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Abstract
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1 Introduction
Fractional calculus as a generalization of integer-order calculus has been studied for more
than 300 years. Concerning the history and basic results on fractional calculus theory, we
refer to [1–5]. Fractional differential equations as an application of fractional calculus have
recently been viewed as a useful mathematical model applied in numerous fields of science
and engineering (see [2–11]). For example, SIS epidemic model can be described by two
fractional-order differential equations of the form

{
Dα1 S(t) = � – βSI – μS + φI,
Dα1 I(t) = βSI – (φ + μ + α)I,

where Dα1 is Caputo fractional derivatives with 0 < α1 ≤ 1, S(t) is the number of individuals
in the susceptible class at time t and I(t) is the number of individuals who are infectious
at time t (see [7]).

In recent years, boundary value problems (BVPs) and initial value problems (IVPs) of
fractional differential equations have been discussed widely, and numerous valuable re-
sults have been obtained (see [12–30]). And the usual way to investigate the fractional
BVPs and IVPs is nonlinear analysis such as variation method (see [12–14]), fixed-point
theorems (see [15–18]), upper and lower solutions method (see [19, 20]), coincidence de-
gree theory (see [21–25]). Besides, for the recent advances in other techniques for solving
nonlinear problems, see [26–30]. For example, De La Sen et al. [29] studied the following
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fractional boundary value problems:

CDα1 x1(t) = f1
(
t, x1(t), x2(t), . . . , xk(t), Iβ11 x1(t), Iβ12 x2(t), . . . , Iβ1k xk(t)

)
,

CDα2 x2(t) = f1
(
t, x1(t), x2(t), . . . , xk(t), Iβ21 x1(t), Iβ22 x2(t), . . . , Iβ2k xk(t)

)
,

...
CDαk xk(t) = f1

(
t, x1(t), x2(t), . . . , xk(t), Iβk1 x1(t), Iβk2 x2(t), . . . , Iβkk xk(t)

)
,

which are associated with the boundary conditions

xi(0) + xi(1) = ai,
k∑

j=1

Iβij xi(ξj) +
k∑

j=1

Iβij xi(ηj) = bi

∫ 1

0
xi(s) ds,

where k is a natural number, i = 1, 2, . . . , k, 1 ≤ αi < 2, CDαi denotes the Caputo fractional
derivative. By using the shifted Chebyshev and Legendre polynomials approach, the au-
thors obtained the numerical solutions for the above k-dimensional system.

A boundary value problem is called resonance if the corresponding homogeneous
boundary value problem has a nontrivial solution. Recently, fractional boundary value
problems at resonance have attracted many scholars’ attention (see [21–25]). To our
knowledge, the most effective method for solving fractional resonance boundary value
problems is Mawhin’s continuation theorem (see [31, 32]). For example, in [22], Chen and
Tang considered the solvability of the following fractional-order multi-point boundary
value problems at resonance by using Mawhin’s continuation theorem.

{
(a(t)CDα

0+u(t))′ = f (t, u(t), u′(t), CDα
0+u(t)), t ∈ [0, 1],

u(0) = 0, CDα
0+u(0) = 0, u(1) =

∑m–1
j=1 σju(ξj),

where CDα
0+ is the Caputo fractional derivative with 1 < α ≤ 2, 0 < σj ∈ R, ξj ∈ (0, 1),∑m–1

j=1 σjξj = 1, f : [0, 1] ×R
3 →R satisfies the Carathéodory conditions.

In [23], Bai and Zhang considered the solvability of the following fractional multi-
point boundary value problems at resonance with two-dimensional kernels by employing
Mawhin’s continuation theorem.

{
Dα

0+u(t) = f (t, u(t), Dα–2
0+ u(t), Dα–1

0+ u(t)), t ∈ (0, 1),
I3–α

0+ u(0) = 0, Dα–1
0+ u(0) = Dα–1

0+ u(η), u(1) =
∑m

i=1 αiu(ηi),

where Dα
0+ is the standard Riemann-Liouville fractional derivative with 2 < α ≤ 3,

0 < η ≤ 1, 0 < η1 < · · · < ηm < 1, m ≥ 2,
∑m

i=1 αiη
α–1
i =

∑m
i=1 αiη

α–2
i = 1, f : [0, +∞) ×R

3 →R

satisfies the Carathéodory conditions. In order to make sure that the linear operator Q is
well defined, the author assumed that the following condition holds:

R =
ηα	(α)	(α – 1)

α	(2α – 1)

(
1 –

m∑
i=1

αiη
2α–2
i

)
–

ηα–1(	(α))2

(α – 1)	(2α)

(
1 –

m∑
i=1

αiη
2α–1
i

)
�= 0.

In [24], Jiang studied the existence of solutions for the following fractional multi-
point boundary value problems at resonance with two-dimensional kernels by applying
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Mawhin’s continuation theorem.

{
Dα

0+u(t) = f (t, u(t), Dα–1
0+ u(t)), a.e. t ∈ [0, 1],

u(0) = 0, Dα–1
0+ u(0) =

∑m
i=1 aiDα–1

0+ u(ξi), Dα–2
0+ u(1) =

∑n
j=1 bjDα–2

0+ u(ηj),

where Dα
0+ is the standard Riemann-Liouville fractional derivative with 2 < α < 3, 0 <

ξ1 < ξ2 < · · · < ξm < 1, 0 < η1 < η2 < · · · < ηn < 1,
∑m

i=1 ai =
∑n

j=1 bj =
∑n

j=1 bjηj = 1, f :
[0, 1]×R

2 →R satisfies the Carathéodory conditions. In order to make sure that the linear
operator Q is well defined, the author assumed that the following condition holds:

1
6

(
1 –

n∑
j=1

bjη
3
j

) m∑
i=1

aiξi –
1
4

(
1 –

n∑
j=1

bjη
2
j

) m∑
i=1

aiξ
2
i �= 0.

Thus, motivated by the results mentioned, in this paper, we discuss the existence of
solutions for the following multi-point boundary value problems by using Mawhin’s con-
tinuation theorem.

⎧⎪⎨
⎪⎩

Dα
0+u(t) = f (t, u(t), Dα–3

0+ u(t), Dα–2
0+ u(t), Dα–1

0+ u(t)), t ∈ (0, 1),
I4–α

0+ u(t)|t=0 = 0, Dα–1
0+ u(0) =

∑l
i=1 αiDα–1

0+ u(ξi),
Dα–2

0+ u(0) =
∑m

j=1 βjDα–2
0+ u(ηj), Dα–3

0+ u(1) =
∑n

k=1 γkDα–3
0+ u(ρk),

(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative with 3 < α ≤ 4, 0 < ξ1 <

· · · < ξl < η1 < · · · < ηm < 1, 0 < ρ1 < · · · < ρk < 1, αi,βj,γk ∈ R, f ∈ [0, 1] × R
4 → R is a

Carathéodory function.
Throughout this paper, we assume that the following resonance conditions of (1.1) hold.

(H1)
∑l

i=1 αi = 1,
∑m

j=1 βj = 1,
∑n

k=1 γk = 1,
∑m

j=1 βjηj = 0,
∑n

k=1 γkρk = 1,
∑n

k=1 γkρ
2
k = 1.

Compared with previous work in the field, in this paper several new features can be
shown as follows. Firstly, to the best of author’s knowledge, there are only few papers that
consider the integral-order resonance BVPs with three-dimensional kernels (see [33–36]);
and for fractional resonance boundary value problems, most of the discussions are lim-
ited to the kernels of operator dimension less than or equal to two. So, our results are a
generalization of some previous publications. Secondly, compared with [23, 24, 35, 36],
in this paper, based on analysis as proved, we needn’t ensure that the linear operator Q is
well defined by assumed conditions. Compared with [33, 34], it is more difficult to define
the linear isomorphism operator J and also it is even more difficult to give an example that
satisfies all the assumptions in the paper. Furthermore, when we take α = 4, BVPs (1.1) are
reduced to the fourth-order differential equation resonance BVPs.

We organized the rest of the article as follows. In Section 2, we recall some definitions
and lemmas. In Section 3, based on Mawhin’s continuation theorem, we establish an ex-
istence theorem for problem (1.1). In Section 4, we present an example to illustrate our
main result. In the last section, we give a short conclusion.

2 Preliminaries
In this section, we recall some definitions and lemmas which are used throughout this
paper.
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Let X and Y be two Banach spaces with the norms ‖ · ‖X and ‖ · ‖Y , respectively. Define
L : dom(L) ⊂ X → Y to be a Fredholm operator with index zero, P : X → X, Q : Y → Y to
be two projectors such that

Im P = Ker L, Im L = Ker Q, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q,

L|dom L∩Ker P : dom L → Im L is invertible, we denote the inverse by Kp. Let � be an open
bounded subset of X and dom L ∩ �̄ �= ∅, the map N : X → Y is called L-compact on �̄, if
QN(�̄) is bounded and KP,QN = Kp(I – Q)N : �̄ → X is compact (see [31, 32]).

Lemma 2.1 (see [31, 32]) Let L : dom L ⊂ X → Y be a Fredholm operator of index zero
and N : X → Y be L-compact on �̄. Assume that the following conditions are satisfied:

(i) Lu �= λNu for any u ∈ (dom L \ Ker L) ∩ ∂�, λ ∈ (0, 1);
(ii) Nu /∈ Im L for any u ∈ Ker L ∩ ∂�;

(iii) deg(QN |Ker L,� ∩ Ker L, 0) �= 0.
Then the equation Lx = Nx has at least one solution in dom L ∩ �̄.

Definition 2.1 (see [2, 3]) The Riemann-Liouville fractional integral of order α > 0 for a
function u : (0, +∞) →R is given by

Iα
0+u(t) =

1
	(α)

∫ t

0
(t – s)α–1u(s) ds

provided that the right-hand side integral is pointwise defined on (0, +∞).

Definition 2.2 (see [2, 3]) The Riemann-Liouville fractional derivative of order α > 0 for
a function u : (0, +∞) →R is given by

Dα
0+u(t) =

dn

dtn In–α
0+ u(t) =

1
	(n – α)

dn

dtn

∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1, provided that the right-hand side integral is pointwise defined on
(0, +∞).

Lemma 2.2 (see [2, 3, 18, 24]) Let α > 0. Assume that u, Dα
0+u ∈ L1(0, 1), then the following

equality holds:

Iα
0+Dα

0+u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where n = [α] + 1, ci ∈R, i = 1, 2, . . . , n.

Lemma 2.3 (see [2, 3, 18, 24]) Assume that u ∈ L1(0, 1), α ≥ β ≥ 0, then

Iα
0+Iβ

0+u(t) = Iα+β
0+ u(t), Dβ

0+Iα
0+u(t) = Iα–β

0+ u(t).

Lemma 2.4 (see [2, 3, 18, 24]) Assume that α > 0, λ > –1, t > 0, then

Iα
0+tλ =

	(λ + 1)
	(λ + 1 + α)

tα+λ, Dα
0+tλ =

	(λ + 1)
	(λ + 1 – α)

tλ–α ,

in particular Dα
0+tα–m = 0, m = 1, 2, . . . , n, where n = [α] + 1.
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3 Main result
Take

X =
{

u : u, Dα–1
0+ u ∈ C[0, 1]

}
, Y = L1[0, 1].

It is easy to check that X and Y are two Banach spaces with norms

‖u‖X = max
{‖u‖∞,

∥∥Dα–3
0+ u

∥∥∞,
∥∥Dα–2

0+ u
∥∥∞,

∥∥Dα–1
0+ u

∥∥∞
}

, ‖y‖Y = ‖y‖1,

respectively, where ‖u‖∞ = supt∈[0,1] |u(t)|, ‖y‖1 =
∫ 1

0 |y(t)|dt.
Define the linear operator L : dom L ⊂ X → Y and the nonlinear operator N : X → Y as

follows:

Lu(t) = Dα
0+u(t), u(t) ∈ dom L,

Nu(t) = f
(
t, u(t), Dα–3

0+ u(t), Dα–2
0+ u(t), Dα–1

0+ u(t)
)
, u(t) ∈ X,

where

dom L =
{

u ∈ X : Dα
0+u(t) ∈ Y , u satisfies boundary value conditions of (1.1)

}
.

Then problem (1.1) is equivalent to the operator equation Lu = Nu, u ∈ dom L.

Lemma 3.1 Assume that (H1) holds, then the operator L : dom L ⊂ X → Y satisfies

Ker L =
{

u ∈ dom L : u(t) = atα–1 + btα–2 + ctα–3, a, b, c ∈R
}

, (3.1)

Im L = {y ∈ Y : Q1y = Q2y = Q3y = 0}, (3.2)

where

Q1y =
l∑

i=1

αi

∫ ξi

0
y(s) ds, Q2y =

m∑
j=1

βj

∫ ηj

0
(ηj – s)y(s) ds,

Q3y =
∫ 1

0
(1 – s)2y(s) ds –

n∑
k=1

γk

∫ ρk

0
(ρk – s)2y(s) ds.

Proof If Lu = Dα
0+u = 0, by Lemma 2.2, we have

u(t) = atα–1 + btα–2 + ctα–3 + dtα–4, a, b, c, d ∈R.

It follows from the boundary condition I4–α
0+ u(t)|t=0 = 0 that d = 0, then

u(t) = atα–1 + btα–2 + ctα–3.

So,

Ker L ⊂ {
u ∈ dom L : u(t) = atα–1 + btα–2 + ctα–3, a, b, c ∈R

}
.
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Conversely, take u(t) = tα–1 + tα–2 + tα–3, it is easy to check that Dα
0+u = 0 and u(t) satisfies

boundary value conditions of (1.1). Thus,

{
u ∈ dom L : u(t) = atα–1 + btα–2 + ctα–3, a, b, c ∈R

}⊂ Ker L.

For y ∈ Im L, there exists u ∈ dom L such that Dα
0+u(t) = y(t). By Lemmas 2.2 and 2.4, com-

bined with the boundary condition I4–α
0+ u(t)|t=0 = 0, one has

u(t) = Iα
0+y(t) + c1tα–1 + c2tα–2 + c3tα–3.

Considering the boundary conditions

Dα–1
0+ u(0) =

l∑
i=1

αiDα–1
0+ u(ξi), Dα–2

0+ u(0) =
m∑

j=1

βjDα–2
0+ u(ηj),

Dα–3
0+ u(1) =

n∑
k=1

γkDα–3
0+ u(ρk),

by Lemmas 2.3 and 2.4, we obtain

Dα–1
0+ u(0) = c1	(α) =

l∑
i=1

αiDα–1
0+ u(ξi)

=
l∑

i=1

αi

[∫ ξi

0
y(s) ds + c1	(α)

]

=
l∑

i=1

αi

∫ ξi

0
y(s) ds + c1	(α),

Dα–2
0+ u(0) = c2	(α – 1) =

m∑
j=1

βjDα–2
0+ u(ηj)

=
m∑

j=1

βj

[∫ ηj

0
(ηj – s)y(s) ds + c1	(α)ηj + c2	(α – 1)

]

=
m∑

j=1

βj

∫ ηj

0
(ηj – s)y(s) ds + c2	(α – 1)

and

Dα–3
0+ u(1) =

1
2

∫ 1

0
(1 – s)2y(s) ds+

1
2

c1	(α) + c2	(α – 1) + c3	(α – 2)

=
n∑

k=1

γkDα–3
0+ u(ρk)

=
n∑

k=1

γk

[
1
2

∫ ρk

0
(ρk – s)2y(s) ds +

1
2

c1	(α)ρ2
k + c2	(α – 1)ρk + c3	(α – 2)

]

=
1
2

n∑
k=1

γk

∫ ρk

0
(ρk – s)2y(s) ds+

1
2

c1	(α) + c2	(α – 1) + c3	(α – 2).
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Thus,

Q1y = Q2y = Q3y = 0, (3.3)

that is,

Im L ⊂ {y ∈ Y : Q1y = Q2y = Q3y = 0}.

Conversely, let y ∈ Y satisfy (3.3), taking u(t) = Iα
0+y(t), we can easily check that u ∈ dom L

and Lu(t) = y(t). Then we have {y ∈ Y : Q1y = Q2y = Q3y = 0} ⊂ Im L. �

Let R1, R2, R3 : Y → Y be three linear operators defined as

R1y =
μ(μ + 1)(μ + 2)

�(μ,ν,ω)
[A11Q1y + A12Q2y + A13Q3y],

R2y =
ν(ν + 1)(ν + 2)

�(μ,ν,ω)
[A21Q1y + A22Q2y + A23Q3y],

R3y =
ω(ω + 1)(ω + 2)

�(μ,ν,ω)
[A31Q1y + A32Q2y + A33Q3y],

where

�(μ,ν,ω) =

∣∣∣∣∣∣∣
(μ + 1)(μ + 2)

∑l
i=1 αiξ

μ
i (μ + 2)

∑m
j=1 βjη

μ+1
j 2(1 –

∑n
k=1 γkρ

μ+2
k )

(ν + 1)(ν + 2)
∑l

i=1 αiξ
ν
i (ν + 2)

∑m
j=1 βjη

ν+1
j 2(1 –

∑n
k=1 γkρ

ν+2
k )

(ω + 1)(ω + 2)
∑l

i=1 αiξ
ω
i (ω + 2)

∑m
j=1 βjη

ω+1
j 2(1 –

∑n
k=1 γkρ

ω+2
k )

∣∣∣∣∣∣∣ .

We note

�(μ,ν,ω) :=

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ ,

here Aij (i, j = 1, 2, 3) are the algebraic complements of aij.

Lemma 3.2 Assume that (H1) holds, then there exist constants μ ∈ {1, 2, . . . , m–1}, ν ∈ Z
+,

ν ≥ μ + 1 and ω ∈ Z
+ large enough numbers such that �(μ,ν,ω) �= 0.

Proof By
∑l

i=1 αi = 1, we have that, for each s ∈ Z
+, there exists ks ∈ {sl + 1, . . . , (s + 1)l}

such that
∑l

i=1 αiξ
ks
i �= 0. If not, we get

∑l
i=1 αiξ

ks
i = 0, ks ∈ {sl + 1, . . . , (s + 1)l}, that is,

⎛
⎜⎜⎜⎜⎝

ξ sl+1
1 ξ sl+1

2 · · · ξ sl+1
l

ξ sl+2
1 ξ sl+2

2 · · · ξ sl+2
l

...
...

. . .
...

ξ
(s+1)l
1 ξ

(s+1)l
2 · · · ξ

(s+1)l
l

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

α1

α2
...
αl

⎞
⎟⎟⎟⎟⎠ = 0.
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Since

∣∣∣∣∣∣∣∣∣∣

ξ sl+1
1 ξ sl+1

2 · · · ξ sl+1
l

ξ sl+2
1 ξ sl+2

2 · · · ξ sl+2
l

...
...

. . .
...

ξ
(s+1)l
1 ξ

(s+1)l
2 · · · ξ

(s+1)l
l

∣∣∣∣∣∣∣∣∣∣
= (ξ1ξ2 · · · ξl)sl+1

∏
1≤i<j≤l

(ξj – ξi) �= 0.

So, αi = 0 (i = 1, 2, . . . , l), which is a contradiction with
∑l

i=1 αi = 1. Similarly, by
∑m

j=1 βj = 1
and

∑m
j=1 βjηj = 0, there exists μ ∈ {1, 2, . . . , m – 1} such that

∑m
j=1 βjη

μ+1
j �= 0. Otherwise,

we have
∑m

j=1 βjη
μ+1
j = 0, μ = 0, 1, 2, . . . , m – 1, that is,

⎛
⎜⎜⎜⎜⎝

η1 η2 · · · ηm

η2
1 η2

2 · · · η2
m

...
...

. . .
...

ηm
1 ηm

2 · · · ηm
m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

β1

β2
...

βm

⎞
⎟⎟⎟⎟⎠ = 0.

Because

∣∣∣∣∣∣∣∣∣∣

η1 η2 · · · ηm

η2
1 η2

2 · · · η2
m

...
...

. . .
...

ηm
1 ηm

2 · · · ηm
m

∣∣∣∣∣∣∣∣∣∣
= η1η2 · · ·ηm

∏
1≤i<j≤m

(ηj – ηi) �= 0.

So, βj = 0 (j = 1, 2, . . . , m), which has conflicts with
∑m

j=1 βj = 1. Set

S =

{
ks ∈ Z

+ :
(μ + 1)

∑l
i=1 αiξ

μ
i
∑m

j=1 βjη
ks+1
j

(ks + 1)
∑l

i=1 αiξ
ks
i

=
m∑

j=1

βjη
μ+1
j

}
.

We show that S is a finite set. If else, there exists a strictly monotonic sequence {kst }∞t=1

such that

(μ + 1)
∑l

i=1 αiξ
μ
i
∑m

j=1 βjη
kst +1
j

(kst + 1)
∑l

i=1 αiξ
kst
i

=
m∑

j=1

βjη
μ+1
j .

It follows from 0 < ξ1 < · · · < ξl < η1 < · · · < ηm < 1,
∑m

j=1 βjη
μ+1
j �= 0 that

∑l
i=1 αiξ

μ
i �= 0 and

m∑
j=1

βjη
μ+1
j = lim

kst →∞
(μ + 1)

∑l
i=1 αiξ

μ
i
∑m

j=1 βjη
kst +1
j

(kst + 1)
∑l

i=1 αiξ
kst
i

= lim
kst →∞

ξl(μ + 1)
∑l

i=1 αiξ
μ
i
∑m

j=1 βj(ηj/ξl)kst +1

(kst + 1)
∑l

i=1 αi(ξi/ξl)kst
= ∞.
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It is a contradiction. Thus, there exist μ ∈ {1, 2, . . . , m – 1}, ν ∈ Z
+, ν ≥ μ + 1 such that

A33 �= 0. Therefore, we have

lim
ω→∞�(μ,ν,ω) =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

0 0 2

∣∣∣∣∣∣∣ = 2A33 �= 0.

So, if we make sure ω ∈ Z
+ (the set of positive integers) is large enough, it can be such that

�(μ,ν,ω) �= 0. �

Lemma 3.3 Assume that (H1) holds, then L : dom L ⊂ X → Y is a Fredholm operator of
index zero. The linear projector operator P : X → X and Q : Y → Y can be defined as
follows:

(Pu)(t) =
1

	(α)
Dα–1

0+ u(0)tα–1 +
1

	(α – 1)
Dα–2

0+ u(0)tα–2 +
1

	(α – 2)
Dα–3

0+ u(0)tα–3,

(Qy)(t) =
(
R1y(t)

)
tμ–1 +

(
R2y(t)

)
tν–1 +

(
R3y(t)

)
tω–1,

where taking μ, ν , ω satisfies Lemma 3.2.

Proof By the definition of P, we can easily check that P is a continuous linear projector
operator and satisfies Im P = Ker L, X = Ker P ⊕ Ker L. According to Lemma 3.2, there ex-
ist constants μ ∈ {1, 2, . . . , m – 1}, ν ∈ Z

+, ν ≥ μ + 1 and ω ∈ Z
+ large enough, such that

�(μ,ν,ω) �= 0. So, Q is a well-defined operator. It is clear that Q is a continuous linear op-
erator and dim Im Q = 3. By the definitions of R1, R2, R3, we can calculate the following
equations:

R1
(
(R1y)tμ–1) = R1y, R1

(
(R2y)tν–1) = 0, R1

(
(R3y)tω–1) = 0,

R2
(
(R1y)tμ–1) = 0, R2

(
(R2y)tν–1) = R2y, R2

(
(R3y)tω–1) = 0,

R3
(
(R1y)tμ–1) = 0, R3

(
(R2y)tν–1) = 0, R3

(
(R3y)tω–1) = R3y.

Thus,

(
Q2y

)
(t) = Q

[(
R1y(t)

)
tμ–1 +

(
R2y(t)

)
tν–1 +

(
R3y(t)

)
tω–1]

=
{

R1
[(

R1y(t)
)
tμ–1 +

(
R2y(t)

)
tν–1 +

(
R3y(t)

)
tω–1]}tμ–1

+
{

R2
[(

R1y(t)
)
tμ–1 +

(
R2y(t)

)
tν–1 +

(
R3y(t)

)
tω–1]}tν–1

+
{

R3
[(

R1y(t)
)
tμ–1 +

(
R2y(t)

)
tν–1 +

(
R3y(t)

)
tω–1]}tω–1

=
(
R1y(t)

)
tμ–1 +

(
R2y(t)

)
tν–1 +

(
R3y(t)

)
tω–1 = Qy(t).

So, Q is a projector operator. From Lemma 3.1, we have Im L ⊂ Ker Q. Now, we show the
fact that Ker Q ⊂ Im L. In fact, for y ∈ Ker Q, thus Qy = 0, then we get a system of linear
equations with respect to Q1y, Q2y, Q3y as follows:

⎧⎪⎨
⎪⎩

A11Q1y + A12Q2y + A13Q3y = 0,
A21Q1y + A22Q2y + A23Q3y = 0,
A31Q1y + A32Q2y + A33Q3y = 0.

(3.4)
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Since the determinant of coefficiency for (3.4) is �2(μ,ν,ω) �= 0, we get that Q1y = Q2y =
Q3y = 0, thus Ker Q ⊂ Im L. Therefore, Ker Q = Im L. For y ∈ Y , set y = (y – Qy) + Qy, then
(y – Qy) ∈ Ker Q = Im L, Qy ∈ Im Q. So, y = Im L + Im Q. Furthermore, for any y ∈ Im L ∩
Im Q, there exist constants a, b, c ∈ R such that y(t) = atμ–1 + btν–1 + ctω–1 and Q1y = Q2y =
Q3y = 0. Then we also get a system of linear equations with respect to a, b, c as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑l
i=1 αi( a

μ
ξ

μ
i + b

ν
ξ ν

i + c
ω
ξω

i ) = 0,∑m
j=1 βj[ a

μ(μ+1)η
μ+1
j + b

ν(ν+1)η
ν+1
j + c

ω(ω+1)η
ω+1
j ] = 0,

2a
μ(μ+1)(μ+2) (1 –

∑n
k=1 γkρ

μ+2
k ) + 2b

ν(ν+1)(ν+2) (1 –
∑n

k=1 γkρ
ν+2
k )

+ 2c
ω(ω+1)(ω+2) (1 –

∑n
k=1 γkρ

ω+2
k ) = 0.

(3.5)

By simple calculation, we obtain that the determinant of coefficiency for (3.5) is

�(μ,ν,ω)
μ(μ + 1)(μ + 2)ν(ν + 1)(ν + 2)ω(ω + 1)(ω + 2)

�= 0.

Thus, (3.5) only have zero solutions, that is, a = b = c = 0. It means that Im Q ∩ Im L = {0}.
Therefore, Y = Im Q⊕Im L. From the above, we get dim Ker L = dim Im Q = co dim Im L = 3.
So, L is a Fredholm operator of index zero. �

Lemma 3.4 Assume that (H1) holds, define the linear operator Kp : Im L → dom L ∩ Ker P
by

(Kpy)(t) =
1

	(α)

∫ t

0
(t – s)α–1y(s) ds, y ∈ Im L,

then Kp is the inverse of L|dom L∩Ker P and ‖Kpy‖X ≤ ‖y‖1, ∀y ∈ Im L.

Proof For y ∈ Im L, then Q1y = Q2y = Q3y = 0, which is combined with the definition of
Kp and Lemmas 2.2-2.4, we can check that Kpy ∈ dom L ∩ Ker P. So, Kp is well defined on
Im L. Obviously, (LKp)y(t) = y(t), ∀y ∈ Im L. For u(t) ∈ dom L, by Lemma 2.2, we have

(KpL)u(t) = Iα
0+Dα

0+u(t) = u(t) + c1tα–1 + c2tα–2 + c3tα–3 + c4tα–4, c1, c2, c3, c4 ∈R.

Then 0 = I4–α
0+ [(KpL)u(t)]|t=0 = c4. It follows from P[(KpL)u(t)] = 0 and c1tα–1 + c2tα–2 +

c3tα–3 ∈ Ker L = Im P that c1tα–1 + c2tα–2 + c3tα–3 = –Pu(t). Then (KpL)u(t) = u(t) – Pu(t).
Therefore, if u(t) ∈ dom L ∩ Ker P, we have (KpL)u(t) = u(t). So, Kp is the inverse of
L|dom L∩Ker P . Moreover, by Lemma 2.3 we have the following inequations:

|Kpy| ≤ 1
	(α)

∫ t

0
(t – s)α–1∣∣y(s)

∣∣ds ≤ 1
	(α)

∫ 1

0

∣∣y(s)
∣∣ds ≤ ‖y‖1,

∣∣Dα–3
0+ Kpy

∣∣≤ 1
2

∫ t

0
(t – s)2∣∣y(s)

∣∣ds ≤ 1
2

∫ 1

0

∣∣y(s)
∣∣ds ≤ ‖y‖1,

∣∣Dα–2
0+ Kpy

∣∣≤ ∫ t

0
(t – s)

∣∣y(s)
∣∣ds ≤

∫ 1

0

∣∣y(s)
∣∣ds = ‖y‖1,

∣∣Dα–1
0+ Kpy

∣∣≤ ∫ t

0

∣∣y(s)
∣∣ds ≤

∫ 1

0

∣∣y(s)
∣∣ds = ‖y‖1.

So, ‖Kpy‖X ≤ ‖y‖1, ∀y ∈ Im L. �
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Lemma 3.5 Assume that (H1) holds and � ⊂ X is an open bounded subset with dom L ∩
�̄ �= ∅, then N is L-compact on �̄.

Proof From f : [0, 1] × R
4 → R satisfies the Carathéodory conditions, we can get that

QN(�̄) and (I – Q)N(�̄) are bounded, that is, there exist constants �′,� > 0 such that
|QNu| ≤ �′, |(I –Q)Nu| ≤ �, u ∈ �̄, a.e. t ∈ [0, 1]. So, we only need to show that Kp(I –Q)N :
�̄ → X is compact. By Lemma 3.4, Kp(I –Q)N(�̄) is bounded. It follows from the Lebesgue
dominated convergence theorem that Kp(I – Q)N : �̄ → X is continuous. For 0 ≤ t1 <
t2 ≤ 1, u ∈ �̄, we have

∣∣Kp(I – Q)Nu(t1) – Kp(I – Q)Nu(t2)
∣∣

=
1

	(α)

∣∣∣∣
∫ t1

0
(t1 – s)α–1(I – Q)Nu(s) ds –

∫ t2

0
(t2 – s)α–1(I – Q)Nu(s) ds

∣∣∣∣
≤ 1

	(α)

∣∣∣∣
∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1](I – Q)Nu(s) ds

∣∣∣∣
+

1
	(α)

∣∣∣∣
∫ t2

t1

(t2 – s)α–1(I – Q)Nu(s) ds
∣∣∣∣

≤ �

	(α)

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]ds +

�

	(α)

∫ t2

t1

(t2 – s)α–1 ds

=
�

	(α + 1)
(
tα
2 – tα

1
)
.

Since tα is uniformly continuous on [0, 1], we get Kp(I – Q)N(�̄) is equicontinuous. In
addition, because the following equations hold:

Dα–2
0+ Kp(I – Q)Nu(t2) – Dα–2

0+ Kp(I – Q)Nu(t1) =
∫ t2

t1

Dα–1
0+ Kp(I – Q)Nu(s) ds,

Dα–3
0+ Kp(I – Q)Nu(t2) – Dα–3

0+ Kp(I – Q)Nu(t1) =
∫ t2

t1

Dα–2
0+ Kp(I – Q)Nu(s) ds,

we simply indicate the equicontinuity of Dα–1
0+ Kp(I – Q)N(�̄). In fact,

∣∣Dα–1
0+ Kp(I – Q)Nu(t1) – Dα–1

0+ Kp(I – Q)Nu(t2)
∣∣

=
∣∣∣∣
∫ t2

t1

(I – Q)Nu(s) ds
∣∣∣∣≤ �(t2 – t1).

Since t is uniformly continuous on [0, 1], thus Dα–1
0+ Kp(I – Q)N(�̄) is equicontinuous. By

the Arzelà-Ascoli theorem, we obtain that Kp(I – Q)N : �̄ → X is compact. �

In order to obtain our main results, we suppose that the following conditions are satis-
fied:

(H2) There exist nonnegative functions a(t), b(t), c(t), d(t), e(t) ∈ Y such that, for any
(u1, u2, u3, u4) ∈ R

4, t ∈ (0, 1),

∣∣f (t, u1, u2, u3, u4)
∣∣≤ a(t)|u1| + b(t)|u2| + c(t)|u3| + d(t)|u4| + e(t)



Zhang and Liu Advances in Difference Equations  (2018) 2018:15 Page 12 of 19

and

‖a‖1 + ‖b‖1 + ‖c‖1 + ‖d‖1 <
1

(q + 1)
,

where q = max{ 1
	(α) + 1

	(α–1) + 1
	(α–2) , 5

2 }.
(H3) There exists a constant L > 0 for any u(t) ∈ dom L, if inft∈[0,1] |Dα–1

0+ u(t)| > L, then

Dα–1
0+ u(t)Q1Nu(t) > 0, ∀t ∈ [0, 1] (3.6)

or

Dα–1
0+ u(t)Q1Nu(t) < 0, ∀t ∈ [0, 1]; (3.7)

(H4) There exists a constant M > 0 for any u(t) ∈ dom L, if inft∈[0,1] |Dα–2
0+ u(t)| > M, then

Dα–2
0+ u(t)Q2Nu(t) > 0, ∀t ∈ [0, 1] (3.8)

or

Dα–2
0+ u(t)Q2Nu(t) < 0, ∀t ∈ [0, 1]; (3.9)

(H5) There exists a constant G > 0 for any u(t) ∈ dom L, if inft∈[0,1] |Dα–3
0+ u(t)| > G, then

Dα–3
0+ u(t)Q3Nu(t) > 0, ∀t ∈ [0, 1] (3.10)

or

Dα–3
0+ u(t)Q3Nu(t) < 0, ∀t ∈ [0, 1]. (3.11)

Lemma 3.6 Suppose that (H2)-(H5) hold, set

�1 =
{

u ∈ dom L \ Ker L : Lu = λNu,λ ∈ (0, 1)
}

.

Then �1 is bounded.

Proof For u ∈ �1, we have Nu ∈ Im L = Ker Q, that is, Q1(Nu(t)) = Q2(Nu(t)) =
Q3(Nu(t)) = 0. Thus, from (H3)-(H5), we obtain that there exist constants t1, t2, t3 ∈ [0, 1]
such that |Dα–3

0+ u(t3)| ≤ G, |Dα–2
0+ u(t2)| ≤ M and |Dα–1

0+ u(t1)| ≤ L. Since, for all t ∈ [0, 1], the
following equations hold:

Dα–1
0+ u(t) = Dα–1

0+ u(t1) +
∫ t

t1

Dα
0+u(s) ds,

Dα–2
0+ u(t) = Dα–2

0+ u(t2) +
∫ t

t2

Dα–1
0+ u(s) ds,

Dα–3
0+ u(t) = Dα–3

0+ u(t3) +
∫ t

t3

Dα–2
0+ u(s) ds.
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Then we have

∣∣Dα–1
0+ u(0)

∣∣≤ ∥∥Dα–1
0+ u(t)

∥∥∞ ≤ ∣∣Dα–1
0+ u(t1)

∣∣ +
∥∥Dα

0+u
∥∥

1 ≤ L + ‖Lu‖1 ≤ L + ‖Nu‖1,∣∣Dα–2
0+ u(0)

∣∣≤ ∥∥Dα–2
0+ u(t)

∥∥∞ ≤ ∣∣Dα–2
0+ u(t2)

∣∣ +
∥∥Dα–1

0+ u
∥∥∞ ≤ L + M + ‖Nu‖1,

and

∣∣Dα–3
0+ u(0)

∣∣≤ ∥∥Dα–3
0+ u(t)

∥∥∞ ≤ ∣∣Dα–3
0+ u(t3)

∣∣ +
∥∥Dα–2

0+ u
∥∥∞ ≤ L + M + G + ‖Nu‖1.

By the definition of P and Lemma 2.4, we get

Dα–3
0+ Pu(t) =

1
2

Dα–1
0+ u(0)t2 + Dα–2

0+ u(0)t + Dα–3
0+ u(0),

Dα–2
0+ Pu(t) = Dα–1

0+ u(0)t + Dα–2
0+ u(0), Dα–1

0+ Pu(t) = Dα–1
0+ u(0).

Thus,

∣∣Dα–3
0+ Pu

∣∣≤ 1
2
∣∣Dα–1

0+ u(0)
∣∣ +
∣∣Dα–2

0+ u(0)
∣∣ +
∣∣Dα–3

0+ u(0)
∣∣≤ 5

2
L + 2M + G +

5
2
‖Nu‖1,

∣∣Dα–2
0+ Pu

∣∣≤ ∣∣Dα–1
0+ u(0)

∣∣ +
∣∣Dα–2

0+ u(0)
∣∣≤ 2L + M + 2‖Nu‖1,∣∣Dα–1

0+ Pu
∣∣ =
∣∣Dα–1

0+ u(0)
∣∣≤ L + ‖Nu‖1.

Because of

|Pu| ≤ 1
	(α)

∣∣Dα–1
0+ u(0)

∣∣ +
1

	(α – 1)
∣∣Dα–2

0+ u(0)
∣∣ +

1
	(α – 2)

∣∣Dα–3
0+ u(0)

∣∣
≤ L

	(α)
+

L + M
	(α – 1)

+
L + M + G
	(α – 2)

+
(

1
	(α)

+
1

	(α – 1)
+

1
	(α – 2)

)
‖Nu‖1.

Therefore,

‖Pu‖X = max
{‖Pu‖∞,

∥∥Dα–3
0+ Pu

∥∥∞,
∥∥Dα–2

0+ Pu
∥∥∞,

∥∥Dα–1
0+ Pu

∥∥∞
}

≤ qL + pM + rG + q‖Nu‖1, (3.12)

where p = max{ 1
	(α–1) + 1

	(α–2) , 2}, r = 1
	(α–2) . Also, for u ∈ �1, u ∈ dom L \ Ker L, then (I –

P)u ∈ dom L ∩ Ker P, LPu = 0, from Lemma 3.4, we have

∥∥(I – P)u
∥∥

X =
∥∥KpL(I – P)u

∥∥
X = ‖KpLu‖X ≤ ‖Lu‖1 ≤ ‖Nu‖1. (3.13)

It follows from (3.12) and (3.13) that

‖u‖X =
∥∥Pu + (I – P)u

∥∥
X ≤ ‖Pu‖X +

∥∥(I – P)u
∥∥

X

≤ pM + qL + rG + (q + 1)‖Nu‖1. (3.14)
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By (H2), we have

‖Nu‖1 ≤ ‖a‖1‖u‖∞ + ‖b‖1
∥∥Dα–3

0+ u
∥∥∞ + ‖c‖1

∥∥Dα–2
0+ u

∥∥∞

+ ‖d‖1
∥∥Dα–1

0+ u
∥∥∞ + ‖e‖1

≤ (‖a‖1 + ‖b‖1 + ‖c‖1 + ‖d‖1
)[

pM + qL + rG + (q + 1)‖Nu‖1
]

+ ‖e‖1. (3.15)

Substituting (3.15) into (3.14), one gets

‖u‖X ≤ (q + 1)
(‖a‖1 + ‖b‖1 + ‖c‖1 + ‖d‖1)(pM + qL + rG) + ‖e‖1

1 – (q + 1)(‖a‖1 + ‖b‖1 + ‖c‖1 + ‖d‖1)
+ pM + qL + rG.

So, �1 is bounded. �

Lemma 3.7 Suppose that (H3)-(H5) hold, set

�2 = {u ∈ Ker L : Nu ∈ Im L}.

Then �2 is bounded.

Proof For u ∈ �2, then u ∈ Ker L and Nu ∈ Im L = Ker Q, that is, there exist constants
a, b, c ∈ R such that u(t) = atα–1 + btα–2 + ctα–3, QNu(t) = 0. Thus, Q1Nu(t) = Q2Nu(t) =
Q3Nu(t) = 0. By (H3)-(H5), there exist constants t4, t5, t6 ∈ [0, 1] such that |Dα–3

0+ u(t6)| ≤ G,
|Dα–2

0+ u(t5)| ≤ M and |Dα–1
0+ u(t4)| ≤ L, that is,

∣∣Dα–1
0+ u(t4)

∣∣ =
∣∣a	(α)

∣∣≤ L,
∣∣Dα–2

0+ u(t5)
∣∣ =
∣∣a	(α)t5 + b	(α – 1)

∣∣≤ M,∣∣Dα–3
0+ u(t6)

∣∣ =
∣∣a	(α)t2

6/2 + b	(α – 1)t6 + c	(α – 2)
∣∣≤ G.

Then

|a| ≤ L
	(α)

, |b| ≤ M + L
	(α – 1)

, |c| ≤ G + M + (3L/2)
	(α – 2)

.

Therefore,

‖u‖∞ ≤ |a| + |b| + |c| ≤ L
	(α)

+
M + L

	(α – 1)
+

G + M + (3L/2)
	(α – 2)

,

∥∥Dα–1
0+ u

∥∥∞ ≤ 	(α)|a| ≤ L,∥∥Dα–2
0+ u

∥∥∞ ≤ 	(α)|a| + 	(α – 1)|b| ≤ 2L + M,
∥∥Dα–3

0+ u
∥∥∞ ≤ 1

2
	(α)|a| + 	(α – 1)|b| + 	(α – 2)|c|

≤ 3L + 2M + G.

So, �2 is bounded. �

Lemma 3.8 Suppose that (H3)-(H5) hold, set

�3 =
{

u ∈ Ker L : ϑλJu + (1 – λ)QNu = 0,λ ∈ [0, 1]
}

.
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Then �3 is bounded, where ϑ = 1, if (3.6), (3.8), (3.10) hold and ϑ = –1, if (3.7), (3.9), (3.11)
hold, J : Ker L → Im Q is the linear isomorphism defined by

J
(
atα–1 + btα–2 + ctα–3) =

1
�(μ,ν,ω)

(
a1tμ–1 + b1tν–1 + c1tω–1), ∀a, b, c ∈R,

where

a1 = μ(μ + 1)(μ + 2)(A11a + A12b + A13c),

b1 = ν(ν + 1)(ν + 2)(A21a + A22b + A23c),

c1 = ω(ω + 1)(ω + 2)(A31a + A32b + A33c).

Proof Without loss of generality, we suppose that (3.6), (3.8), (3.10) hold, then for any
u ∈ �3, there exist constants a, b, c ∈R and λ ∈ [0, 1] such that u(t) = atα–1 + btα–2 + ctα–3

and λJu + (1 – λ)QNu = 0. Therefore, we get a system of linear equations with respect to
x1, x2, x3 as follows:

⎧⎪⎨
⎪⎩

A11x1 + A12x2 + A13x3 = 0,
A21x1 + A22x2 + A23x3 = 0,
A31x1 + A32x2 + A33x3 = 0,

(3.16)

where x1 = λa + (1 – λ)Q1Nu(t), x2 = λb + (1 – λ)Q2Nu(t), x3 = λc + (1 – λ)Q3Nu(t). Since
the determinant of coefficiency for (3.16) is �2(μ,ν,ω) �= 0, we get x1 = x2 = x3 = 0, that is,

λa + (1 – λ)Q1Nu(t) = 0, (3.17)

λb + (1 – λ)Q2Nu(t) = 0, (3.18)

λc + (1 – λ)Q3Nu(t) = 0. (3.19)

If λ = 1, one has a = b = c = 0. Obviously, �3 is bounded. If λ ∈ [0, 1), it follows from (3.6)
and (3.17) that we can get |a| ≤ L

	(α) ; otherwise, by (3.6) and (3.17), a contradiction will be
obtained:

0 < λa2	(α) = –(1 – λ)a	(α)Q1Nu(t) < 0.

Similarly, from (3.8) and (3.18), we have |b| ≤ M+L
	(α–1) ; if not, by (3.8) and (3.18), we get a

contradiction

0 < λb2	(α – 1) = –(1 – λ)b	(α – 1)Q2Nu(t) < 0.

From (3.10) and (3.19), we can derive |c| ≤ M+G+(3L/2)
	(α–2) ; else, by (3.10) and (3.19), we obtain

a contradiction

0 < λc2	(α – 2) = –(1 – λ)c	(α – 2)Q3Nu(t) < 0.

Similarly to the discussion of Lemma 3.7, �3 is bounded. �
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Theorem 3.1 Suppose that (H1)-(H5) hold. Then problem (1.1) has at least one solution
in X.

Proof Set � be a bounded open set of X such that
⋃3

i=1 �̄i ⊂ �. By Lemma 3.5, N is L-
compact on �̄. From Lemmas 3.6 and 3.7, we get

(i) Lu �= λNu for any (u,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (0, 1),
(ii) Nu ∈ Im L for any u ∈ Ker L ∩ ∂�.

In the following, we only need to check that (iii) of Lemma 2.1 is satisfied. Take

H(u,λ) = ϑλJu + (1 – λ)QNu,

where ϑ is defined as before. According to Lemma 3.8, we derive H(u,λ) �= 0 for all u ∈
Ker L ∩ ∂�. Thus, it follows from the homotopy of degree that

deg{QN |Ker L,� ∩ Ker L, 0} = deg
{

H(·, 0),� ∩ Ker L, 0
}

= deg
{

H(·, 1),� ∩ Ker L, 0
}

= deg{ϑJ ,� ∩ Ker L, 0} �= 0.

Then, by Lemma 2.1, we can get that the operator function Lu = Nu has at least one so-
lution in dom L ∩ �̄, which is equivalent to problem (1.1) that has at least one solution
in X. �

4 Example
Example 4.1 Consider the boundary value problems

⎧⎪⎨
⎪⎩

D3.5
0+ u(t) = f (t, u(t), D0.5

0+ u(t), D1.5
0+ u(t), D2.5

0+ u(t)), t ∈ (0, 1),
I0.5

0+ u(t)|t=0 = 0, D2.5
0+ u(0) =

∑2
i=1 αiD2.5

0+ u(ξi),
D1.5

0+ u(0) =
∑2

j=1 βjD1.5
0+ u(ηj), D0.5

0+ u(1) =
∑3

k=1 γkD0.5
0+ u(ρk),

(4.1)

where

f
(
t, u(t), D0.5

0+ u(t), D1.5
0+ u(t), D2.5

0+ u(t)
)

=
1
8

g1(t)D0.5
0+ u(t) – 180g2(t)h1

(
D1.5

0+ u(t)
)

+ 3h2
(
D2.5

0+ u(t)
)

+ sin u(t) + cos t,

g1(t) =

{
0, 0 ≤ t ≤ 3/4,
1, 3/4 < t ≤ 1,

g2(t) =

{
0, 0 ≤ t ≤ 1/2,
1, 1/2 < t ≤ 1,

hi(κ) =

⎧⎪⎨
⎪⎩

–1, κ < –1,
κ , –1 ≤ κ ≤ 1,
1, κ > 1.

i = 1, 2.

Take

α1 = –1, α2 = 2, ξ1 =
1
4

, ξ2 =
1
2

,

β1 = 9, β2 = –8, η1 =
2
3

, η2 =
3
4

,
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γ1 = 1, γ2 = –3, γ2 = 3,

ρ1 =
1
4

, ρ2 =
1
2

, ρ3 =
3
4

, μ = 1, ν = 2, ω = 3,

then

�(1, 2, 3) = –
575

2048
,

∣∣f (t, u(t), D0.5
0+ u(t), D1.5

0+ u(t), D2.5
0+ u(t)

)∣∣≤ 1
8
∣∣D0.5

0+ u(t)
∣∣ + 185.

Let a(t) = c(t) = d(t) = 0, b(t) = 1
8 , e(t) = 185, then

‖a‖1 + ‖b‖1 + ‖c‖1 + ‖d‖1 =
1
8

<
2
7

=
1

q + 1
.

Take L = 1, note v(t) = 3h2(D2.5
0+ u(t)) + sin u(t) + cos t, if |D2.5

0+ u(t)| > 1, then

D2.5
0+ u(t)Q1Nu(t) = D2.5

0+ u(t)
[∫ 1/2

1/4
v(t) dt +

∫ 1/2

0
v(t) dt

]
> 0.

Take M = 1, since

∣∣∣∣9
∫ 2/3

0
(2/3 – t)v(t) dt – 8

∫ 3/4

0
(3/4 – t)v(t) dt

∣∣∣∣≤ 85
4

,

if |D1.5
0+ u(t)| > 1, then

D1.5
0+ u(t)Q2Nu(t)

= D1.5
0+ u(t)

[
9
∫ 2/3

0
(2/3 – t)v(t) dt – 8

∫ 3/4

0
(3/4 – t)v(t) dt

– 1620
∫ 2/3

1/2
(2/3 – t)h1

(
D1.5

0+ u(t)
)

dt + 1440
∫ 3/4

1/2
(3/4 – t)h1

(
D1.5

0+ u(t)
)

dt
]

> 0.

Take G = 23,040, because of

∣∣∣∣
∫ 1

0
(1 – t)2v(t) dt –

∫ 1/4

0
(1/4 – t)2v(t) dt + 3

∫ 1/2

0
(1/2 – t)2v(t) dt

– 3
∫ 3/4

0
(3/4 – t)2v(t) dt – 180

∫ 1

1/2
(1 – t)2h1

(
D1.5

0+ u(t)
)

dt

+ 540
∫ 3/4

1/2
(3/4 – t)2h1

(
D1.5

0+ u(t)
)

dt
∣∣∣∣

≤ 1415
96

,



Zhang and Liu Advances in Difference Equations  (2018) 2018:15 Page 18 of 19

if |D0.5
0+ u(t)| > G, then

D0.5
0+ u(t)Q3Nu(t)

= D0.5
0+ u(t)

[∫ 1

0
(1 – t)2v(t) dt –

∫ 1/4

0
(1/4 – t)2v(t) dt + 3

∫ 1/2

0
(1/2 – t)2v(t) dt

– 3
∫ 3/4

0
(3/4 – t)2v(t) dt – 180

∫ 1

1/2
(1 – t)2h1

(
D1.5

0+ u(t)
)

dt

+ 540
∫ 3/4

1/2
(3/4 – t)2h1

(
D1.5

0+ u(t)
)

dt +
1
8

∫ 1

3/4
(1 – t)2D0.5

0+ u(t) dt
]

> 0.

By Theorem 3.1, boundary value problems (4.1) have at least one solution.

5 Conclusion
In this paper, some sufficient conditions are established for the existence of solutions
for a class of fractional multi-point boundary value problems at resonance with three-
dimensional kernel. The main result of this paper is obtained by using Mawhin’s contin-
uation theorem. Compared with previous work, the main difficulties in this paper are as
follows. First, as we know, by the way of Mawhin’s continuation theorem, the higher the
dimension of kernel is, the more difficult it is to construct the projections P and Q. Sec-
ond, the main difficulty lies in evaluating prior bounds. Third, it is difficult to construct
an example.
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