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1 Introduction
In this paper, we consider the following Lotka-Volterra cooperative system with cross-
diffusion in a spatially heterogeneous environment:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u + u(λ – u + b(x)v), x ∈ �, t > 0,

vt = �[(1 + kρ(x)u)v] + v(μ – v + d(x)u), x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t > 0,

u(·, 0) = u0 ≥ 0, v(·, 0) = v0 ≥ 0, x ∈ �.

(1.1)

Here, � is a bounded domain in R
n (n ≥ 1) with smooth boundary ∂�. u and v are the co-

operative species. λ and μ represent the birth or death rates of the species which are real
constants. b(x) ≥ 0 and d(x) ≥ 0 are continuous functions in � representing the inter-
specific interactions. ρ(x) is a smooth positive function in � satisfying ∂νρ(x)|∂� = 0,
ν is the outer unit normal vector on ∂�. The nonlinear diffusion term �[ρ(x)uv] =
∇[ρ(x)u∇v + v∇(ρ(x)u)] is referred to as the cross-diffusion term. ρ is a positive constant
in the homogeneous case, which means a tendency for v to move to the low density re-
gion of u. ρ(x) is referred to as the cross-diffusion pressure. The term models a tendency
for v to diffuse to the low density region of ρ(x)u. Furthermore, the tendency depends
on both the population pressure of u and the heterogeneity of the environments. System
(1.1) is a Lotka-Volterra cooperative system which was proposed by Shigesada et al. [1]
to model the spatial segregation of two species. The Lotka-Volterra system with cross-
diffusion is also called S-K-T model. For the S-K-T model with homogeneous coefficients,
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when one of the cross-diffusion rates is large enough, the existence and stability of spiky
steady states have been deeply investigated by many authors, see [2–4]. For the quasilin-
ear cross-diffusion of fraction type of a prey predator model with spatially homogeneous
coefficients, the existence and stability were studied in [5, 6]. For studying the effects of
heterogeneous environments, some interesting papers have appeared over years. Du et al.
[7–9] investigated degenerate effects of intra-specific pressures in some diffusive Lotka-
Volterra systems. Hutson et al. [10–13] studied spatial effects of birth rates in some diffu-
sive competitive models. Wang et al. [14] investigated a Lotka-Volterra cooperative system
with cross-diffusion in a spatially heterogeneous environment. Applying the bifurcation
theory and the Lyapunov-Schmidt reduction, they obtained the global bifurcation branch
of positive steady states. They also proved that the spatial segregation of ρ(x) and b(x)
could cause the positive solution curve to form an unbounded fish-hook shaped curve
with parameter λ. Li et al. [15] showed some criteria for the stability of positive station-
ary solutions obtained in [14] and the Hopf bifurcation in certain circumstances. In this
paper, we study the stability of the bifurcating steady states obtained in [14]. Here we list
the local bifurcation result and some preliminary results in [14], which will be used in this
paper.

The corresponding steady state problem of (1.1) is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�u + u(λ – u + b(x)v) = 0, x ∈ �,

�[(1 + kρ(x)u)v] + v(μ – v + d(x)u) = 0, x ∈ �,

∂νu = ∂νv = 0, x ∈ ∂�.

(1.2)

Let V = (1 + kρ(x)u)v, then (1.2) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

�u + u(λ – u + Vb(x)
1+kρ(x)u ) = 0, x ∈ �,

�V + V
1+kρ(x)u (μ – V

1+kρ(x)u + d(x)u) = 0, x ∈ �,

∂νu = ∂νV = 0, x ∈ ∂�.

(1.3)

The set of positive solutions of (1.3) is defined as follows:

� =
{(

u(x, s), V (x, s),λ(s)
)

: s > 0
}

.

Obviously, (1.2) and (1.3) have the same semitrivial solution sets:

�u =
{

(λ, 0,λ) : λ > 0
}

, where
(
u(x, s), V (x, s),λ(s)

)
= (λ, 0,λ)

and

�V =
{

(0,μ,λ) : λ ∈R,μ > 0
}

, where
(
u(x, s), V (x, s),λ(s)

)
= (0,μ,λ).

The positive functions ψ∗ and φ∗ are defined by the solutions to the linear elliptic sys-
tems such that

–�ψ∗ –
μ + λ∗d(x)
1 + λ∗kρ(x)

ψ∗ = 0, x ∈ �, ∂νψ∗ = 0, x ∈ ∂�,
∫

�

(ψ∗)2 dx = 1; (1.4)
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–�φ∗ –
(
λ∗ + μb(x)

)
φ∗ = 0, x ∈ �, ∂νφ

∗ = 0, x ∈ ∂�,
∫

�

(
φ∗)2 dx = 1. (1.5)

Two sets are introduced as follows:

Su :=
{

(λ,μ) ∈R
2 : λ1

(

–
μ + λd(x)
1 + λkρ(x)

)

= 0
}

; (1.6)

SV :=
{

(λ,μ) ∈R
2 : λ1

(
–λ – μb(x)

)
= 0 for μ ≥ 0

}
. (1.7)

The Banach spaces are defined as follows:

X := W 2,p
ν (�) × W 2,p

ν (�), Y := Lp(�) × Lp(�) (p > n),

where W 2,p
ν (�) := {u ∈ W 2,p(�) : ∂νu|∂� = 0}.

In this paper, we define ‖u‖∞ = maxx∈� |u(x)|.

Lemma 1.1 (Lemma 2.1 in [14]) For fixed μ < 0, there exists a monotone decreasing func-
tion λ = λ∗(μ) > 0 so that

Su =
{

(λ,μ) ∈R
2 : λ = λ∗(μ) for μ < 0

}
,

with λ∗(0) = 0 and limμ→–∞ λ∗(μ) = +∞.
While if μ > 0, then for any λ, λ1(– μ+λd(x)

1+λkρ(x) ) < 0.
Furthermore, for fixed μ > 0, there exists a monotone decreasing function λ = λ∗(μ) =

λ1(–μb(x)) ≤ 0 such that

SV =
{

(λ,μ) ∈R
2 : λ = λ∗(μ) for μ > 0

}
,

with λ∗(0) = 0.

Lemma 1.2 (Lemma 2.5 in [14]) Let c = ‖ρ‖∞
min

�
ρ

. Suppose ‖b‖∞‖d‖∞ < 1
c , when λ satisfies

λ ≤ –cμ‖b‖∞ if μ ≥ 0; λ ≤ –
μ

‖d‖∞
if μ < 0,

then (1.3) does not have any positive solutions.

Lemma 1.3 (Lemma 2.6 in [14]) For any fixed (μ, k,ρ(x), b(x), d(x)), the following local
bifurcation properties hold true:

(i) If μ < 0, then a branch of positive solutions of (1.3) bifurcates from �u if and only if
λ = λ∗ > 0. Let (u(s), V (s),λ(s)) ∈ X ×R be all positive solutions of (1.3) near
(λ∗, 0,λ∗), then (u(s), V (s),λ(s)) ∈ X ×R have the following structure:

{(
u(s) = λ∗ + s

(
φ∗ + su(s)

)
, V (s) = s

(
ψ∗ + sV (s)

)
,λ(s)

) ∈ X ×R : 0 < s ≤ δ∗
}

(1.8)

for (φ∗,ψ∗) ∈ X and some small δ∗ > 0. ψ∗ is defined by (1.4) and

φ∗ = (–� + λ∗)–1
[

λ∗b(x)
1 + λ∗kρ(x)

ψ∗
]

> 0. (1.9)

(u(s), V (s),λ(s)) is a smooth function with λ(0) = λ∗ and
∫

�
Vψ∗ dx = 0.
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(ii) For μ > 0, a branch of positive solutions of (1.3) bifurcates from �V if and only if
λ = λ∗ < 0. Let (̃u(s), Ṽ (s),λ(s)) ∈ X ×R be all positive solutions of (1.3) near
(0,μ,λ∗), then (̃u(s), Ṽ (s),λ(s)) ∈ X ×R have the following structure:

{(
ũ(s) = s

(
φ∗ + ŝu(s)

)
, Ṽ (s) = μ + s

(
ψ∗ + sV̂ (s)

)
,λ(s)

)
: 0 < s ≤ δ∗} (1.10)

for (φ∗,ψ∗) ∈ X and some small δ∗ > 0. φ∗ is defined by (1.5) and

ψ∗ = (–� + μ)–1[μ
(
d(x) + μkρ(x)

)
φ∗]. (1.11)

(̂u(s), V̂ (s),λ(s)) is a smooth function satisfying λ(0) = λ∗ and
∫

�
ûφ∗ dx = 0.

In this paper, we first determine the bifurcating direction of bifurcation solutions. Then,
by applying the spectral analysis and the principle of exchange stability, we prove that
the bifurcation solutions near the bifurcation points are locally asymptotically stable. The
plan of this paper is as follows. In Section 2, we prove that the bifurcating solutions near
(λ∗, 0,λ∗) are locally asymptotically stable. In Section 3, we prove the local stability of bi-
furcating steady states near (0,μ,λ∗). In Section 4, we give some numerical simulation
results in order to verify the local stability of the bifurcation solutions obtained in this
paper. Our conclusion is drawn in the final section.

2 The stability of bifurcating steady states near (λ∗, 0,λ∗)
For system (1.1), let V = (1 + kρ(x)u)v, then system (1.1) can be reduced to the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u + u(λ – u + b(x) V
1+kρ(x)u ), (x, t) ∈ � × (0, +∞),

( V
1+kρ(x)u )t = �V + V

1+kρ(x)u (μ – V
1+kρ(x)u + d(x)u), (x, t) ∈ � × (0, +∞),

∂νu = ∂νV = 0, x ∈ ∂�,

u(·, 0) = u0 ≥ 0, V (·, 0) = (1 + kρ(x)u0)v0 ≥ 0, x ∈ �.

(2.1)

We linearize (2.1) at (u(s), V (s)) and investigate the following eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u + [λ – 2u(s) + b(x)V (s)
(1+kρ(x)u(s))2 ]u + b(x)u(s)

1+kρ(x)u(s) V = σu, x ∈ �,

�V + [ d(x)V (s)–kρ(x)μV (s)
(1+kρ(x)u(s))2 + 2kρ(x)V 2(s)

(1+kρ(x)u(s))3 ]u + [ μ+d(x)u(s)
1+kρ(x)u(s) – 2V (s)

(1+kρ(x)u(s))2 ]V

= 1
1+kρ(x)u(s)σV – kρ(x)V (s)

(1+kρ(x)u(s))2 σu, x ∈ �,

∂νu = ∂νV = 0, x ∈ ∂�.

(2.2)

The operator can be defined as follows:
G : X ×R→ Y with

G(u, V ,λ) =

(
G1(u, V ,λ)
G2(u, V ,λ)

)

=

(
�u + u(λ – u + b(x) V

1+kρ(x)u )
�V + V

1+kρ(x)u (μ – V
1+kρ(x)u + d(x)u)

)

. (2.3)
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We can compute

G(u,V )(λ∗, 0,λ∗)

(
u
V

)

=

(
�u – λ∗u + λ∗b(x)

1+λ∗kρ(x) V

�V + μ+λ∗d(x)
1+λ∗kρ(x) V

)

, (2.4)

N
(
G(u,V )(λ∗, 0,λ∗)

)
= span{φ∗,ψ∗}, (2.5)

here N denotes the null space.
(2.2) can be written as

G(u,V )
(
u(s), V (s),λ

)
(

u
V

)

=

(
1 0

–kρ(x)V (s)
(1+kρ(x)u(s))2

1
1+kρ(x)u(s)

)(
σu
σV

)

. (2.6)

An operator can be introduced by

L : X ×R → Y

with

L
(
u(s), V (s),λ

)

=

(
1 0

–kρ(x)V (s)
(1+kρ(x)u(s))2

1
1+kρ(x)u(s)

)–1

G(u,V )
(
u(s), V (s),λ

)
. (2.7)

Taking (2.6) and (2.7) in consideration, (2.2) can be reduced as follows:

L
(
u(s), V (s),λ

)
(

u
V

)

=

(
σu
σV

)

. (2.8)

In the following, first we will show the bifurcating direction. Then, by applying the bifur-
cating direction and the spectral analysis, we will prove the stability of positive solution
bifurcating from (λ∗, 0,λ∗).

According to Shi [16] (Theorem 2.1 and (4.5)), we can define the functional

l1 : X →R by
〈
[f , g], l1

〉
:=
∫

�

gψ∗ dx. (2.9)

Lemma 2.1 Let c = ‖ρ‖∞
min

�
ρ

. For any fixed (μ, k,ρ(x), b(x), d(x)) with μ < 0, ‖b‖∞‖d‖∞ < 1
c ,

when d and ρ are constant functions, the bifurcating direction satisfies

dλ(s)
ds

∣
∣
∣
∣
s=0

= –
1
2

〈G(u,V )(u,V )(λ∗, 0,λ∗)[
( φ∗

ψ∗
)
,
( φ∗

ψ∗
)
], l1〉

〈G(u,V ),λ(λ∗, 0,λ∗)
( φ∗

ψ∗
)
, l1〉

> 0. (2.10)
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Proof Applying the bifurcation formula in [16] (Theorem 2.1 and (4.5)),we have the above
expression of dλ(s)

ds |s=0. In the following, we will prove dλ(s)
ds |s=0 > 0. It follows from (2.3) that

⎛

⎝
∂2G1
∂u2

∂2G1
∂u ∂V

∂2G1
∂V ∂u

∂2G1
∂V 2

⎞

⎠

∣
∣
∣
∣
∣
∣
(λ∗ ,0,λ∗)

=

(
–2 b(x)

(1+kρ(x)λ∗)2
b(x)

(1+kρ(x)λ∗)2 0

)

. (2.11)

Thus

(

φ∗ ψ∗
)
⎛

⎝
∂2G1
∂u2

∂2G1
∂u ∂V

∂2G1
∂V ∂u

∂2G1
∂V 2

⎞

⎠

∣
∣
∣
∣
∣
∣
(λ∗ ,0,λ∗)

(
φ∗
ψ∗

)

= –2φ2
∗ +

2b(x)φ∗ψ∗
(1 + kρ(x)λ∗)2 . (2.12)

Using a similar calculation, we have

(

φ∗ ψ∗
)
⎛

⎝
∂2G2
∂u2

∂2G2
∂u ∂V

∂2G2
∂V ∂u

∂2G2
∂V 2

⎞

⎠

∣
∣
∣
∣
∣
∣
(λ∗ ,0,λ∗)

(
φ∗
ψ∗

)

=
2(d(x) – μkρ(x))φ∗ψ∗ – 2(ψ∗)2

(1 + kρ(x)λ∗)2 . (2.13)

According to (2.12) and (2.13), we obtain

G(u,V )(u,V )(λ∗, 0,λ∗)

[(
φ∗
ψ∗

)

,

(
φ∗
ψ∗

)]

=

⎛

⎝
–2φ2∗ + 2b(x)φ∗ψ∗

(1+kρ(x)λ∗)2

2(d(x)–μkρ(x))φ∗ψ∗–2(ψ∗)2

(1+kρ(x)λ∗)2

⎞

⎠ . (2.14)

From (2.14), we can calculate the following equation:

〈

G(u,V )(u,V )(λ∗, 0,λ∗)

[(
φ∗
ψ∗

)

,

(
φ∗
ψ∗

)]

, l1

〉

= 2
∫

�

[(d(x) – μkρ(x))φ∗ – ψ∗](ψ∗)2

(1 + kρ(x)λ∗)2 dx. (2.15)

Combining (1.4), (2.4) and (2.5) gives the following equation:

(
d(x) – μkρ(x)

)
φ∗ – ψ∗ =

d(x) – μkρ(x)
λ∗

�φ∗

+
b(x)d(x) – μkρ(x)b(x) – 1 – λ∗kρ(x)

1 + λ∗kρ(x)
ψ∗. (2.16)

When d and ρ are constant functions, we have ψ∗ = 1

|�| 1
2

by (1.4).
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It follows from (2.9), (2.15), (2.16) and Lemma 1.2 that

〈

G(u,V )(u,V )(λ∗, 0,λ∗)

[(
φ∗
ψ∗

)

,

(
φ∗
ψ∗

)]

, l1

〉

= 2
∫

�

[b(x)d – μkρb(x) – 1 – λ∗kρ](ψ∗)3

(1 + kρλ∗)3 dx < 0. (2.17)

In fact, according to Lemma 1.2, we obtain λ∗‖d‖∞ > –μ and ‖b‖∞‖d‖∞ < 1
c < 1. These

imply λ∗‖d‖∞b > –μb and λ∗ > –μb. Thus we have (2.17).
After a simple calculation, we have

〈

G(u,V ),λ(λ∗, 0,λ∗)

(
φ∗
ψ∗

)

, l1

〉

=
∫

�

d – μkρ

(1 + kρλ∗)2 (ψ∗)2 dx > 0 as μ < 0. (2.18)

From (2.17) and (2.18), we complete the proof of Lemma 2.1. �

Next, we will investigate the stability of the bifurcating steady state (u(s), V (s)) defined
by (1.8).

Theorem 2.2 Let c = ‖ρ‖∞
min

�
ρ

. For any fixed (μ, k,ρ(x), b(x), d(x)) with μ < 0, ‖b‖∞‖d‖∞ < 1
c ,

when d and ρ are constant functions, the bifurcating solution (u(s), V (s)) defined by (1.8)
of system (2.1) is locally asymptotically stable.

Proof In the following, first we need to show that 0 is the first eigenvalue of L(λ∗, 0,λ∗).
For any fixed (u, V ) ∈ X, we have

L(λ∗, 0,λ∗)

(
u
V

)

=

(
1 0
0 1

1+λ∗kρ

)–1

G(u,V )(λ∗, 0,λ∗)

(
u
V

)

=

(
1 0
0 1 + λ∗kρ

)(
�u – λ∗u + λ∗b(x)

1+λ∗kρ
V

�V + μ+λ∗d
1+λ∗kρ

V

)

=

(
�u – λ∗u + λ∗b(x)

1+λ∗kρ
V

(1 + λ∗kρ)(�V + μ+λ∗d
1+λ∗kρ

V )

)

= 0. (2.19)

It follows from (1.4), (2.4) and (2.5) that

L(λ∗, 0,λ∗)

(
φ∗
ψ∗

)

=

(
0
0

)

. (2.20)

Then 0 is an eigenvalue of the operator L(λ∗, 0,λ∗). Next, we will show that 0 is the first
eigenvalue of the operator L(λ∗, 0,λ∗). Otherwise, there is a positive eigenvalue σ1 of
L(λ∗, 0,λ∗) with the corresponding eigenfunction

( u1
V1

) ∈ X satisfying

L(λ∗, 0,λ∗)

(
u1

V1

)

=

(
σ1u1

σ1V1

)

, (2.21)
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that is,

⎧
⎪⎪⎨

⎪⎪⎩

�u1 – λ∗u1 + λ∗b(x)
1+λ∗kρ

V1 = σ1u1, x ∈ �,

(1 + λ∗kρ)(�V1 + μ+λ∗d
1+λ∗kρ

V1) = σ1V1, x ∈ �,

∂νu1 = ∂νV1 = 0, x ∈ ∂�.

(2.22)

If V1 = 0 and u1 �= 0 hold, (2.22) yields

�u1 – λ∗u1 = σ1u1 (σ1 > 0), (2.23)

u1 = (–� + λ∗)–1(–σ1u1), (2.24)

which is impossible since (–� + λ∗)–1(–σ1u1) is negative if –σ1u1 is negative, thus V1 �= 0.
The second equation of (2.22) can be reduced as follows:

�V1 +
μ + λ∗d
1 + λ∗kρ

V1 =
σ1

1 + λ∗kρ
V1. (2.25)

By (1.4), (2.25) and the scalar elliptic equation theorem, 0 is the first eigenvalue of (2.25),
which contradicts σ1 > 0. Then we have proved that 0 is the first eigenvalue of L(λ∗, 0,λ∗)
and the other eigenvalues are negative.

In virtue of Proposition I.7.2 in [17], for small 0 < s < δ, there are a perturbed eigen-
value σ (s) and continuous differential functions ω1(s),ω2(s) ∈ X ∩ Range(G(u,V )(λ∗, 0,λ∗))
satisfying

L
(
u(s), V (s),λ(s)

)
(

φ∗ + ω1(s)
ψ∗ + ω2(s)

)

= σ (s)

(
φ∗ + ω1(s)
ψ∗ + ω2(s)

)

, (2.26)

with σ (0) = 0, ω1(0) = 0, ω2(0) = 0.
Similarly, there exist a perturbed eigenvalue σ (λ) and continuous differential functions

ω1(λ),ω2(λ) ∈ X ∩ Range(G(u,V )(λ∗, 0,λ∗)) satisfying

L(λ, 0,λ)

(
φ∗ + ω1(λ)
ψ∗ + ω2(λ)

)

= σ (λ)

(
φ∗ + ω1(λ)
ψ∗ + ω2(λ)

)

, (2.27)

with σ (λ∗) = ω1(λ∗) = ω2(λ∗) = 0.
Differentiating equation (2.27) with respect to λ at λ∗ yields

d
dλ

L(λ∗, 0,λ∗)

(
φ∗
ψ∗

)

+ L(λ∗, 0,λ∗)

(
ω′

1(λ∗)
ω′

2(λ∗)

)

= σ ′(λ∗)

(
φ∗
ψ∗

)

, (2.28)

where σ ′(λ) = d
dλ

σ (λ).
It follows from (1.4), (2.9) and (2.19) that

〈
d

dλ
L(λ∗, 0,λ∗)

(
φ∗
ψ∗

)

, l1

〉

= σ ′(λ∗). (2.29)
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From (2.19), we can calculate the following equation:

d
dλ

L(λ∗, 0,λ∗)

(
φ∗
ψ∗

)

=

(
–φ∗ + b(x)ψ∗

(1+λ∗kρ)2

(d–μkρ)ψ∗
1+λ∗kρ

)

. (2.30)

Combining (2.29) and (2.30), we obtain

σ ′(λ∗) =
∫

�

(d – μkρ)ψ2∗
1 + λ∗kρ

dx > 0. (2.31)

Here, σ ′(λ∗) > 0 yields that (λ∗, 0,λ∗) is stable for λ < λ∗ and unstable for λ > λ∗.
Using formula I.7.40 in [17], we obtain

–σ̇ (0) = λ̇(0)σ ′(λ∗), (2.32)

where σ̇ (s) = d
dsσ (s).

It follows from Lemma 2.1 and (2.32) that

σ̇ (0) < 0, (2.33)

which yields σ (s) < 0 for small s > 0, so the bifurcating solution (u(s), V (s)) defined by (1.8)
of system (2.1) is locally asymptotically stable. �

3 The stability of bifurcating steady states near (0,μ,λ∗)
In this section, we use a method similar to that in Section 2 in order to investigate the
stability of positive solutions bifurcating from (0, μ,λ∗).

According to Shi [16] (Theorem 2.1 and (4.5)), we can define the functional

l2 : X →R by
〈
[f , g], l2

〉
:=
∫

�

f φ∗ dx. (3.1)

Lemma 3.1 Let c = ‖ρ‖∞
min

�
ρ

. For any fixed (μ, k,ρ(x), b(x), d(x)) with μ > 0, ‖b‖∞‖d‖∞ < 1
c ,

when b(x) is a constant function, the bifurcating direction satisfies

dλ(s)
ds

∣
∣
∣
∣
s=0

= –
1
2

〈G(u,V )(u,V )(0,μ,λ∗)[
( φ∗

ψ∗
)
,
( φ∗

ψ∗
)
], l2〉

〈G(u,V ),λ(0,μ,λ∗)
( φ∗

ψ∗
)
, l2〉

> 0. (3.2)

Proof Using the bifurcation formula in [16] (Theorem 2.1 and (4.5)), we obtain the above
expression of dλ(s)

ds |s=0. According to (2.3), we have

⎛

⎝
∂2G1
∂u2

∂2G1
∂u ∂V

∂2G1
∂V ∂u

∂2G1
∂V 2

⎞

⎠

∣
∣
∣
∣
∣
∣
(0,μ,λ∗)

=

(
–2 – 2b(x)μkρ(x) b(x)

b(x) 0

)

. (3.3)

Thus

(

φ∗ ψ∗
)
⎛

⎝
∂2G1
∂u2

∂2G1
∂u ∂V

∂2G1
∂V ∂u

∂2G1
∂V 2

⎞

⎠

∣
∣
∣
∣
∣
∣
(0,μ,λ∗)

(
φ∗

ψ∗

)

= –2
(
φ∗)2 – 2b(x)μkρ(x)

(
φ∗)2 + 2b(x)φ∗ψ∗. (3.4)
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After a simple calculation, we obtain

(

φ∗ ψ∗
)
⎛

⎝
∂2G2
∂u2

∂2G2
∂u ∂V

∂2G2
∂V ∂u

∂2G2
∂V 2

⎞

⎠

∣
∣
∣
∣
∣
∣
(0,μ,λ∗)

(
φ∗

ψ∗

)

= –4μ2k2ρ2(x)
(
φ∗)2 – 2μkρ(x)d(x)

(
φ∗)2 + 6μkρ(x)φ∗ψ∗

+ 2d(x)φ∗ψ∗ – 2
(
ψ∗)2. (3.5)

It follows from (3.4) and (3.5) that

G(u,V )(u,V )
(
0,μ,λ∗)

[(
φ∗

ψ∗

)

,

(
φ∗

ψ∗

)]

=

⎛

⎜
⎝

–2(φ∗)2 – 2b(x)μkρ(x)(φ∗)2 + 2b(x)φ∗ψ∗

–4μ2k2ρ2(x)(φ∗)2 – 2μkρ(x)d(x)(φ∗)2 + 6μkρ(x)φ∗ψ∗

+2d(x)φ∗ψ∗ – 2(ψ∗)2

⎞

⎟
⎠ .

(3.6)

Combining (3.1) and (3.6) give the following equation:

〈

G(u,V )(u,V )
(
0,μ,λ∗)

[(
φ∗

ψ∗

)

,

(
φ∗

ψ∗

)]

, l2

〉

=
∫

�

(
–2

(
φ∗)2 – 2b(x)μkρ(x)

(
φ∗)2 + 2b(x)φ∗ψ∗)φ∗ dx. (3.7)

Using (1.5) and (1.11), we obtain

–2φ∗ – 2bμkρ(x)φ∗ + 2bψ∗ =
2b
μ

�ψ∗ +
(
2bd(x) – 2

)
φ∗. (3.8)

When b(x) is a constant function, we have φ∗ = 1

|�| 1
2

by (1.5).

It follows from (3.7), (3.8) and ‖b‖∞‖d‖∞ < 1
c < 1 that

〈

G(u,V )(u,V )
(
0,μ,λ∗)

[(
φ∗

ψ∗

)

,

(
φ∗

ψ∗

)]

, l2

〉

=
∫

�

(
2bd(x) – 2

)(
φ∗)2 dx < 0. (3.9)

It is easy to compute that

〈

G(u,V ),λ
(
0,μ,λ∗)

(
φ∗

ψ∗

)

, l2

〉

=
∫

�

(
φ∗)2 dx > 0. (3.10)

From (3.9) and (3.10), we complete the proof of Lemma 3.1. �
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We linearize (2.1) at (̃u(s), Ṽ (s)) and study the following eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u + [λ – 2u + bṼ (s)
(1+kρ(x)̃u(s))2 ]u + b̃u(s)

1+kρ(x)̃u(s) V = σ̃u, x ∈ �,

�V + [ d(x)Ṽ (s)–kρ(x)μṼ (s)
(1+kρ(x)̃u(s))2 + 2kρ(x)Ṽ 2(s)

(1+kρ(x)̃u(s))3 ]u

+ [ μ+d(x)̃u(s)
1+kρ(x)̃u(s) – 2Ṽ (s)

(1+kρ(x)̃u(s))2 ]V = 1
1+kρ(x)̃u(s) σ̃V – kρ(x)Ṽ (s)

(1+kρ(x)̃u(s))2 σ̃u, x ∈ �,

∂νu = ∂νV = 0, x ∈ ∂�.

(3.11)

By (2.3), we can compute

G(u,V )
(
0,μ,λ∗)

(
u
V

)

=

(
�u + (λ∗ + μb)u

�V + μ(d(x) + μkρ(x))u – μV

)

, (3.12)

N
(
G(u,V )

(
0,μ,λ∗)) = span

{
φ∗,ψ∗}, (3.13)

where N denotes the null space.
System (3.11) can be converted to

G(u,V )
(
ũ(s), Ṽ (s),λ

)
(

u
V

)

=

(
1 0

–kρ(x)Ṽ (s)
(1+kρ(x)̃u(s))2

1
1+kρ(x)̃u(s)

)(
σ̃u
σ̃V

)

. (3.14)

Taking (2.7) and (3.14) into account, (3.11) can be reduced as

L
(
ũ(s), Ṽ (s),λ

)
(

u
V

)

=

(
σ̃u
σ̃V

)

. (3.15)

Theorem 3.2 Let c = ‖ρ‖∞
min

�
ρ

. For any fixed (μ, k,ρ(x), b(x), d(x)) with μ > 0, ‖b‖∞‖d‖∞ < 1
c ,

when b(x) is a constant function, the bifurcating solution (̃u(s), Ṽ (s)) defined by (1.10) of
system (2.1) is locally asymptotically stable.

Proof First, we will show that 0 is the first eigenvalue of L̃(0,μ,λ∗). For any fixed (u, V ) ∈ X,
we obtain

L
(
0,μ,λ∗)

(
u
V

)

=

(
1 0

–kρ(x)μ 1

)–1

G(u,V )
(
0,μ,λ∗)

(
u
V

)

=

(
1 0

kρ(x)μ 1

)(
�u + (λ∗ + μb)u

�V + μ(d(x) + μkρ(x))u – μV

)

=

(
�u + (λ∗ + μb)u

kρ(x)μ[�u + (λ∗ + μb)u] + �V + μ(d(x) + μkρ(x))u – μV

)

= 0. (3.16)

Taking (3.12) and (3.13) into account, we have

L
(
0,μ,λ∗)

(
φ∗

ψ∗

)

=

(
0
0

)

. (3.17)



Xu and Chang Advances in Difference Equations  (2018) 2018:43 Page 12 of 15

Then 0 is the eigenvalue of L(0,μ,λ∗). Next, we will show that 0 is the first eigenvalue
of L(0,μ,λ∗). Otherwise, then there exists a positive eigenvalue σ̃1 of L(0,μ,λ∗) with the
corresponding eigenfunction

( ũ1
Ṽ1

) ∈ X such that

L
(
0,μ,λ∗)

(
ũ1

Ṽ1

)

=

(
σ̃1ũ1

σ̃1Ṽ1

)

, (3.18)

that is,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�ũ1 + (λ∗ + μb)̃u1 = σ̃1ũ1, x ∈ �,

kρ(x)μ[�ũ1 + (λ∗ + μb)̃u1] + �Ṽ1 + μ(d(x) + μkρ(x))̃u1

– μṼ1 = σ̃1Ṽ1, x ∈ �,

∂ν ũ1 = ∂νṼ1 = 0, x ∈ ∂�.

(3.19)

If ũ1 = 0 and Ṽ1 �= 0 hold, the second equation of (3.19) implies

�Ṽ1 – μṼ1 = σ̃1Ṽ1 (̃σ1 > 0), (3.20)

Ṽ1 = (–� + μ)–1(–σ̃1Ṽ1), (3.21)

which is impossible, because (–� + μ)–1(–σ̃1Ṽ1) is negative if –σ̃1Ṽ1 is negative, thus
ũ1 �= 0.

According to (1.5) and the scalar elliptic equation theorem, 0 is the first eigenvalue of
the first equation of (3.19), which contradicts σ̃1 > 0. Then we have proved that 0 is the
first eigenvalue of L̃(0,μ,λ∗) and the other eigenvalues are negative.

For small 0 < s < δ, by Proposition I.7.2 in [17], there exist a perturbed eigenvalue σ̃ (s)
and continuous differential functions ϕ1(s),ϕ2(s) ∈ X ∩ Range(G(u,V )(0,μ,λ∗)) satisfying

L
(
ũ(s), Ṽ (s),λ(s)

)
(

φ∗ + ϕ1(s)
ψ∗ + ϕ2(s)

)

= σ̃ (s)

(
φ∗ + ϕ1(s)
ψ∗ + ϕ2(s)

)

, (3.22)

with σ̃ (0) = 0, ϕ1(0) = 0, ϕ2(0) = 0.
Similarly, there exist a perturbed eigenvalue σ̃ (λ) and continuous differential functions

ϕ1(λ),ϕ2(λ) ∈ X ∩ Range(G(u,V )(0,μ,λ∗)) satisfying

L(0,μ,λ)

(
φ∗ + ϕ1(λ)
ψ∗ + ϕ2(λ)

)

= σ̃ (λ)

(
φ∗ + ϕ1(λ)
ψ∗ + ϕ2(λ)

)

, (3.23)

with σ̃ (λ∗) = ϕ1(λ∗) = ϕ2(λ∗) = 0.
Differentiation of (3.23) with respect to λ at λ∗ implies

d
dλ

L
(
0,μ,λ∗)

(
φ∗

ψ∗

)

+ L
(
0,μ,λ∗)

(
ϕ′

1(λ∗)
ϕ′

2(λ∗)

)

= σ̃ ′(λ∗)
(

φ∗

ψ∗

)

, (3.24)

where σ̃ ′(λ) = d
dλ

σ̃ (λ).
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Combining (3.1) and (3.24), we have

〈
d

dλ
L
(
0,μ,λ∗)

(
φ∗

ψ∗

)

, l2

〉

= σ̃ ′(λ∗). (3.25)

It follows from (3.16) that

d
dλ

L
(
0,μ,λ∗)

(
φ∗

ψ∗

)

=

(
φ∗

kρ(x)μφ∗

)

. (3.26)

Using (3.1), (3.25) and (3.26), we obtain

σ̃ ′(λ∗) =
∫

�

(
φ∗)2 dx > 0. (3.27)

Here, σ̃ ′(λ∗) > 0 implies that the semitrivial solution (0,μ,λ∗) is stable for λ < λ∗ and un-
stable for λ > λ∗.

It follows from formula I.7.40 in [17] that

– ˙̃σ (0) = λ̇(0)̃σ ′(λ∗), (3.28)

where ˙̃σ (s) = d
ds σ̃ (s).

Together with Lemma 3.1 and (3.27), we obtain

˙̃σ (0) < 0, (3.29)

which yields σ̃ (s) < 0 for small s > 0, the bifurcating solution (̃u(s), Ṽ (s)) defined by (1.10)
of system (2.1) is locally asymptotically stable. �

4 The numerical simulation results
For system (1.1), let μ = –0.02, λ = 0.022, k = 100, ρ = 2, b(x) = 1

2+x , d = 1, t = 1000,
x ∈ (0, 1) and (u0, v0) = (0.02 + 0.001 cos2 4πx, 0.001 + 0.001 sin 4πx) hold. We have the fol-
lowing numerical simulation results in order to verify the local stability of the bifurcation
solutions near (λ∗, 0,λ∗), see Figure 1.

For system (1.1), let μ = 0.02, λ = –0.018, k = 100, ρ(x) = 1 + x, b(x) = 1, d(x) = 1
3+x ,

t = 1000, x ∈ (0, 1) and (u0, v0) = (0.001+0.001 cos2 4πx, 0.02+0.001 sin 4πx) hold. We have

Figure 1 The bifurcation solutions near (λ∗, 0,λ∗).
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Figure 2 The bifurcating steady states near (0,μ,λ∗).

the following numerical simulation results which verify the local stability of the bifurcating
steady states near (0,μ,λ∗), see Figure 2.

5 Conclusions
In this paper, we have studied the local stability of bifurcating solutions obtained in [14] of
a spatially heterogeneous cooperative system with cross-diffusion. First, we give the bifur-
cating direction near bifurcation point. Then, using spectral analysis and the principle of
exchange stability, we prove that the bifurcation solutions near the bifurcation points are
locally asymptotically stable, which means that the densities of two cooperative species
will tend to stabilization. Finally, we give numerical simulation results in order to verify
the local stability of bifurcation solutions.
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