

� (� +1) �
� +1
j ] = 0,

2a
µ(µ+1)(µ+2)(1 …

∑n
k=1 
 k� µ+2

k ) + 2b
� (� +1)(� +2)(1 …

∑n
k=1 
 k� � +2

k )

+ 2c
� (� +1)(� +2)(1 …

∑n
k=1 
 k� � +2

k ) = 0.

(3.5)

By simple calculation, we obtain that the determinant of coe�ciency for (3.5) is

� (µ ,� , � )
µ (µ + 1)(µ + 2)� (� + 1)(� + 2)� (� + 1)(� + 2)

�= 0.

Thus, (3.5) only have zero solutions, that is,a = b = c= 0. It means thatIm Q � Im L = {0}.
Therefore,Y = Im Q� Im L. From the above, we getdim Ker L = dim Im Q = co dim Im L = 3.
So,L is a Fredholm operator of index zero. �

Lemma 3.4 Assume that(H1) holds, de“ne the linear operator Kp : Im L � dom L � Ker P
by

(Kpy)(t) =
1

	 (� )

∫ t

0
(t …s)� …1y(s)ds, y � Im L,

then Kp is the inverse of L|dom L� Ker P and 	 Kpy	 X � 	 y	 1, � y � Im L.

Proof For y � Im L, then Q1y = Q2y = Q3y = 0, which is combined with the de“nition of
Kp and Lemmas2.2-2.4, we can check thatKpy � dom L � Ker P. So,Kp is well de“ned on
Im L. Obviously, (LKp)y(t) = y(t), � y � Im L. Foru(t) � dom L, by Lemma2.2, we have

(KpL)u(t) = I �
0+D�

0+u(t) = u(t) + c1t � …1+ c2t � …2+ c3t � …3+ c4t � …4, c1,c2,c3,c4 � R.

Then 0 = I4…�
0+ [(KpL)u(t)]|t=0 = c4. It follows from P[(KpL)u(t)] = 0 and c1t � …1+ c2t � …2+

c3t � …3� Ker L = Im P that c1t � …1+ c2t � …2+ c3t � …3= …Pu(t). Then (KpL)u(t) = u(t) …Pu(t).
Therefore, if u(t) � dom L � Ker P, we have (KpL)u(t) = u(t). So,Kp is the inverse of
L|dom L� Ker P. Moreover, by Lemma2.3we have the following inequations:

|Kpy| �
1

	 (� )

∫ t

0
(t …s)� …1

∣∣y(s)
∣∣ds�

1
	 (� )

∫ 1

0

∣∣y(s)
∣∣ds� 	 y	 1,

∣∣D� …3
0+ Kpy

∣∣ �
1
2

∫ t

0
(t …s)2

∣∣y(s)
∣∣ds�

1
2

∫ 1

0

∣∣y(s)
∣∣ds� 	 y	 1,

∣∣D� …2
0+ Kpy

∣∣ �
∫ t

0
(t …s)

∣∣y(s)
∣∣ds�

∫ 1

0

∣∣y(s)
∣∣ds= 	 y	 1,

∣∣D� …1
0+ Kpy

∣∣ �
∫ t

0

∣∣y(s)
∣∣ds�

∫ 1

0

∣∣y(s)
∣∣ds= 	 y	 1.

So,	 Kpy	 X � 	 y	 1, � y � Im L. �
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Lemma 3.5 Assume that(H1) holds and� 
 X is an open bounded subset withdom L �
¯� �= 
 , then N is L-compact on¯� .

Proof From f : [0, 1] × R
4 � R satis“es the Carathéodory conditions, we can get that

QN( ¯� ) and (I …Q)N( ¯� ) are bounded, that is, there exist constants� �, � > 0 such that

|QNu| � � �, |(I …Q)Nu| � � , u � ¯� , a.e.t � [0, 1]. So, we only need to show thatKp(I …Q)N :
¯� � X is compact. By Lemma3.4,Kp(I …Q)N( ¯� ) is bounded. It follows from the Lebesgue

dominated convergence theorem thatKp(I …Q)N : ¯� � X is continuous. For 0� t1 <

t2 � 1, u � ¯� , we have

∣∣Kp(I …Q)Nu(t1) …Kp(I …Q)Nu(t2)
∣∣

=
1

	 (� )

∣∣∣∣
∫ t1

0
(t1 …s)� …1(I …Q)Nu(s)ds…

∫ t2

0
(t2 …s)� …1(I …Q)Nu(s)ds

∣∣∣∣
�

1
	 (� )

∣∣∣∣
∫ t1

0

[
(t1 …s)� …1… (t2 …s)� …1](I …Q)Nu(s)ds

∣∣∣∣
+

1
	 (� )

∣∣∣∣
∫ t2

t1

(t2 …s)� …1(I …Q)Nu(s)ds

∣∣∣∣
�

�
	 (� )

∫ t1

0

[
(t2 …s)� …1… (t1 …s)� …1]ds+

�
	 (� )

∫ t2

t1

(t2 …s)� …1ds

=
�

	 (� + 1)

(
t �
2 …t�

1

)
.

Sincet� is uniformly continuous on [0,1], we getKp(I …Q)N( ¯� ) is equicontinuous. In

addition, because the following equations hold:

D� …2
0+ Kp(I …Q)Nu(t2) …D� …2

0+ Kp(I …Q)Nu(t1) =
∫ t2

t1

D� …1
0+ Kp(I …Q)Nu(s)ds,

D� …3
0+ Kp(I …Q)Nu(t2) …D� …3

0+ Kp(I …Q)Nu(t1) =
∫ t2

t1

D� …2
0+ Kp(I …Q)Nu(s)ds,

we simply indicate the equicontinuity ofD� …1
0+ Kp(I …Q)N( ¯� ). In fact,

∣∣D� …1
0+ Kp(I …Q)Nu(t1) …D� …1

0+ Kp(I …Q)Nu(t2)
∣∣

=

∣∣∣∣
∫ t2

t1

(I …Q)Nu(s)ds

∣∣∣∣ � � (t2 …t1).

Sincet is uniformly continuous on [0,1], thusD� …1
0+ Kp(I …Q)N( ¯� ) is equicontinuous. By

the Arzelà-Ascoli theorem, we obtain thatKp(I …Q)N : ¯� � X is compact. �

In order to obtain our main results, we suppose that the following conditions are satis-

“ed:

(H2) There exist nonnegative functions a(t),b(t),c(t),d(t),e(t) � Y such that, for any
(u1,u2,u3,u4) � R

4, t � (0, 1),

∣∣f (t,u1,u2,u3,u4)
∣∣ � a(t)|u1| + b(t)|u2| + c(t)|u3| + d(t)|u4| + e(t)
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and

	 a	 1 + 	 b	 1 + 	 c	 1 + 	 d	 1 <
1

(q + 1)
,

where q = max{ 1
	 (� ) + 1

	 (� …1)+
1

	 (� …2),
5
2}.

(H3) There exists a constant L > 0 for any u(t) � dom L, if inft � [0,1] |D� …1
0+ u(t)| > L, then

D� …1
0+ u(t)Q1Nu(t) > 0, � t � [0, 1] (3.6)

or

D� …1
0+ u(t)Q1Nu(t) < 0, � t � [0, 1]; (3.7)

(H4) There exists a constant M > 0 for any u(t) � dom L, if inft � [0,1] |D� …2
0+ u(t)| > M , then

D� …2
0+ u(t)Q2Nu(t) > 0, � t � [0, 1] (3.8)

or

D� …2
0+ u(t)Q2Nu(t) < 0, � t � [0, 1]; (3.9)

(H5) There exists a constant G > 0 for any u(t) � dom L, if inft � [0,1] |D� …3
0+ u(t)| > G, then

D� …3
0+ u(t)Q3Nu(t) > 0, � t � [0, 1] (3.10)

or

D� …3
0+ u(t)Q3Nu(t) < 0, � t � [0, 1]. (3.11)

Lemma 3.6 Suppose that(H2)-(H5) hold, set

� 1 =
{
u � dom L \ Ker L : Lu = 
 Nu,
 � (0, 1)

}
.

Then� 1 is bounded.

Proof For u � � 1, we have Nu � Im L = Ker Q, that is, Q1(Nu(t)) = Q2(Nu(t)) =

Q3(Nu(t)) = 0. Thus, from (H3)-(H5), we obtain that there exist constantst1,t2, t3 � [0, 1]

such that|D� …3
0+ u(t3)| � G, |D� …2

0+ u(t2)| � M and |D� …1
0+ u(t1)| � L. Since, for allt � [0, 1], the

following equations hold:

D� …1
0+ u(t) = D� …1

0+ u(t1) +
∫ t

t1

D�
0+u(s)ds,

D� …2
0+ u(t) = D� …2

0+ u(t2) +
∫ t

t2

D� …1
0+ u(s)ds,

D� …3
0+ u(t) = D� …3

0+ u(t3) +
∫ t

t3

D� …2
0+ u(s)ds.
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Then we have

∣∣D� …1
0+ u(0)

∣∣ �
∥∥D� …1

0+ u(t)
∥∥

� �
∣∣D� …1

0+ u(t1)
∣∣ +
∥∥D�

0+u
∥∥

1 � L + 	 Lu	 1 � L + 	 Nu	 1,∣∣D� …2
0+ u(0)

∣∣ �
∥∥D� …2

0+ u(t)
∥∥

� �
∣∣D� …2

0+ u(t2)
∣∣ +
∥∥D� …1

0+ u
∥∥

� � L + M + 	 Nu	 1,

and

∣∣D� …3
0+ u(0)

∣∣ �
∥∥D� …3

0+ u(t)
∥∥

� �
∣∣D� …3

0+ u(t3)
∣∣ +
∥∥D� …2

0+ u
∥∥

� � L + M + G + 	 Nu	 1.

By the de“nition of P and Lemma2.4, we get

D� …3
0+ Pu(t) =

1
2

D� …1
0+ u(0)t2 + D� …2

0+ u(0)t + D� …3
0+ u(0),

D� …2
0+ Pu(t) = D� …1

0+ u(0)t + D� …2
0+ u(0), D� …1

0+ Pu(t) = D� …1
0+ u(0).

Thus,

∣∣D� …3
0+ Pu

∣∣ �
1
2

∣∣D� …1
0+ u(0)

∣∣ +
∣∣D� …2

0+ u(0)
∣∣ +
∣∣D� …3

0+ u(0)
∣∣ �

5
2

L + 2M + G +
5
2

	 Nu	 1,

∣∣D� …2
0+ Pu

∣∣ �
∣∣D� …1

0+ u(0)
∣∣ +
∣∣D� …2

0+ u(0)
∣∣ � 2L + M + 2	 Nu	 1,∣∣D� …1

0+ Pu
∣∣ =
∣∣D� …1

0+ u(0)
∣∣ � L + 	 Nu	 1.

Because of

|Pu| �
1

	 (� )

∣∣D� …1
0+ u(0)

∣∣ +
1

	 (� … 1)

∣∣D� …2
0+ u(0)

∣∣ +
1

	 (� … 2)

∣∣D� …3
0+ u(0)

∣∣
�

L
	 (� )

+
L + M

	 (� … 1)
+

L + M + G
	 (� … 2)

+
(

1
	 (� )

+
1

	 (� … 1)
+

1
	 (� … 2)

)
	 Nu	 1.

Therefore,

	 Pu	 X = max
{
	 Pu	 � ,

∥∥D� …3
0+ Pu

∥∥
� ,
∥∥D� …2

0+ Pu
∥∥

� ,
∥∥D� …1

0+ Pu
∥∥

�

}
� qL + pM + rG + q	 Nu	 1, (3.12)

wherep = max{ 1
	 (� …1)+

1
	 (� …2), 2}, r = 1

	 (� …2). Also, for u � � 1, u � dom L \ Ker L, then (I …

P)u � dom L � Ker P, LPu= 0, from Lemma3.4, we have

∥∥(I …P)u
∥∥

X =
∥∥KpL(I …P)u

∥∥
X = 	 KpLu	 X � 	 Lu	 1 � 	 Nu	 1. (3.13)

It follows from (3.12) and (3.13) that

	 u	 X =
∥∥Pu+ (I …P)u

∥∥
X � 	 Pu	 X +

∥∥(I …P)u
∥∥

X

� pM + qL + rG + (q + 1)	 Nu	 1. (3.14)
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By (H2), we have

	 Nu	 1 � 	 a	 1	 u	 � + 	 b	 1
∥∥D� …3

0+ u
∥∥

� + 	 c	 1
∥∥D� …2

0+ u
∥∥

�

+ 	 d	 1
∥∥D� …1

0+ u
∥∥

� + 	 e	 1

�
(
	 a	 1 + 	 b	 1 + 	 c	 1 + 	 d	 1

)[
pM + qL+ rG + (q + 1)	 Nu	 1

]
+ 	 e	 1. (3.15)

Substituting (3.15) into (3.14), one gets

	 u	 X � (q + 1)
(	 a	 1 + 	 b	 1 + 	 c	 1 + 	 d	 1)(pM + qL + rG) + 	 e	 1

1 … (q + 1)(	 a	 1 + 	 b	 1 + 	 c	 1 + 	 d	 1)
+ pM + qL + rG.

So,� 1 is bounded. �

Lemma 3.7 Suppose that(H3)-(H5) hold, set

� 2 = {u � Ker L : Nu � Im L}.

Then� 2 is bounded.

Proof For u � � 2, then u � Ker L and Nu � Im L = Ker Q, that is, there exist constants
a,b,c � R such thatu(t) = at� …1+ bt� …2+ ct� …3, QNu(t) = 0. Thus,Q1Nu(t) = Q2Nu(t) =
Q3Nu(t) = 0. By (H3)-(H5), there exist constantst4,t5, t6 � [0, 1] such that|D� …3

0+ u(t6)| � G,
|D� …2

0+ u(t5)| � M and |D� …1
0+ u(t4)| � L, that is,

∣∣D� …1
0+ u(t4)

∣∣ =
∣∣a	 (� )

∣∣ � L,
∣∣D� …2

0+ u(t5)
∣∣ =
∣∣a	 (� )t5 + b	 (� … 1)

∣∣ � M,∣∣D� …3
0+ u(t6)

∣∣ =
∣∣a	 (� )t2

6/2 + b	 (� … 1)t6 + c	 (� … 2)
∣∣ � G.

Then

|a| �
L

	 (� )
, |b| �

M + L
	 (� … 1)

, |c| �
G + M + (3L/2)

	 (� … 2)
.

Therefore,

	 u	 � � | a| + |b| + |c| �
L

	 (� )
+

M + L
	 (� … 1)

+
G + M + (3L/2)

	 (� … 2)
,

∥∥D� …1
0+ u

∥∥
� � 	 (� )|a| � L,∥∥D� …2

0+ u
∥∥

� � 	 (� )|a| + 	 (� … 1)|b| � 2L + M,

∥∥D� …3
0+ u

∥∥
� �

1
2

	 (� )|a| + 	 (� … 1)|b| + 	 (� … 2)|c|

� 3L + 2M + G.

So,� 2 is bounded. �

Lemma 3.8 Suppose that(H3)-(H5) hold, set

� 3 =
{
u � Ker L : � 
 Ju+ (1 …
 )QNu = 0,
 � [0, 1]

}
.
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Then� 3 is bounded, where� = 1, if (3.6), (3.8), (3.10) hold and� = …1,if (3.7), (3.9), (3.11)

hold, J: Ker L � Im Q is the linear isomorphism de“ned by

J
(
at� …1+ bt� …2+ ct� …3) =

1
� (µ ,� , � )

(
a1tµ…1+ b1t � …1+ c1t � …1), � a,b,c � R,

where

a1 = µ(µ + 1)(µ + 2)(A11a + A12b + A13c),

b1 = � (� + 1)(� + 2)(A21a + A22b + A23c),

c1 = � (� + 1)(� + 2)(A31a + A32b + A33c).

Proof Without loss of generality, we suppose that (3.6), (3.8), (3.10) hold, then for any

u � � 3, there exist constantsa,b,c � R and 
 � [0, 1] such thatu(t) = at� …1+ bt� …2+ ct� …3

and 
 Ju+ (1 …
 )QNu = 0. Therefore, we get a system of linear equations with respect to

x1, x2, x3 as follows:

⎧⎪⎨
⎪⎩

A11x1 + A12x2 + A13x3 = 0,

A21x1 + A22x2 + A23x3 = 0,

A31x1 + A32x2 + A33x3 = 0,

(3.16)

wherex1 = 
 a + (1 …
 )Q1Nu(t), x2 = 
 b + (1 …
 )Q2Nu(t), x3 = 
 c+ (1 …
 )Q3Nu(t). Since

the determinant of coe�ciency for (3.16) is � 2(µ ,� , � ) �= 0, we getx1 = x2 = x3 = 0, that is,


 a + (1 …
 )Q1Nu(t) = 0, (3.17)


 b + (1 …
 )Q2Nu(t) = 0, (3.18)


 c+ (1 …
 )Q3Nu(t) = 0. (3.19)

If 
 = 1, one hasa = b = c= 0. Obviously,� 3 is bounded. If
 � [0, 1), it follows from (3.6)

and (3.17) that we can get|a| � L
	 (� ) ; otherwise, by (3.6) and (3.17), a contradiction will be

obtained:

0 < 
 a2	 (� ) = …(1 …
 )a	 (� )Q1Nu(t) < 0.

Similarly, from (3.8) and (3.18), we have|b| � M+L
	 (� …1); if not, by (3.8) and (3.18), we get a

contradiction

0 <
 b2	 (� … 1) = …(1 …
 )b	 (� … 1)Q2Nu(t) < 0.

From (3.10) and (3.19), we can derive|c| � M+G+(3L/2)
	 (� …2) ; else, by (3.10) and (3.19), we obtain

a contradiction

0 <
 c2	 (� … 2) = …(1 …
 )c	 (� … 2)Q3Nu(t) < 0.

Similarly to the discussion of Lemma3.7, � 3 is bounded. �
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Theorem 3.1 Suppose that(H1)-(H5) hold. Then problem(1.1) has at least one solution

in X.

Proof Set� be a bounded open set ofX such that
⋃3

i=1
¯� i 
 � . By Lemma3.5, N is L-

compact on ¯� . From Lemmas3.6and3.7, we get

(i) Lu �= 
 Nu for any (u,
 ) � [(dom L \ Ker L) � �� ] × (0,1),
(ii) Nu � Im L for any u � Ker L � �� .

In the following, we only need to check that (iii) of Lemma2.1is satis“ed. Take

H(u,
 ) = �
 Ju+ (1 …
 )QNu,

where � is de“ned as before. According to Lemma3.8, we deriveH(u,
 ) �= 0 for all u �

Ker L � �� . Thus, it follows from the homotopy of degree that

deg{QN|Ker L, � � Ker L,0} = deg
{
H(·, 0),� � Ker L,0

}
= deg

{
H(·, 1),� � Ker L,0

}
= deg{� J, � � Ker L,0} �= 0.

Then, by Lemma2.1, we can get that the operator functionLu = Nu has at least one so-

lution in dom L � ¯� , which is equivalent to problem (1.1) that has at least one solution

in X. �

4 Example
Example 4.1 Consider the boundary value problems

⎧⎪⎨
⎪⎩

D3.5
0+u(t) = f (t,u(t),D0.5

0+u(t),D1.5
0+u(t),D2.5

0+u(t)), t � (0, 1),

I 0.5
0+ u(t)|t=0 = 0, D2.5

0+u(0) =
∑2

i=1 � iD2.5
0+u(� i ),

D1.5
0+u(0) =

∑2
j=1 � jD1.5

0+u(� j), D0.5
0+u(1) =

∑3
k=1 
 kD0.5

0+u(� k),

(4.1)

where

f
(
t ,u(t),D0.5

0+u(t),D1.5
0+u(t),D2.5

0+u(t)
)

=
1
8

g1(t)D0.5
0+u(t) … 180g2(t)h1

(
D1.5

0+u(t)
)

+ 3h2
(
D2.5

0+u(t)
)

+ sin u(t) + cos t ,

g1(t) =

{
0, 0� t � 3/4,

1, 3/4 <t � 1,
g2(t) =

{
0, 0� t � 1/2,

1, 1/2 <t � 1,

hi (� ) =

⎧⎪⎨
⎪⎩

…1, � < …1,

� , …1� � � 1,

1, � > 1.

i = 1,2.

Take

� 1 = …1, � 2 = 2, � 1 =
1
4

, � 2 =
1
2

,

� 1 = 9, � 2 = …8, � 1 =
2
3

, � 2 =
3
4

,
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 1 = 1, 
 2 = …3, 
 2 = 3,

� 1 =
1
4

, � 2 =
1
2

, � 3 =
3
4

, µ = 1, � = 2, � = 3,

then

� (1, 2,3) = …
575
2048

,
∣∣f (t ,u(t),D0.5

0+u(t),D1.5
0+u(t),D2.5

0+u(t)
)∣∣ �

1
8

∣∣D0.5
0+u(t)

∣∣ + 185.

Let a(t) = c(t) = d(t) = 0,b(t) = 1
8, e(t) = 185, then

	 a	 1 + 	 b	 1 + 	 c	 1 + 	 d	 1 =
1
8

<
2
7

=
1

q + 1
.

TakeL = 1, notev(t) = 3h2(D2.5
0+u(t)) + sin u(t) + cos t , if |D2.5

0+u(t)| > 1, then

D2.5
0+u(t)Q1Nu(t) = D2.5

0+u(t)
[∫ 1/2

1/4
v(t)dt +

∫ 1/2

0
v(t)dt

]
> 0.

TakeM = 1, since

∣∣∣∣9
∫ 2/3

0
(2/3 …t)v(t)dt … 8

∫ 3/4

0
(3/4 …t)v(t)dt

∣∣∣∣ �
85
4

,

if |D1.5
0+u(t)| > 1, then

D1.5
0+u(t)Q2Nu(t)

= D1.5
0+u(t)

[
9
∫ 2/3

0
(2/3 …t)v(t)dt … 8

∫ 3/4

0
(3/4 …t)v(t)dt

… 1620
∫ 2/3

1/2
(2/3 …t)h1

(
D1.5

0+u(t)
)
dt + 1440

∫ 3/4

1/2
(3/4 …t)h1

(
D1.5

0+u(t)
)
dt
]

> 0.

TakeG = 23,040, because of

∣∣∣∣
∫ 1

0
(1 …t)2v(t)dt …

∫ 1/4

0
(1/4 …t)2v(t)dt + 3

∫ 1/2

0
(1/2 …t)2v(t)dt

… 3
∫ 3/4

0
(3/4 …t)2v(t)dt … 180

∫ 1

1/2
(1 …t)2h1

(
D1.5

0+u(t)
)
dt

+ 540
∫ 3/4

1/2
(3/4 …t)2h1

(
D1.5

0+u(t)
)
dt

∣∣∣∣
�

1415
96

,
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if |D0.5
0+u(t)| > G, then

D0.5
0+u(t)Q3Nu(t)

= D0.5
0+u(t)

[∫ 1

0
(1 …t)2v(t)dt …

∫ 1/4

0
(1/4 …t)2v(t)dt + 3

∫ 1/2

0
(1/2 …t)2v(t)dt

… 3
∫ 3/4

0
(3/4 …t)2v(t)dt … 180

∫ 1

1/2
(1 …t)2h1

(
D1.5

0+u(t)
)
dt

+ 540
∫ 3/4

1/2
(3/4 …t)2h1

(
D1.5

0+u(t)
)
dt +

1
8

∫ 1

3/4
(1 …t)2D0.5

0+u(t)dt
]

> 0.

By Theorem3.1, boundary value problems (4.1) have at least one solution.

5 Conclusion
In this paper, some su�cient conditions are established for the existence of solutions

for a class of fractional multi-point boundary value problems at resonance with three-
dimensional kernel. The main result of this paper is obtained by using Mawhin•s contin-
uation theorem. Compared with previous work, the main di�culties in this paper are as
follows. First, as we know, by the way of Mawhin•s continuation theorem, the higher the

dimension of kernel is, the more di�cult it is to construct the projections P and Q. Sec-
ond, the main di�culty lies in evaluating prior bounds. Third, it is di�cult to construct
an example.
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