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Abstract
In this paper, a new rectifying action is combined into different
proportional-α-order-derivative-type iterative learning control algorithms for a class
of fractional order linear time-invariant systems. Unlike the existing fractional order
iterative learning control techniques, the proposed algorithms allow the initial state
value of a fractional order iterative learning control system at each iteration to shift
randomly. By introducing the Lebesgue-p norm and using the method of fractional
integration by parts and the generalized Young inequality of convolution integral, the
tracking performances with respect to the initial state shift under the proposed
algorithms are analyzed. These analyses show that the tracking errors are incurred by
such a shift and improved by tuning the rectifying gain. Numerical simulations are
performed to demonstrate the effectiveness of the proposed algorithms.
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control; Lebesgue-p norm

1 Introduction
Iterative learning control (ILC) has become one of the most active fields in intelligent con-
trol methodology since the early study for robotic systems trajectory tracking in [1]. The
mechanism of the ILC is that, for a control system which repeatedly operates over a finite
time interval, in order to enable the system to achieve perfectly tracking as the iteration
number increases successively, the ILC unit utilizes the information from the previous
operation to modify an unsatisfactory control input signal. One of the important advan-
tages of the ILC is that it requires less prior knowledge to generate iteratively a sequence
of control input signals [2–6].

The fractional order iterative learning control (FOILC) is the latest trend in ILC re-
search, it not only retains the advantages of the classical ILC, but also offers potential for
better performances in a variety of complex physical processes [7–9]. Even since the above
literature suggested this good learning performance, there have been made some efforts
to synthesize a better FOILC updating law for various types of fractional order systems,
and we have witnessed some progress in the following 16 years [10–16]. However, there
still remain some restrictions which hinder further applications of the FOILCs in practice.

The obvious restriction of FOILCs is about the initial state value of the controlled frac-
tional order system. It should be noted that perturbed initial state would degrade the track-
ing performance [17–19]. In the existing literature, requirements are that the initial state
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value should be equal to the desired one at each iteration. However, due to the effect of un-
avoidable noise or unidentified friction in practical engineering, the system cannot guar-
antee the initial value of state to the desired point. That means the initial state shift exists
in the practice system, which motivates us for our study.

Besides, in the existing literature, the tracking error is analyzed in the sense of λ-norm.
However, Lee and Bien [20] reported that the so-called λ-norm may not be a satisfac-
tory measure of error in application. This is because of the λ-norm is a time decreas-
ing weighted sup-norm, although the error becomes larger and larger near the terminal
time, its λ-norm still decreases. In other words, the λ-norm may conceal the maximum
absolute magnitude of the error signal, which would be very detrimental to engineering
systems [21]. In order to avoid the above-mentioned phenomenon, for the Lebesgue-p
norm it was reported in [22] that it is more suitable for error measure on performance
than the λ-norm. Consequently, it is crucial to investigate the error measure with re-
spect to Lebesgue-p norm in FOILCs. Recall that, for a time-varying vector function
f : [0, T] → Rm, f (t) = [f 1(t), . . . , f m(t)]T, the λ-norm is defined as [18]

∥
∥f (·)∥∥

λ
= sup

0≤t≤T
e–λt

(

max
1≤i≤m

∣
∣f i(t)

∣
∣

)

, λ > 0,

and the Lebesgue-p norm is defined as

∥
∥f (·)∥∥p =

[∫ T

0

(

max
1≤i≤m

∣
∣f i(t)

∣
∣

)p
dt

] 1
p

, 1 ≤ p ≤ ∞.

Motivated by the limitation of the initial state value of FOILCs and the mentioned draw-
back of the λ-norm, in this paper, we address the initial state shift problem for a more real-
istic situation by alleviating the requirement so that the initial state xk(0) at each iteration
k lies in a neighborhood of a random initial point x0. The main contribution of this paper
is to consider the initial state shift for a class of fractional order linear systems, and then
incorporate a rectifying action into various proportional-α-order-derivative-type ILC al-
gorithms to alleviate the tracking error caused by such a shift. The algorithms include the
first- and second-order as well as feedback-based proportional-α-order-derivative-type
ILCs. It is also important to note that many new theoretic analysis methods are explored
to analyze the tracking performance in the sense of the Lebesgue-p norm.

The remainder of this paper is organized in five parts. In Section 2, the definitions and
some properties of fractional order derivatives and some lemmas are revisited. In Sec-
tion 3, FOILC schemes with rectifying action are presented and the main result on the
tracking performance of the proposed schemes are discussed. In Section 4, numerical ex-
amples are given to illustrate the performance of the proposed schemes. Finally, a brief
conclusion is given in Section 5.

2 Preliminaries
Definition 2.1 ([23]) For an arbitrary integrable function f (t) : [0,∞) → R, the left-sided
and the right-sided fractional integrals are defined as

0Iα
t f (t) =

1
�(α)

∫ t

0

f (τ )
(t – τ )1–α

dτ , t ∈ [0,∞),

tIα
T f (t) =

1
�(α)

∫ T

t

f (τ )
(τ – t)1–α

dτ , t ∈ [0,∞),
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where �(·) is the Gamma function and �(α) =
∫ ∞

0 xα–1e–x dx; 0Iα
t , tIα

T are the left-sided and
right-sided fractional integral of order α (α > 0) on [0, t], [t, T], respectively.

Property 2.1 ([23]) If α > 0, then 0Iα
t tγ = �(γ +1)

�(γ +1+α) tγ +α , γ > –1, t > 0.

Definition 2.2 ([23]) For a given number α > 0, the left-sided and the right-sided α-order
Caputo-type derivatives of the function f (t) : [0,∞) → R are defined as

C
0 Dα

t f (t) =
1

�(n – α)

∫ t

0

f (n)(τ )
(t – τ )α–n+1 dτ , n – 1 < α < n, t ∈ [0,∞),

C
t Dα

T f (t) = (–1)n 1
�(n – α)

∫ T

t

f (n)(τ )
(τ – t)α–n+1 dτ , n – 1 < α < n, t ∈ [0,∞),

where n is an integer and f (n)(t) = dn

dtn f (t); C
0 Dα

t , C
t Dα

T are the left-sided and right-sided
Caputo-type derivatives of order α on [0, t], [t, T], respectively.

For convenience, we denote 0Dα
t = C

0 Dα
t and tDα

T = C
t Dα

T in the following.

Property 2.2 ([23]) If α > 0, f (t) is continuous on [0,∞), then 0Dα
t (0Iα

t f (t)) = f (t) and
tDα

T (tIα
T f (t)) = f (t).

Property 2.3 ([16]) If 0 < α < 1, f (t) is continuous on [0,∞), then 0D1–α
t 0Dα

t f (t) = f (1)(t),
where f (1)(t) = d

dt f (t).

Definition 2.3 ([23]) A single-parameter Mittag-Leffler function is defined by

Eα(z) =
∞

∑

k=0

zk

�(kα + 1)
, α > 0, z ∈ Cn×n.

A two-parameter Mittag-Leffler function is defined by

Eα,β (z) =
∞

∑

k=0

zk

�(kα + β)
, α > 0,β > 0, z ∈ Cn×n.

It is obvious that Eα(z) = Eα,1(z) and E1,1(z) = ez .

Lemma 2.1 ([16]) The series Eα,β(z) (α > 0, β > 0) is absolutely convergent on ‖z‖ < ∞.

Lemma 2.2 ([23], Fractional integration by parts) For continuous functions f (t), g(t) on
[0, T], the derivatives 0Dα

t f (t) and 0Dα
t g(t) exist at every point t ∈ [0, T] and are continuous.

Then we have
∫ T

0

(

0Dα
t f (t)

)

g(t) dt =
∫ T

0
f (t)

(

tDα
T g(t)

)

dt.

Lemma 2.3 ([24], Generalized Young inequality of convolution integral) For Lebesgue in-
tegrable scalar functions g, h : [0, T] ∈ R, the generalized Young inequality of their convolu-
tion integral is

∥
∥g ∗ h(·)∥∥r ≤ ∥

∥g(·)∥∥q

∥
∥h(·)∥∥p,
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where 1 ≤ p, q, r ≤ ∞ satisfy 1
r = 1

p + 1
q – 1. Particularly, when r = p and thus q = 1, then the

inequality of convolution integral is

∥
∥g ∗ h(·)∥∥p ≤ ∥

∥g(·)∥∥1

∥
∥h(·)∥∥p.

Lemma 2.4 ([25]) Let {ak , k = 1, 2, . . .} be a real sequence defined as

ak ≤ ρ1ak–1 + ρ2ak–2 + · · · + ρMak–M + dk , k ≥ M + 1,

with initial conditions

a1 = ā1, a2 = ā2, . . . , aM = āM,

where dk is a specified real sequence. If ρ1,ρ2, . . . ,ρM are nonnegative numbers satisfying

ρ =
M

∑

j=1

ρj < 1.

Then:
(1) dk ≤ d̄, k ≥ M + 1 implies that ak ≤ max{ā1, ā2, . . . , āM} + d̄

1–ρ
, k ≥ M + 1,

(2) limk→∞ sup dk ≤ d∞ implies that limk→∞ sup ak ≤ d∞
1–ρ

.

3 Rectifying action-based proportional-α- order-derivative-type (PDα-type)
ILCs

Consider the following α-order (0 < α < 1) linear time-invariant systems:
⎧

⎨

⎩

0Dα
t xk(t) = Axk(t) + Buk(t),

yk(t) = Cxk(t), t ∈ [0, T],
(1)

where k is the kth repetitive operation symbol, 0Dα
t is the Caputo derivative with lower

limit zero of order α and [0, T] is an operation time interval, xk(t) ∈ Rn, uk(t) ∈ R and
yk(t) ∈ R are the state vector, control input and output of the system, respectively. A, B
and C are matrices with appropriate dimensions and it is assumed that CB is a full-rank
matrix.

The solution of the fractional order system (1) can be written in the following form [26]:

xk(t) = 	α,1(t)xk(0) +
∫ t

0
	α,α(t – τ )Buk(τ ) dτ ,

where 	α,β (t) = tβ–1Eα,β (Atα) (α > 0, β > 0) stands for the state transition matrix of frac-
tional order system (1).

In this paper, the initial state value satisfies xk(0) ∈ N(x0), where N(x0) is a neighborhood
of x0. Specifically, it is assumed that the initial state value satisfies the following condition:

∥
∥
∥
∥
∥

1
k

k
∑

i=1

xi(0) – x0

∥
∥
∥
∥
∥

p

≤ βo
(

1
k

)

, (2)

where β denotes a positive constant, and limk→∞ o( 1
k )/ 1

k = 0.
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It is noted that the proportional-α-order-derivative-type (PDα-type) ILC algorithm (3)
which has been investigated in [8],

uk+1(t) = uk(t) + Lpek(t) + Ld0Dα
t ek(t), (3)

can ensure the system output yk(t) to track a desired trajectory yd(t) precisely as the oper-
ation number k goes to infinity with the initial state being resettable. But it cannot guar-
antee the precisely tracking with the initial state shift. Here, Lp and Ld are termed the
proportional and α-order derivative learning gains, respectively. The expression ek(t) =
yd(t) – yk(t) denotes the tracking error of the fractional order system (1).

Then, in order to generate an upgraded control input uk(t) to stimulate the system yk(t)
to track a desired yd(t) as precisely as possible, we adopt a rectifying action to compen-
sate for the proportional-α-order-derivative-type (PDα-type) ILCs to suppress the track-
ing error caused by the initial state shift. The adopted rectifying action δk(t) is an iteration-
dependent function sequence as follows:

δk(t) =

⎧

⎨

⎩

t1–α

εk
, 0 ≤ t ≤ εk ;

0, εk < t ≤ T ,

for engineering applicability, it is assumed that the sequence obeys |δk(t)| ≤ 1/εα
k ≤ M,

where M is the tolerance of the system input capability.
To this end, the rectifying first- and second-order as well as the feedback-based

proportional-α-order-derivative-type (PDα-type) ILC algorithms are considered and we
suppose that yd(0) 	= Cx0.

The rectifying action-based first-order proportional-α-order-derivative-type (PDα-
type) ILC algorithm is used of the latest historical tracking error and its α-order derivative,
which is given as follows:

uk+1(t) = uk(t) + Lp1 ek(t) + Ld1 0Dα
t ek(t) + Kδk(t)

(

yd(0) – Cx0
)

. (4)

Here, Lp1 and Ld1 are termed the first-order proportional and α-order derivative learning
gains, respectively. K is the rectifying gain.

The rectifying action-based second-order proportional-α-order-derivative-type (PDα-
type) ILC algorithm is used of control inputs, tracking errors and their α-order derivatives
of the latest two adjacent operations, given by

uk+1(t) = c1
(

uk(t) + Lp1 ek(t) + Ld1 0Dα
t ek(t)

)

+ c2
(

uk–1(t) + Lp2 ek–1(t) + Ld2 0Dα
t ek–1(t)

)

+ Kδk(t)
(

yd(0) – Cx0
)

. (5)

Here, Lp2 and Ld2 denote the second-order proportional and α-order derivative learn-
ing gains, respectively. The weighing coefficients c1 and c2 satisfy 0 ≤ c1, c2 ≤ 1 and
c1 + c2 = 1.
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It is observed that, when c2 is null, the rectifying second-order algorithm (5) degenerates
to the rectifying first-order algorithm (4). Due to the algorithm (4) being a special case of
the algorithm (5), we only analyze the tracking performance of the algorithm (5) in the
following.

The rectifying action-based proportional-α-order-derivative-type (PDα-type) ILC algo-
rithm with feedback information is used of the latest historical and current tracking errors
and their α-order derivatives, given by

uk+1(t) = uk(t) + Lp1 ek(t) + Ld1 0Dα
t ek(t)

+ Lp0 ek–1(t) + Ld0 0Dα
t ek–1(t)

+ Kδk(t)
(

yd(0) – Cx0
)

. (6)

Here, Lp0 and Ld0 denote the feedback learning gains, respectively.
Before showing the effect of the initial state shift, we need the following lemmas.

Lemma 3.1 τ D1–α
t (	α,1(t – τ )) = 	α,α(t – τ ), 0 < α < 1.

Proof It is obtained from Lemma 2.1 that the series 	α,1(t –τ ) is absolutely convergent for
all 0 ≤ t, τ < ∞. Then we can differentiate the series 	α,1(t – τ ) with respect to the variable
τ term by term.

It is easy to see from the definition of the right-sided Caputo derivative that

τ D1–α
t (t – τ )kα = –

1
�(α)

∫ t

τ

d
dν

(t – ν)kα

(ν – τ )1–α
dν =

kα

�(α)

∫ t

τ

(ν – τ )α–1(t – ν)kα–1 dν.

Let ν = s(t – τ ) + τ , we can get

τ D1–α
t (t – τ )kα =

kα

�(α)

∫ t

τ

(ν – τ )α–1(t – ν)kα–1 dν

=
kα

�(α)

∫ 1

0
(t – τ )kα+α–1sα–1(1 – s)kα–1 ds

=
kα

�(α)
B(α, kα)(t – τ )kα+α–1 =

�(kα + 1)
�(kα + α)

(t – τ )kα+α–1,

where B(α,β) =
∫ 1

0 tα–1(1 – t)β–1 dt is the Beta function and B(α,β) = �(α)�(β)
�(α+β) (α > 0, β > 0).

This means that

τ D1–α
t

(

	α,1(t – τ )
)

= τ D1–α
t

∞
∑

k=0

Ak(t – τ )kα

�(kα + 1)
=

∞
∑

k=0

Ak
τ D1–α

t (t – τ )kα

�(kα + 1)

=
∞

∑

k=0

Ak(t – τ )kα+α–1

�(kα + α)
= (t – τ )α–1

∞
∑

k=0

Ak(t – τ )kα

�(kα + α)
= 	α,α(t – τ ).

This completes the proof. �
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Lemma 3.2 d
dτ

	α,1(t – τ ) = –	α,α(t – τ )A, α > 0.

Proof

d
dτ

	α,1(t – τ ) =
d

dτ

∞
∑

k=0

Ak(t – τ )kα

�(kα + 1)
= –

∞
∑

k=1

kαAk(t – τ )kα–1

�(kα + 1)

= –(t – τ )α–1

( ∞
∑

k=1

Ak–1(t – τ )(k–1)α

�((k – 1)α + α)

)

A = –	α,α(t – τ )A.

This completes the proof. �

Now, the effect of initial state shift for the rectifying second-order and feedback-based
proportional-α-order-derivative-type (PDα-type) ILC algorithms will be shown.

3.1 Rectifying action-based second-orderPDα-type ILC
Theorem 3.1 Suppose that the rectifying action-based second-order PDα-type ILC algo-
rithm (5) is applied to the fractional order system (1) and that the initial state at each
iteration satisfies the condition (2). If the system matrices A, B, C and the order α together
with the learning gains Lp1 , Ld1 , Lp2 and Ld2 satisfy the following conditions ρ1 < 1 and
ρ2 < 1, then we get

lim
k→∞

sup
∥
∥ek+1(·)∥∥p ≤ 2

1 – ρ̄
,

where

ρ1 = |1 – CBLd1 | +
∥
∥C	α,α(·)(BLp1 + ABLd1 )

∥
∥

1,

ρ2 = |1 – CBLd2 | +
∥
∥C	α,α(·)(BLp2 + ABLd2 )

∥
∥

1,

ρ̄ = c1ρ1 + c2ρ2,

2 =
∥
∥C	α,1(·)B(c1Ld1 + c2Ld2 ) – CHk(·)BK�(2 – α)

∥
∥

1

∥
∥yd(0) – Cx0

∥
∥

p.

Proof From the solution of the fractional order system (1) and algorithm (5), the output
error for k + 1 can be written as

ek+1(t) = yd(t) – yk+1(t)

= c1
(

yd(t) – yk(t)
)

+ c2
(

yd(t) – yk–1(t)
)

–
(

yk+1(t) – c1yk(t) – c2yk–1(t)
)

= c1ek(t) + c2ek–1(t) – C
(

xk+1(t) – c1xk(t) – c2xk–1(t)
)

= c1ek(t) + c2ek–1(t) – C	α,1(t)
(

xk+1(0) – c1xk(0) – c2xk–1(0)
)

– C
∫ t

0
	α,α(t – τ )B

(

uk+1(τ ) – c1uk(τ ) – c2uk–1(τ )
)

dτ
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= c1ek(t) + c2ek–1(t) – C	α,1(t)
(

xk+1(0) – c1xk(0) – c2xk–1(0)
)

– C
∫ t

0
	α,α(t – τ )B

(

c1Lp1 ek(τ ) + c2Lp2 ek–1(τ )
)

dτ

– C
∫ t

0
	α,α(t – τ )B

(

c1Ld1 0Dα
τ ek(τ ) + c2Ld2 0Dα

τ ek–1(τ )
)

dτ

– C
∫ t

0
	α,α(t – τ )BKδk(τ )

(

yd(0) – Cx0
)

dτ . (7)

Then, from Lemma 3.1, fractional integration by parts, Property 2.3 and Lemma 3.2, the
second last term in the right side of (7) is rearranged as

–C
∫ t

0
	α,α(t – τ )B

(

c1Ld1 0Dα
τ ek(τ ) + c2Ld2 0Dα

τ ek–1(τ )
)

dτ

= –c1 · C
∫ t

0
τ D1–α

t
(

	α,1(t – τ )
)

BLd1 0Dα
τ ek(τ ) dτ

– c2 · C
∫ t

0
τ D1–α

t
(

	α,1(t – τ )
)

BLd2 0Dα
τ ek–1(τ ) dτ

= –c1 · C
∫ t

0
	α,1(t – τ )BLd1 · 0D1–α

τ 0Dα
τ ek(τ ) dτ

– c2 · C
∫ t

0
	α,1(t – τ )BLd2 · 0D1–α

τ 0Dα
τ ek–1(τ ) dτ

= –c1 · C
∫ t

0
	α,1(t – τ )BLd1 d

(

ek(τ )
)

– c2 · C
∫ t

0
	α,1(t – τ )BLd2 d

(

ek–1(τ )
)

= –c1 · C	α,1(t – τ )BLd1 ek(τ )|τ=t
τ=0 – c2 · C	α,1(t – τ )BLd2 ek–1(τ )|τ=t

τ=0

– c1 · C
∫ t

0
	α,α(t – τ )ABLd1 ek(τ ) dτ – c2C

∫ t

0
	α,α(t – τ )ABLd2 ek–1(τ ) dτ

= –CB
(

c1Ld1 ek(t) + c2Ld2 ek–1(t)
)

+ C	α,1(t)B
(

c1Ld1 ek(0) + c2Ld2 ek–1(0)
)

– C
∫ t

0
	α,α(t – τ )AB

(

c1Ld1 ek(τ ) + c2Ld2 ek–1(τ )
)

dτ . (8)

Substituting (8) into (7) yields

ek+1(t) = c1(1 – CBLd1 )ek(t) + c2(1 – CBLd2 )ek–1(t)

– c1C
∫ t

0
	α,α(t – τ )(BLp1 + ABLd1 )ek(τ ) dτ

– c2C
∫ t

0
	α,α(t – τ )(BLp2 + ABLd2 )ek–1(τ ) dτ

– C	α,1(t)
(

xk+1(0) – c1xk(0) – c2xk–1(0)
)

+ C	α,1(t)Bc1Ld1 ek(0) + C	α,1(t)Bc2Ld2 ek–1(0)

– C
∫ t

0
	α,α(t – τ )BKδk(τ )

(

yd(0) – Cx0
)

dτ . (9)
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Then we consider the last term in the right side of equality (9). By Lemma 3.1 and fractional
integration by parts, we have

C
∫ t

0
	α,α(t – τ )BKδk(τ )

(

yd(0) – Cx0
)

dτ

= C
∫ t

0
τ D1–α

t
(

	α,1(t – τ )
)

BKδk(τ )
(

yd(0) – Cx0
)

dτ

= C
∫ t

0
	α,1(t – τ )BK0D1–α

τ

(

δk(τ )
)(

yd(0) – Cx0
)

dτ . (10)

(1) If 0 ≤ t ≤ εk , then δk(t) = t1–α

εk
. When γ = 0, from Property 2.1, we can obtain

0I1–α
t 1 =

1
�(2 – α)

t1–α , (11)

hence, by equation (11), Property 2.2 and the mean theory of definite integral, there exists
an instant ζk(t) ∈ [0, t] such that

C
∫ t

0
	α,1(t – τ )BK0D1–α

τ

(

δk(τ )
)(

yd(0) – Cx0
)

dτ

=
1
εk

· C
∫ t

0
	α,1(t – τ )BK0D1–α

τ

(

�(2 – α)0I1–α
τ 1

)(

yd(0) – Cx0
)

dτ

=
1
εk

· C
∫ t

0
	α,1(t – τ )BK�(2 – α)

(

yd(0) – Cx0
)

dτ

=
t
εk

· C	α,1
(

t – ζk(t)
)

BK�(2 – α)
(

yd(0) – Cx0
)

. (12)

(2) If εk < t ≤ T , then δk(t) = 0. Analogously, there exists an instant ξk ∈ [0, εk] such that

C
∫ t

0
	α,1(t – τ )BK0D1–α

τ

(

δk(τ )
)(

yd(0) – Cx0
)

dτ

= C
∫ εk

0
	α,1(t – τ )BK0D1–α

τ

(

δk(τ )
)(

yd(0) – Cx0
)

dτ

+ C
∫ t

εk

	α,1(t – τ )BK0D1–α
τ

(

δk(τ )
)(

yd(0) – Cx0
)

dτ

=
1
εk

· C
∫ εk

0
	α,1(t – τ )BK0D1–α

τ

(

�(2 – α)0I1–α
τ 1

)(

yd(0) – Cx0
)

dτ

=
1
εk

· C
∫ εk

0
	α,1(t – τ )BK�(2 – α)

(

yd(0) – Cx0
)

dτ

= C	α,1(t – ξk)BK�(2 – α)
(

yd(0) – Cx0
)

. (13)

Let

Hk(t) =

⎧

⎨

⎩

t
εk

	α,1(t – ζk(t)), 0 ≤ t ≤ εk ,

	α,1(t – ξk), εk < t ≤ T .
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Then, considering the facts of (12) and (13), the above equality (10) is

C
∫ t

0
	α,α(t – τ )BKδk(τ )

(

yd(0) – Cx0
)

dτ = CHk(t)BK�(2 – α)
(

yd(0) – Cx0
)

. (14)

Notice that

ek(0) =
(

yd(0) – Cx0
)

–
(

Cxk(0) – Cx0
)

, (15)

ek–1(0) =
(

yd(0) – Cx0
)

–
(

Cxk–1(0) – Cx0
)

. (16)

Substituting (14), (15) and (16) into (9) yields

ek+1(t) = c1(1 – CBLd1 )ek(t) + c2(1 – CBLd2 )ek–1(t)

– c1C
∫ t

0
	α,α(t – τ )(BLp1 + ABLd1 )ek(τ ) dτ

– c2C
∫ t

0
	α,α(t – τ )(BLp2 + ABLd2 )ek–1(τ ) dτ

– C	α,1(t)
(

xk+1(0) – c1xk(0) – c2xk–1(0)
)

– C	α,1(t)Bc1Ld1

(

Cxk(0) – Cx0
)

– C	α,1(t)Bc2Ld2

(

Cxk–1(0) – Cx0
)

+
(

C	α,1(t)B(c1Ld1 + c2Ld2 ) – CHk(t)BK�(2 – α)
)(

yd(0) – Cx0
)

. (17)

Taking the Lebesgue-p norm on both sides of (17) and adopting the generalized Young
inequality of convolution integral, we get

∥
∥ek+1(·)∥∥p ≤ c1ρ1

∥
∥ek(·)∥∥p + c2ρ2

∥
∥ek–1(·)∥∥p

+
∥
∥C	α,1(·)(xk+1(0) – c1xk(0) – c2xk–1(0)

)∥
∥

p

+
∥
∥C	α,1(·)Bc1Ld1 C

(

xk(0) – x0
)∥
∥

p

+
∥
∥C	α,1(·)Bc2Ld2 C

(

xk–1(0) – x0
)∥
∥

p + 2, (18)

recall that, from the inequality (2), by definition limk→∞ o( 1
k )/ 1

k = 0, we have

lim
k→∞

∥
∥
∥
∥
∥

k
∑

i=1

(

xi(0) – x0
)

∥
∥
∥
∥
∥

p

= 0, (19)

according to the triangular inequality property of the Lebesgue-p norm, and equality (19)
yields

lim
k→∞

∥
∥xk(0) – x0

∥
∥

p = lim
k→∞

∥
∥
∥
∥
∥

k
∑

i=1

(

xi(0) – x0
)

–
k–1
∑

i=1

(

xi(0) – x0
)

∥
∥
∥
∥
∥

p

≤ lim
k→∞

∥
∥
∥
∥
∥

k
∑

i=1

(

xi(0) – x0
)

∥
∥
∥
∥
∥

p

+ lim
k→∞

∥
∥
∥
∥
∥

k–1
∑

i=1

(

xi(0) – x0
)

∥
∥
∥
∥
∥

p

= 0, (20)
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then, from equality (20), we have

lim
k→∞

∥
∥C	α,1(·)(xk+1(0) – xk(0)

)∥
∥

p

≤ lim
k→∞

∥
∥C	α,1(·)∥∥1

(∥
∥xk+1(0) – x0

∥
∥

p +
∥
∥xk(0) – x0

∥
∥

p

)

. (21)

Therefore

lim
k→∞

∥
∥C	α,1(·)(xk+1(0) – xk(0)

)∥
∥

p = 0. (22)

In this analogy, we can easily get

lim
k→∞

∥
∥C	α,1(·)Bc1Ld1 C

(

xk(0) – x0
)∥
∥

p = 0,

lim
k→∞

∥
∥C	α,1(·)Bc2Ld2 C

(

xk–1(0) – x0
)∥
∥

p = 0,

lim
k→∞

∥
∥C	α,1(·)(xk+1(0) – c1xk(0) – c2xk–1(0)

)∥
∥

p = 0.

(23)

It is obvious that ρ̄ = c1ρ1 + c2ρ2 under the assumption that ρ1 < 1, ρ2 < 1, then, from (23)
and Lemma 2.4, inequality (18) leads to

lim
k→∞

sup
∥
∥ek+1(·)∥∥p ≤ 2

1 – ρ̄
. (24)

This completes the proof. �

Remark 3.1 Inequality (24) shows that the FOILC scheme (5) is able to drive the tracking
error into a bound. It is worth noting that the upper bound is mainly determined by the
parameter ρ̄ and the term 2 = ‖C	α,1(·)B(c1Ld1 + c2Ld2 ) – CHk(·)BK�(2 – α)‖1‖yd(0) –
Cx0‖p. Therefore, the upper bound can be confined to a smaller level by two steps. The first
step is to choose the learning gains Lp1 , Ld1 , Lp2 , Ld2 , so that ρ̄ is sufficiently small. The sec-
ond step is to select the rectifying gain K so that ‖C	α,1(·)B(c1Ld1 +c2Ld2 )–CHk(·)BK�(2–
α)‖1 is sufficiently small.

Remark 3.2 Regarding the selection of the rectifying gain K , it is easy to observe that
the definition of Hk(t) is close to the function 	α,1(t). Thus, we can choose the rectifying
gain K so as to approximate c1Ld1 +c2Ld2

�(2–α) , with the result that ‖C	α,1(·)B(c1Ld1 + c2Ld2 ) –
CHk(·)BK�(2 – α)‖1 is sufficiently small.

Remark 3.3 In the case when c2 is null, the proposed rectifying second-order scheme
(5) degenerates to the rectifying first-order scheme (4). Thus, the convergent condition
becomes ρ1 < 1 and the upper bound of output error is 1

1–ρ1
, where 1 = ‖C	α,1(·)BLd1 –

CHk(·)BK�(2 – α)‖1‖yd(0) – Cx0‖p. We can find that the second-order scheme (5) has
more freedom in choosing the learning gains to make ρ̄ and 2 is smaller than ρ1 and 1,
with the result that the upper bound 2

1–ρ̄
is smaller than 1

1–ρ1
.

Remark 3.4 It is obvious that, for the case when yd(0) = Cx0, the deduction of Theo-
rem 3.1 guarantees that the output error asymptotically approaches zero, where the initial
state shift of the fractional order system exists and satisfies the constraint (2).
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3.2 Rectifying action-based PDα-type ILC with feedback informantion
Theorem 3.2 Suppose that the algorithm (6) is applied to the system (1) and the initial
state value at each iteration satisfies the condition (2). If the system matrices A, B, C and
the order α together with the learning gains Lp1 and Ld1 , feedback gains Lp0 and Ld0 satisfy
the condition ρ̃ = ρ0ρ1 < 1, then we get

lim
k→∞

sup
∥
∥ek+1(·)∥∥p ≤ ρ00

1 – ρ̃
,

where

ρ0 =
(|1 + CBLd0 | –

∥
∥C	α,α(·)(BLp0 + ABLd0 )

∥
∥

1

)–1,

ρ1 = |1 – CBLd1 | +
∥
∥C	α,α(·)(BLp1 + ABLd1 )

∥
∥

1,

0 =
∥
∥C	α,1(·)B(Ld1 + Ld0 ) – CHk(·)BK�(2 – α)

∥
∥

1

∥
∥
(

yd(0) – Cx0
)∥
∥

p.

Proof Consider the formulation of rule (6) and the dynamic system (1), we get the k + 1th
output error

ek+1(t) = yd(t) – yk+1(t)

= yd(t) – yk(t) –
(

yk+1(t) – yk(t)
)

= ek(t) – C
(

xk+1(t) – xk(t)
)

= ek(t) – C	α,1(t)
(

xk+1(0) – xk(0)
)

– C
∫ t

0
	α,α(t – τ )B

(

uk+1(τ ) – uk(τ )
)

dτ

= ek(t) – C	α,1(t)
(

xk+1(0) – xk(0)
)

– C
∫ t

0
	α,α(t – τ )B

(

Lp1 ek(τ ) + Lp0 ek+1(τ )
)

dτ

– C
∫ t

0
	α,α(t – τ )B

(

Ld1 0Dα
τ ek(τ ) + Ld0 0Dα

τ ek+1(τ )
)

dτ

– C
∫ t

0
	α,α(t – τ )BKδk(τ )

(

yd(0) – Cx0
)

dτ . (25)

Then, from Lemma 3.1, fractional integration by parts, Property 2.3 and Lemma 3.2, the
second last term in the right-hand side of (25) can be rearranged as follows:

C
∫ t

0
	α,α(t – τ )B

(

Ld1 0Dα
τ ek(τ ) + Ld0 0Dα

τ ek+1(τ )
)

dτ

= C
∫ t

0
τ D1–α

t
(

	α,1(t – τ )
)

B
(

Ld1 0Dα
τ ek(τ ) + Ld0 0Dα

τ ek+1(τ )
)

dτ

= C
∫ t

0
	α,1(t – τ )B

(

Ld1 · 0D1–α
τ 0Dα

τ ek(τ ) + Ld0 · 0D1–α
τ 0Dα

τ ek+1(τ )
)

dτ

= C
∫ t

0
	α,1(t – τ )B

(

Ld1 dek(τ ) + Ld0 dek+1(τ )
)

= C	α,1(t – τ )B
(

Ld1 ek(τ ) + Ld0 dek+1(τ )
)|τ=t

τ=0
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– C
∫ t

0

d
dτ

(

	α,1(t – τ )
)

B
(

Ld1 ek(τ ) + Ld0 ek+1(τ )
)

dτ

= CBLd1 ek(t) + CBLd0 ek+1(t) – C	α,1(t)BLd1 ek(0) – C	α,1(t)BLd0 ek+1(0)

+ C
∫ t

0
	α,α(t – τ )AB

(

Ld1 ek(τ ) + Ld0 ek+1(τ )
)

dτ . (26)

Similar to the proof of Theorem 3.1, one can easily get

(1 + CBLd0 )ek+1(t)

= (1 – CBLd1 )ek(t) – C
∫ t

0
	α,α(t – τ )(BLp1 + ABLd1 )ek(τ ) dτ

– C
∫ t

0
	α,α(t – τ )(BLp0 + ABLd0 )ek+1(τ ) dτ

– C	α,1(t)
(

xk+1(0) – xk(0)
)

– C	α,1(t)BLd1

(

Cxk(0) – Cx0
)

– C	α,1(t)BLd0

(

Cxk+1(0) – Cx0
)

+
(

C	α,1(t)BLd1 + C	α,1(t)BLd0 – CHk(t)BK�(2 – α)
)(

yd(0) – Cx0
)

. (27)

Taking the Lebesgue-p norm on both sides of (27) and adopting the generalized Young
inequality of the convolution integral, we get

(|1 + CBLd0 | –
∥
∥C	α,α(·)(BLp0 + ABLd0 )

∥
∥

1

)∥
∥ek+1(·)∥∥p

≤ (|1 – CBLd1 | +
∥
∥C	α,α(·)(BLp1 + ABLd1 )

∥
∥

1

)∥
∥ek(·)∥∥p

+
∥
∥C	α,1(·)(xk+1(0) – xk(0)

)∥
∥

p +
∥
∥C	α,1(·)BLd1

(

Cxk(0) – Cx0
)∥
∥

p

+
∥
∥C	α,1(·)BLd0

(

Cxk+1(0) – Cx0
)∥
∥

p + 0, (28)

then inequality (28) can be rewritten as

∥
∥ek+1(·)∥∥p ≤ ρ̃

∥
∥ek(·)∥∥p + ρ0

∥
∥C	α,1(·)(xk+1(0) – xk(0)

)∥
∥

p

+ ρ0
∥
∥C	α,1(·)BLd1

(

Cxk(0) – Cx0
)∥
∥

p

+ ρ0
∥
∥C	α,1(·)BLd0

(

Cxk+1(0) – Cx0
)∥
∥

p + ρ00. (29)

Similar to the derivation of the (23), it is easy to get

lim
k→∞

∥
∥C	α,1(·)BLd0 C

(

xk+1(0) – x0
)∥
∥

p = 0.

From the assumption that ρ̃ < 1 and Lemma 2.4, we have

lim
k→∞

sup
∥
∥ek+1(·)∥∥p ≤ ρ00

1 – ρ̃
. (30)

This completes the proof. �
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Remark 3.5 Inequality (30) shows that the limit superior of the output error is controlled
depends on the magnitude ρ̃ and the term 0 = ‖C	α,1(·)B(Ld1 + Ld0 ) – CHk(·)BK�(2 –
α)‖1‖yd(0) – Cx0‖p. Hence, the reduction of the output error should be done based on the
suitable choice of learning gains Lp1 , Ld1 , Lp0 , Ld0 leading to ρ̃ being sufficiently small.

In addition, it is observed that the Hk(t) is approximate to the function 	α,1(t). There-
fore, the properly selection of the rectifying gain K leads to K being closer to the value
Ld1 +Ld0
�(2–α) . It leads to 0 = ‖C	α,1(·)B(Ld1 + Ld0 ) – CHk(·)BK�(2 – α)‖1‖yd(0) – Cx0‖p be-

ing small enough and thus the superior limit of the output errors is also sufficiently small
concurrently.

Remark 3.6 In the case when Lp0 = Ld0 = 0, the proposed rectifying feedback-based
scheme (6) degenerates to the rectifying first-order scheme (4), with the result that the
convergent condition becomes ρ1 < 1 and the upper bound of the output error is 1

1–ρ1
. It is

found that if the learning gains Lp0 , Ld0 are chosen in such a way that ρ0 < 1 and 0 < 1,
then we have an upper bound ρ00

1–ρ̃
that is smaller than 1

1–ρ1
.

4 Numerical simulations
In this simulation, we consider the fractional order linear system with the Caputo deriva-
tive (fractional order α = 4/5),

⎧

⎨

⎩

A =
[ 0 1

–2 –3

]

, B =
[ 0

1

]

,

C = [0 1],
(31)

the desired trajectory is yd(t) = 12t2(1 – t), t ∈ [0, 1] and the beginning control input set as
u1(t) = 0, t ∈ [0, 1].

The random initial state are produced as

⎧

⎨

⎩

x0 = [0 0.1]T ,

xk(0) = x0 + 0.1
k2 (rand – 0.5),

where ‘rand’ stands for a randomly generated scalar number on the interval (0, 1). The
rectifying function is set as

δk(t) =

⎧

⎨

⎩

t1/5

0.1– 0.05
k2

, 0 ≤ t ≤ 0.1 – 0.05
k2 ,

0, 0.1 – 0.05
k2 < t ≤ 1.

To better illustrate the rectifying action of our proposed PD4/5-type ILC scheme (4) by
comparison, first, the PD4/5-type ILC without a rectifying action (3) is used. We set first-
order learning gains Lp1 = 0.1, Ld1 = 1.2, respectively. The rectifying gain K = 1.1. We cal-
culate that ρ1 = 0.7491 < 1. Figures 1-3 present the tracking performances of the rectifying
action-based first-order scheme (4) and the first-order scheme without a rectifying action
(3) at the third, fifth and the tenth iterations, respectively, where the dashed curve denotes
the desired trajectory, the dash-dotted curve denotes the output produces by the scheme
(3) and the solid curve denotes the output produces by the scheme (4), respectively. It
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Figure 1 Tracking perfermance at 3th iterative.

Figure 2 Tracking perfermance at 5th iterative.

Figure 3 Tracking performance at tenth
iterative.

is shown that the rectifying action-based first-order scheme (4) is able to stir the system
output to track the desired trajectory much better than the PD4/5-type scheme without
a rectifying action (3). Figure 4 shows tracking errors of the above schemes in the sense
of the Lebesgue-2 norm. It is shown that the rectifying action can suppress the tracking
error incurred by the initial shift effectively.

In order to compare the tracking errors of the rectifying first-order scheme (4) with
the rectifying second-order scheme (5), the first- and second-order learning gains are
chosen as Lp1 = 0.9, Ld1 = 0.3, Lp2 = 1.7 and Ld2 = 0.9, respectively. The rectifying gain
is K = 0.9 and the weighting coefficients are chosen as c1 = 0.2, c2 = 0.8. It is calculated
that ρ1 = 0.8216 < 1, ρ2 = 0.1689 < 1 and thus ρ̄ = c1ρ1 + c2ρ2 = 0.2994 < 1. The corre-
sponding tracking error comparison between rectifying action-based schemes (4) and (5)



Li Advances in Difference Equations  (2018) 2018:12 Page 16 of 18

Figure 4 Tracking error comparison.

Figure 5 Tracking error comparison.

Figure 6 Tracking error comparison.

in Lebesgue-2 norm is shown in Figure 5. It is shown that asymptotic tracking error of the
rectifying second-order scheme (5) is smaller than the rectifying first-order scheme (4).

In terms of the comparison of the tracking errors of the rectifying first-order scheme (4)
and the rectifying feedback-based scheme (6), the first-order learning gains are identically
chosen as Lp1 = 0.9, Ld1 = 0.3, and the feedback gains are chosen as Lp0 = 1, Ld0 = 0.3,
respectively. It is computed that ρ1 = 0.8704 < 1, ρ0 = 0.8216 < 1 and thus ρ̃ = ρ0ρ1 =
0.7151 < 1. The corresponding tracking error comparison between rectifying action-based
schemes (4) and (6) in Lebesgue-2 norm is shown in Figure 6. It is shown that asymptotic
tracking error of the rectifying feedback-based scheme (6) is smaller than the rectifying
first-order scheme (4).
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5 Conclusion
In this paper, a new rectifying action was introduced into various PDα-type ILC schemes
and the tracking performances against the initial state shift were investigated for a class
of fractional order linear systems. The proposed PDα-type ILC schemes were shown to
be an extended form of first- and second-order as well as feedback-based PDα-type ILC
schemes. The tracking performances were analyzed in the form of the Lebesgue-p norm
by the technique of the generalized Young inequality of the convolution integral and frac-
tional integration by parts. These analyses show that effect of the initial state shift can
be more effectively controlled in various ways and the tracking performances can be im-
proved according to the proper choice of the learning gains.
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