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1 Introduction
In this paper, we consider the following system:

⎧
⎨

⎩

x�(t) = a(t)f (y(t)),

y�(t) = b(t)g(x(t)),
(1)

where a, b ∈ Crd([t0,∞)T,R+), and f and g are nondecreasing functions such that uf (u) > 0
and ug(u) > 0 for u �= 0. The time scale theory is initiated by the German mathematician
S. Hilger in his PhD thesis in 1988. His purpose was to unify continuous and discrete anal-
ysis and extend the results in one theory. A time scale, denoted by T, is a nonempty closed
subset of real numbers, and some examples are the set of real numbers R, the set of inte-
gers Z, hZ for h > 0, and qN0 for q > 1. In this paper, we assume that T is unbounded above
and that (x, y) is a proper solution of system (1); see [1]. We call (x, y) a proper solution if
it is defined on [t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0 for t ≥ t0. A solution (x, y)
is called nonoscillatory if x and y are both nonoscillatory, that is, eventually of one sign.
Otherwise, it is said to be oscillatory. For more information about the time scale theory,
we refer the interested readers to the books [2, 3] by Bohner and Peterson, respectively.

This paper helps readers to understand the significance of the nonoscillation theory in a
more general context. In fact, nonoscillation plays a very important role in understanding
the long-time behavior of solutions of a system for several reasons, for example, stability
and control theories. Two-dimensional systems of first-order equations have several real-
life applications in engineering. For example, Bartolini et al. [4–6] considered a second-
order system in order to control uncertain nonlinear systems by some control techniques,
for example, sliding mode and approximate linearization. In addition to nonoscillatory

' The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1475-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1475-4&domain=pdf
http://orcid.org/0000-0001-6657-7409
mailto:ozkanozturk.mst@gmail.com


Öztürk Advances in Difference Equations  (2018) 2018:18 Page 2 of 12

solutions of second-order systems, periodic and subharmonic solutions were also consid-
ered in [7–9], and important results were obtained.

If T = R, then system (1) turns out to be the system of first-order differential equations,
and this system was considered by Li [10]. Also, different versions of system (1) when
T = Z were considered by Cheng, H. J. Li, and Patula [11], Agarwal, W. T. Li, and Pang
[12], and Cecchi, Došlá, and Marini [13, 14]. The time-scale versions of system (1) were
studied by Öztürk and Akın [15–18]. For example, Öztürk, Akın, and Tiryaki [16] consid-
ered a different version of system (1), known as the Emden-Fowler dynamical system in
the literature,

⎧
⎨

⎩

x�(t) = ( 1
a(t) ) 1

α |y(t)| 1
α sgn y(t),

y�(t) = –b(t)|xσ (t)|β sgn xσ (t),

where α,β > 0 and a, b ∈ Crd([t0,∞)T,R+), and investigated nonosillatory behaviors by
using α and β relations and some improper integrals. The Emden-Fowler dynamical sys-
tem has several applications in astrophysics, gas dynamics and fluid mechanics, relativistic
mechanics, nuclear physics, and chemically reacting systems; see [19–26].

Supposing that S is the set of all nonoscillatory solutions of system (1), we can easily
show that any nonoscillatory solution (x, y) of system (1) belongs to one of the following
classes:

S+ :=
{

(x, y) ∈ S : xy > 0 eventually
}

,

S– :=
{

(x, y) ∈ S : xy < 0 eventually
}

.

In this paper, we only focus on S– since the existence in S+ is examined by Öztürk [1].
Without loss of generality, we assume that x > 0 eventually, and proofs are similar when
x < 0 eventually. By a solution we mean a nonoscillatory solution.

The structure of the paper is as follows. In Section 1, we provide the existence and nonex-
istence of solutions of system (1). In Section 2, we present examples for our theoretical
claims, and finally, we give a conclusion in the last section. For simplicity, we set

A(t0, t) =
∫ t

t0

a(s)�s and B(t0, t) =
∫ t

t0

b(s)�s.

Suppose that (x, y) is a nonoscillatory solution of system (1) such that x > 0 eventually.
Then by the first and second equations of system (1) we have that x is positive decreasing
and y is negative increasing eventually. So we have that x → c or x → 0 and y → –d or
y → 0 for 0 < c < ∞ and 0 < d < ∞. So in view of our discussion, we can get the following
subclasses of S–:

S–
B,B =

{
(x, y) ∈ S– : lim

t→∞ x(t) = c, lim
t→∞ y(t) = –d

}
,

S–
B,0 =

{
(x, y) ∈ S– : lim

t→∞ x(t) = c, lim
t→∞ y(t) = 0

}
,

S–
0,B =

{
(x, y) ∈ S– : lim

t→∞ x(t) = 0, lim
t→∞ y(t) = –d

}
,

S–
0,0 =

{
(x, y) ∈ S– : lim

t→0
x(t) = 0, lim

t→0
y(t) = 0

}
.
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To show the existence, we use the following fixed point theorems known as Schauder’s
fixed point theorem and Knaster’s fixed point theorem in the literature, see [27, Theo-
rem 2.A] and [28], respectively.

Theorem 1 Let X be a Banach space such that Y is a closed, nonempty, convex, and
bounded subset of X. Suppose also F : Y → Y is a compact operator. Then F has a fixed
point.

Theorem 2 If (Y ,≤) is a complete lattice and F : Y → Y is order-preserving, then F has a
fixed point. As a matter of fact, the set of fixed points of F is a complete lattice.

2 Main results
2.1 Existence in S–

In this section, we provide the existence and nonexistence of nonoscillatory solutions of
system (1) with the help of the following improper integrals under the monotonicity con-
dition on f and g :

I1 =
∫ ∞

t0

a(t)f
(

k – l
∫ ∞

t
b(s)�s

)

�t,

I2 =
∫ ∞

t0

b(t)g
(

m
∫ ∞

t
a(s)�s

)

�t,

where k, l, and m are some constants.

Theorem 3 Let B(t0,∞) < ∞. Then S–
B,B �= ∅ if and only if I1 < ∞, provided that k < 0 and

l > 0.

Proof Suppose S–
B,B �= ∅. Then there exists a solution (x, y) ∈ S–

B,B such that x > 0, y < 0,
x(t) → c1 and y(t) → –d1 as t → ∞ for 0 < c1 < ∞ and 0 < d1 < ∞. By the monotonicity of
g and integrating the second equation of system (1) from t to ∞, we obtain

y(t) = y(∞) –
∫ ∞

t
b(s)g

(
x(s)

)
�s

≤ –d1 – l
∫ ∞

t
b(s)�s, where l = g(c1). (2)

Since x is bounded, integrating the first equation from t1 to t and using (2) result in

c1 ≤ x(t) = x(t1) +
∫ t

t1

a(s)f
(
y(s)

)
�s

≤ x(t1) +
∫ t

t1

a(s)f
(

–d1 – l
∫ ∞

s
b(u)�u

)

�s ≤ x(t1), t ≥ t1.

This implies that I1 < ∞ as t → ∞, where –d1 = k.
Conversely, suppose that I1 < ∞. Then there exist t1 ≥ t0 and k < 0, l > 0 such that

∫ ∞

t0

a(t)f
(

k – l
∫ ∞

t
b(s)�s

)

�t > –
1
2

, (3)
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where l = g( 3
2 ). Let X be the set of all continuous and bounded real-valued functions x(t)

on [t1,∞)T with the supremum norm supt≥t1 |x(t)|, which implies that X is a Banach space
[29]. Let Y be the subset of X defined as

Y :=
{

x(t) ∈ X : 1 ≤ x(t) ≤ 3
2

, t ≥ t1

}

.

It can be shown that Y satisfies the conditions of Theorem 1. Let us define the operator
F : Y → X by

(Fx)(t) = 1 –
∫ ∞

t
a(s)f

(

k –
∫ ∞

s
b(u)g

(
x(u)

)
�u

)

�s. (4)

First, we need to show that F is a mapping into itself, thats is, F : Y → Y . Indeed,

1 ≤ (Fx)(t) ≤ 1 –
∫ ∞

t
a(s)f

(

k – g
(

3
2

)∫ s

t1

b(u)�u
)

�s ≤ 3
2

because x ∈ Y and (3) holds. Next, let us verify that F is continuous on Y . To this end, let
xn be a sequence in Y such that xn → x, where x ∈ Y = Y . Then

∣
∣(Fxn)(t) – (Fx)(t)

∣
∣

≤
∫ ∞

t
a(s)

∣
∣
∣
∣f

(

k –
∫ ∞

s
b(u)g

(
xn(u)

)
�u

)

– f
(

k –
∫ ∞

s
b(u)g

(
x(u)

)
�u

)∣
∣
∣
∣�s.

Therefore, the continuity of f and g and the Lebesgue dominated convergence theorem
gives Fxn → Fx as n → ∞, which implies that F is continuous on Y . Finally, we prove that
FY is equibounded and equicontinuous, that is, relatively compact. Because

0 < (Fx)�(t) = a(t)f
(

k –
∫ ∞

t
b(u)g

(
x(u)

)
�u

)

≤ a(t)f
(

k – l
∫ t

t1

b(u)�u
)

< ∞,

we have that Fx is relatively compact. Hence, Theorem 1 implies that there exists x̄ ∈ Y
such that x̄ = Fx̄. Thus, we have x̄ > 0 eventually and x̄(t) → 1 as t → ∞. Also

x̄�(t) = (Fx̄)�(t) = a(t)f
(

k –
∫ ∞

t
b(u)g

(
x̄(u)

)
�u

)

, t ≥ t1.

Letting

ȳ(t) = k –
∫ ∞

t
b(u)g

(
x̄(u)

)
�u < 0, t ≥ t1, (5)

and taking the derivative of (5) give ȳ�(t) = b(t)g(x̄(t)). So, we conclude that (x̄, ȳ) is a
nonoscillatory solution of system (1). Finally, taking the limit of equation (5) results in
ȳ(t) → k. Therefore, we get S–

B,B �= ∅. �

Theorem 4 Suppose B(t0) < ∞. S–
B,0 �= ∅ if and only if I1 < ∞, where k = 0 and l > 0.
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Proof For necessity, suppose that there exists a solution (x, y) in S–
B,0 such that x is positive

and y is negative eventually. By the definition of S–
B,0 we have that x(t) tends to a positive

finite constant c1 and y(t) tends to 0 as t → ∞. Since x is bounded, there exists t1 ≥ t0 such
that c1 ≤ x(t) ≤ x(t1), t ≥ t1. Taking the integral of the last equation of (1) from t to ∞, we
have

y(t) ≤ –g(c1)
∫ ∞

t
b(s)�s. (6)

Then by the monotonicity of f , integrating the first equation of system (1), we get

c1 ≤ x(t) = x(t1) +
∫ t

t1

a(s)f
(
y(s)

)
�s ≤ x(t1).

The latter inequality and (6) imply that

c1 – x(t1) ≤
∫ t

t1

a(s)f
(

–g(c1)
∫ t

t1

b(u)�u
)

�s ≤ 0.

Therefore, as t → ∞, the assertion follows for l = g(c1).
For sufficiency, suppose I1 < ∞ holds for k = 0 and l > 0. Then choose t1 ≥ t0 and l > 0

such that

–
1
2

<
∫ ∞

t1

a(t)f
(

–l
∫ t

t1

b(s)�s
)

�t < 0, (7)

where l = g(1). Let X be the partially ordered space of continuous functions on [t0,∞)T
with the norm supt≥t1 |x(t)| and pointwise ordering ≤. Let Y be the subset of X defined by

Y =
{

x ∈ X :
1
2

≤ x(t) ≤ 1 t ≥ t1

}

and define the operator F : Y → X by

(Fx)(t) =
1
2

–
∫ ∞

t
a(s)f

(

–
∫ ∞

s
b(u)g

(
x(u)

)
�u

)

�t, t ≥ t1.

It can be easily verified that inf�1 ∈ Y and sup�1 ∈ Y for any subset �1 of Y , which
implies that (Y ,≤) is a complete lattice. First, we show that F : Y → Y is a mapping into
itself. Since

1
2

≤ (Fx)(t) ≤ 1
2

–
∫ ∞

t
a(s)f

(

–g(1)
∫ ∞

s
b(u)�u

)

�t ≤ 1, t ≥ t1,

we have that F : Y → Y . Showing that F is an increasing mapping can be done by the
definition, that is, if x1 ≤ x2, then Fx1 ≤ Fx2. Then by Theorem 2 there exists a function
x̄ ∈ � such that x̄ = Fx̄. Therefore, we obtain

(Fx̄)�(t) = a(t)f
(

–
∫ ∞

t
b(u)g

(
x̄(u)

)
�u

)

, t ≥ t1.
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Letting

ȳ(t) = –
∫ ∞

t
b(u)g

(
x̄(u)

)
�u,

we have that ȳ�(t) = b(t)g(x̄(t)) and (x̄, ȳ) is a solution of system (1) such that x̄ tends to 1
2

and ȳ tends to zero, that is, S–
B,0 �= ∅. This finishes the proof. �

Theorem 5 Suppose A(t0) < ∞. S–
0,B �= ∅ if and only if I2 < ∞ for m > 0.

Proof The necessary condition can be proven similarly to the previous theorems. For suf-
ficiency, suppose that I2 < ∞ for m > 0. Let X be the partially ordered space of continuous
functions with the supremum norm supt≥t1 |y(t)| and pointwise ordering ≤. Define the
subset Y of X as

Y :=
{

y ∈ X : –1 ≤ y(t) ≤ –
1
2

t ≥ t1

}

and the operator F : Y → X by

(Fy)(t) = –
1
2

–
∫ ∞

t
b(s)g

(

–
∫ ∞

s
a(u)f

(
y(u)

)
�u

)

�s, t ≥ t1.

As claimed in the previous theorem, it can be verified that (Y ,≤) is a complete lattice and
F is an increasing mapping. Therefore, let us show that F is a mapping into itself. Indeed,

–1 ≤ –
1
2

–
∫ ∞

t
b(s)g

(

–f
(

–
1
2

)∫ ∞

s
a(u)�u

)

�t ≤ (Fy)(t) ≤ –
1
2

, t ≥ t1.

Then by Theorem 2 there exists a function ȳ ∈ Y such that ȳ = Fȳ. By taking the derivative
of Fȳ we have

(Fȳ)�(t) = b(t)g
(

–
∫ ∞

t
a(u)f

(
ȳ(u)

)
�u

)

, t ≥ t1.

Setting

x̄(t) = –
∫ ∞

t
a(u)f

(
ȳ(u)

)
�u > 0, t ≥ t1,

gives us that x̄�(t) = a(t)f (ȳ(t)) and (x̄, ȳ) is a nonoscillatory solution of system in S–
0,B,

which concludes the proof. �

Theorem 6 Suppose A(t0) < ∞. S–
0,0 �= ∅ if I1 < ∞ and I2 = ∞ for k = 0, l < 0, and m > 0,

provided that f is odd.

Proof Suppose that I1 < ∞ and I2 = ∞. Then there exists t1 ≥ t0 such that

∫ ∞

t1

a(s)f
(

–l
∫ ∞

s
b(u)�u

)

�s < 1
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and
∫ ∞

t1

b(s)g
(

m
∫ ∞

s
a(u)�u

)

�s >
1
2

for t ≥ t1, l = –g(1). Let X be the space as in the proof of Theorem 4. Let Y be the subset
of X given by

Y :=
{

x ∈ X : c1

∫ ∞

t
a(s)�s ≤ x(t) ≤ 1 t ≥ t1

}

,

where c1 = f ( 1
2 ). Define the operator H : Y → X by

(Hx)(t) =
∫ ∞

t
a(s)f

(∫ ∞

s
b(u)g

(
x(u)

)
�u

)

�t, t ≥ t1.

As shown in the proof of Theorem 4, we can show that (Y ,≤) is a complete lattice and H
is an increasing mapping. Next, let us justify that H : Y → Y . Indeed,

(Hx)(t) ≤
∫ ∞

t
a(s)f

(

g(1)
∫ ∞

s
b(u)�u

)

�t ≤ 1, t ≥ t1,

and

(Hx)(t) ≥
∫ ∞

t
a(s)f

(∫ ∞

s
b(u)g

(

c1

∫ ∞

u
a(v)�v

)

�u
)

�s

≥ f
(

1
2

)∫ ∞

t
a(s)�s,

where c1 = m. Then by Theorem 2 there exists a function x̄ ∈ Y such that x̄ = Hx̄. By taking
the derivative of Hx̄ and using the fact that f is odd, we have

(Hx̄)�(t) = a(t)f
(

–
∫ ∞

t
b(u)g

(
x̄(u)

)
�u

)

, t ≥ t1.

Setting

ȳ(t) = –
∫ ∞

t
b(u)g

(
x̄(u)

)
�u

yields that ȳ�(t) = b(t)g(x̄(t)) and (x̄, ȳ) is a solution of system (1) in S–
0,0, that is, x̄ and ȳ

both tend to zero. �

2.2 Nonexistence in S–

In this section, we relax the monotonicity condition on f and g and assume that there exist
positive constants F and G such that

f (u)
u

≥ F and
g(u)

u
≥ G for u �= 0. (8)

To show the nonexistence of nonoscillatory solutions in S–, note that we have already had
the nonexistence of such solutions in S–

B,B, S–
B,0, S–

0,B by using the monotonicity condition in
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the previous section. Now, we show similar results by relaxing the monotonicity condition
of f and g . Let

I3 =
∫ ∞

t0

b(t)
(∫ ∞

t
a(s)�s

)

�t,

I4 =
∫ ∞

t0

a(t)
(∫ ∞

t
b(s)�s

)

�t.

Theorem 7 Let B(t0,∞) < ∞. If I3 = ∞, then S–
B,B = ∅.

Proof The proof is by contradiction. So assume that S–
B,B �= ∅. Then there exists a nonoscil-

latory solution (x, y) and t1 ≥ t0 such that x(t) > 0 and y(t) < 0 for t ≥ t1. Also, since x is
decreasing and y is increasing eventually, we have c1 ≤ x(t) ≤ c2 and –d1 ≤ y(t) ≤ –d2 for
t ≥ t1. Integrating the first equation of system (1) from t to ∞, by condition (8) we have

x(t) ≥ c1 – F
∫ ∞

t
a(s)y(s)�s, t ≥ t1. (9)

Integrating the second equation from t1 to t, condition (8), and inequality (9) yield

y(t) ≥ y(t1) – FG
∫ t

t1

b(s)
(∫ ∞

s
a(u)y(u)�u

)

�s

≥ y(t1) + FGd2

∫ t

t1

b(s)
(∫ ∞

s
a(u)�u

)

�s, t ≥ t1.

Therefore, as t → ∞, we have a contradiction to the fact that y < 0 eventually. This com-
pletes the proof. �

Theorem 8 Suppose B(t0,∞) < ∞. If I4 = ∞, then S–
B,0 = ∅.

Proof Assume the contrary. Then there exists a nonoscillatory solution (x, y) in S–
B,0 and

t ≥ t1 such that x(t) > 0, y(t) < 0, and c1 ≤ x(t) ≤ c2 for t ≥ t1. Integrating the second equa-
tion of system (1) from t to ∞ and using condition (8), we have

y(t) ≤ –G
∫ ∞

t
b(s)x(s)�s, t ≥ t1, where G > 0. (10)

Next, integrating the second equation of system (1) from t1 to t, inequality (10), and the
fact that x is bounded yield us

c1 – x(t1) ≤
∫ t

t1

a(s)f
(
y(s)

)
�s ≤ –FG

∫ t

t1

a(s)
(∫ ∞

s
b(u)�u

)

�s < 0, t ≥ t1.

Hence, we have a contradiction to I4 = ∞ as t → ∞, which finishes the proof. �

The following theorem can be proven similarly to the previous theorems.

Theorem 9 Let A(t0,∞) < ∞. If I3 = ∞, then S–
0,B = ∅.
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3 Examples
Making a statement without examples can make the results muddy, whereas examples
make results clearer and give more information to readers. Therefore, we give the follow-
ing examples for validating our claims.

Theorem 10 ([2, Theorem 1.79]) Let a, b ∈ T and f ∈ Crd. If [a, b] consists of only isolated
points, then

∫ b

a
f (t)�t =

∑

t∈[a,b)T

μ(t)f (t).

Example 1 Let T = qN0 , q > 1. Consider the following system:

⎧
⎨

⎩

�xq(t) = 1

qt
8
5 (2t2+1)

1
5

(y(t))
1
5 ,

�yq(t) = q+1
q2t2(t+1) x(t),

(11)

where �fq(t) = f σ (t)–f (t)
μ(t) for f σ (t) = f (σ (t)), σ (t) = tq, μ(t) = (q – 1)t, and t = qn, s = qm; see

[2]. First, we show B(t0,∞) < ∞ for t0 = 1. Indeed,

∫ T

1
b(t)�t =

∑

t∈[1,T)qN0

q + 1
q2t2(t + 1)

· t.

Therefore, as T → ∞, we have

q + 1
q2

∞∑

n=1 qn(qn + 1)
< ∞

by the geometric series, that is, B(1,∞) < ∞. Next, let us show that I1 < ∞ for k = –1, l = 1.
First, note that

∫ T

t
b(s)�s ≤ q + 1

q2

∑

s∈[t,T)qN0

1
s2 .

Taking the limit as T → ∞, we get B(t,∞) ≤ 1
q–1

1
t2 . Second,

∫ T

1
a(t)f

(

–1 –
∫ ∞

t
b(s)�s

)

�t ≥
∫ T

1
a(t)

(

–1 –
1

q – 1
1
t2

)

≥ –
1
q

∑

t∈[1,T)qN0

1

t
3
5 (2t2 + 1)

.

As T → ∞, we have that I1 is convergent by the geometric series and comparison theorem.
Finally, we can show that (1 + 1

t , –2 – 1
t2 ) is a solution of system (11) such that x → 1 and

→ –2, that is, S–
B,B �= ∅ by Theorem 3.
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Example 2 Consider T = N
2
0 = {n2 : n ∈N0} with the system

⎧
⎪⎨

⎪⎩

x�(t) = 1

t
1
3 (

√
t+1)2(t2+1)

1
3

(y(t)) 1
3 ,

y�(t) = (
√

t+1)4–t2

t
9
5 (

√
t+1)4(1+2

√
t)

(x(t))
1
5 ,

(12)

where f �(t) = f (σ (t))–f (t)
μ(t) for σ (t) = (

√
t + 1)2 and μ(t) = 1 + 2

√
t; see [2]. First, let us show

that A(t0,∞) < ∞, where t0 ≥ 1. We have

∫ T

1
a(t)�t =

∑

t∈[1,T)
N02

1
t 1

3 (
√

t + 1)2(t2 + 1) 1
3

· (1 + 2
√

t) ≤
∑

t∈[1,T)
N02

1 + 2
√

t
t2 .

Since t = n2, as T → ∞, we have

∞∑

n=1

1 + 2n
n4 < ∞

by the geometric series. Therefore, A(1,∞) < ∞ by the comparison test. Next, we show
that I2 < ∞. Since A(1,∞) < ∞, we have

∫ ∞
t a(s)�s < α for t ≥ 1 and 0 < α < ∞. Hence,

∫ T

1
b(t)g

(∫ ∞

t
a(s)�s

)

�t ≤ α

∫ T

1
b(t)�t

= α
∑

t∈[1,T)
N02

(
√

t + 1)4 – t2

t
9
5 (

√
t + 1)4(1 + 2

√
t)

· (1 + 2
√

t)

≤ α
∑

t∈[1,T)
N02

1

t
9
5

.

So, as T tends to infinity, we get

∞∑

n=1

1

n
18
5

< ∞,

that is, I2 < ∞. Also, it is easy to verify that ( 1
t , –1 – 1

t2 ) is a solution of system (12) in S–

such that x tends to zero whereas y tends to –1, that is, S–
0,B �= ∅.

4 Conclusion
In this paper, we show the existence of solutions of system (1) rather than in advance
assuming that there exist solutions. After guaranteeing the existence of such solutions,
we examine the long-time behavior of nonoscillatory solutions of system (1). In general,
it is not easy to construct an explicit solution for nonlinear systems. Therefore, providing
examples with explicit solutions to our system makes the results more interesting and
powerful. Tables 1 and 2 summarize the limit behavior of solutions in S– by means of the
improper integrals.
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Table 1 Existence in S–

S–B,B �= ∅ B(t0,∞) <∞ I1 <∞, k < 0, l > 0
S–B,0 �= ∅ B(t0,∞) <∞ I1 <∞, k = 0, l > 0
S–0,B �= ∅ A(t0,∞) <∞ I2 <∞,m > 0
S–0,0 �= ∅ A(t0,∞) <∞ I1 <∞, I2 =∞, k = 0, l < 0,m > 0

Table 2 Nonexistence in S–

S–B,B = ∅ B(t0,∞) <∞ I3 =∞
S–0,B = ∅ A(t0,∞) <∞ I3 =∞
S–B,0 = ∅ B(t0,∞) <∞ I4 =∞
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