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Abstract

In this article, an anomalous diffusion model via a new Liouville-Caputo general
fractional operator with the Mittag-Leffler function of Wiman type is investigated for
the first time. The convergence of the series solution for the problem is discussed
with the aid of the Laplace transform. The anomalous diffusion processes are
compared to the characteristics of the conventional diffusion graphically. The results
show that the new Liouville-Caputo general fractional operator is effective in
characterizing and solving the problems of the anomalous diffusion.

Keywords: anomalous diffusion; general fractional operator; analytic solution;
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1 Introduction

In nature, the anomalous diffusion phenomena occur in multiple scientific fields including
physical chemistry, bioscience and engineering technology [1-4]. When many researchers
attempt to describe or characterize these phenomena by the conventional integer-order
differential equations, the theoretical analyses are not in good agreement with the real
observations [4]. With the development of fractional calculus theory (FCT), the scien-
tists discovered that the fractional differential equations (FDEs) have great advantages in
solving many anomalous physical phenomena [5-8]. Kumar et al. [9] proposed a time-
fractional modified Kawahara equation based on the Caputo-Fabrizio operator and dis-
cussed a fractional model of convective radial fins with the aid of the Homotopy analysis
transform method numerically [10]. Singh et al. [11] analyzed the El Nino-Southern Os-
cillation model via the iterative method and fixed point theorem, as well as a nonlinear
fractional dynamical model of interpersonal and romantic relationships through the q-
homotopy analysis Sumudu transform method [12]. Especially, the anomalous behaviors
involving the diffusion problem, heat transfer, creep phenomena, fluid flow process, oscil-
lating circuits and the convection dispersion have been the research hot spots (see [13—
18]). For instance, Metzler and Klafter presented the kinetic diffusion equations based on
the fractional derivative (FD) in [19]. Yang et al. proposed the rheological models with the
aid of FD in [20]. Ren et al. solved the time-fractional convection dispersion equations
in [21]. However, the methods for obtaining the analytic solutions of those FDEs are still
lacking due to the complexity of FCT (see [22, 23]).
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The Mittag-Leffler function (MLF) and its extended forms, which are closely related to
the FCT, seem to provide us with new ideas in describing some anomalous phenomena
and solving the FDEs [24, 25]. Based on the MLFs, many fractional differential operators
(FDOs) have been suggested (see [18, 25-31]). For example, Caputo and Fabrizio [30] de-
fined a new fractional derivative without singular kernel. Atangana et al. used the MLF to
replace the exponent function in the integral kernel of the above definition and obtained
its new form in [18]. Giusti et al. suggested the Prabhakar-like fractional derivative in [31].
A family of general FDOs based on the extensions of the classical MLFs (Gosta Mittag-
Leftler, Wiman and Prabhakar functions) were proposed in [25, 28]. In fact, there are close
relationships among these FDOs. As analyzed in [9] by Kumar, the Caputo-Fabrizio oper-
ator is much more efficient than the classical Caputo derivative. For Atangana’s suggestion
to the new fractional derivative with one-parameter MLF, it is an extended version of the
Caputo-Fabrizio operator [18]. Similarly, the Prabhakar-like fractional derivative can re-
turn to the Caputo-Fabrizio operator and the new FDOs defined by Yang when the param-
eters take the particular values (see [25, 28, 31]). These FDOs involving the MLFs in the
integral kernel have been applied to model many physical phenomena, such as the anoma-
lous relaxation, heat-transfer problems, viscoelastic problems, Euler-Lagrange equation
and the boundary value problem, extensively (see [18, 28—36]). Especially, the new gen-
eral FDOs with the aid of Laplace transform (LT) of the MLFs may be provided to describe
different anomalous physical phenomena (see [28]). Inspired by this, this paper aims to
model the anomalous diffusion problems by the new general FDOs and to obtain the an-
alytic solution.

The remainder of this paper is structured as follows. In Section 2, the definitions of
several MLFs, the new Liouville-Caputo general FDO with the extension of Wiman func-
tion, as well as the LT of the Wiman and Prabhakar MLFs with power-law functions, are
reviewed. In Section 3, an anomalous diffusion model (ADM) based on the above gen-
eral FDO is proposed, and its analytic solution is also given. In addition, the ADMs with
different parameters are analyzed graphically. Finally, the conclusions are summarized in
Section 4.

2 The MLF and a new general FDO
2.1 The MLF and LTs of its generations
In recent decades, owing to the successful applications of MLFs in multiple fields involving
applied sciences and pure mathematics, they have received wide attention. Correspond-
ingly, a variety of the extensions or generalizations of the MLF have been suggested. Here,
we review them as follows.

Let C, R and N be the sets of complex numbers, real numbers and positive integers,

respectively.

Definition 1 The MLF proposed by Gosta Magnus Mittag-Leffler in 1903 [24, 26, 28] is
given by

Ez?(X)—;mr (1)

where ¢, x € C,Re ¥ >0, A € N, and I'(-) denotes the Gamma function.
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Definition 2 The first extended form to the MLF, suggested by Wiman in 1905 [24, 28],
is defined as

o A

_ X
Eﬁ'w(X)_gr(ﬂ)nﬁ—ZD'), (2)

where ¢, w, x € C,Re® >0and A € N.

Definition 3 The extension of the MLF containing three parameters, proposed by Prab-
hakar in 1971 [24, 27, 28], is described as

] B i (t)a A
E,,,w(X)—g F(A+1)F(ﬁk+w)x ’ X

where ¥, @, x, 7 € C,Re?, v >0, 1 € N, and the Pochhammer symbol is

1, A=0,

T(t+))
() ’ Z 1

(T =1t(t+1)---(t+Ar-1)= (4)

Definition 4 The new extended forms to the MLFs of Wiman and Prabhakar types are
defined as follows [28]:

o A

~ X
Eﬁ,ww()()— ;:0 F(z?k+w+9) (5)
and
E5 a0 =Y () X' ©)
0 IO+ DI@r+@ +6)"

where 9, @, x, 1 € C,Re?¥, 7 >0and A € N.

Definition 5 The LT of a real function ¢(x), x > 0, is defined as [37, 38]

F&) = L[p(x)] = /0 pWetrdx, £>0, @)

where L is the LT operator.

According to the literature [28], the LTs of the new extensions of Wiman and Prabhakar

functions with power-law functions are listed in Table 1.

Table 1 The LT of the new extensions of Wiman and Prabhakar functions with the power-law
functions [28]

The Wiman and Prabhakar functions with the power-law functions LT

Xw+67]Ez9,w’+9(Xﬁ) 5—(w+9)(] *%'70)4
Xw+97155,w+9()(ﬁ) gf(zrﬁe)u _sfl?)fr
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2.2 The new Liouville-Caputo general FDO with the extension of Wiman function
Definition 6 Let0< ¥ <1and ¢, w, 6 € R. The new Liouville-Caputo general FDO with

the extension of Wiman function is defined as [28]

Y
(DVQ)(x) = /0 [(r =07 Egy mraa (v = x)7) ]2 (x) dx, (8)
where
dQ(x)
W) =
QY (x) = P

The LT of Eq. (8) is given as follows [28, 38, 39]:
F§=£"0(1-57")" x [sL[200)] - 200)] ©)

Remark According to the literature [31], there is

w+6-1

X

w+8—1E — ,
I'(zw +6)

lim x ps0(nx”)

n—0
which is the integral kernel of the Liouville-Caputo FDO. It indicates that the Liouville-
Caputo fractional derivative is a special case of the general Liouville-Caputo fractional-

order derivative of Wiman type.

3 Analyses of the ADM
3.1 Analytic solution of the ADM
Applying the new Liouville-Caputo general FDO with the extension of Wiman function

equation (8), we can obtain a new anomalous diffusion model as follows:

3%u(x, x)

(éCDE(l’)M) (e, x)=¢ o2

, % x>0, (10)

where ¢ is a real constant reflecting the magnitudes of the diffusion capacity.

The initial value condition of the above anomalous diffusion equation is
u(x,0) =0, (11)

and the boundary value conditions are

M(O, X) =¢ (12)

u(oo, x) =B,

where c is a real constant and B is a bounded real number.

From Egs. (8) and (9), performing LT of Eq. (10) with respect to y, we can obtain

(1) X [6U®,§) - ux,0)] = eUP (x,8). (13)
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Meanwhile, the corresponding boundary value conditions via LT become

U(O,é) = g: (14)
U(oco,&) =B.

Substituting Eq. (11) into Eq. (13), we have

MU(x,€) = U (x,£), (15)
where
M= El—(u‘H@)(l _ ;;_-—19)_1' (16)

Then, applying the eigenvalue method [40], we can obtain the analytic solution of Eq. (15)
as follows:

U(x, &) = Cle@x + Cge_‘/@x. (17)
Next, the substitution of Eq. (14) into Eq. (17) results in

C1+C2:
C;=0.

¢ (18)
Finally, substituting Eq. (18) into Eq. (17), we obtain
U(x,€) = ge‘\/@". (19)

To obtain the series solution of Eq. (8), consider the following Taylor series [41]:

M M\ am ., 1/M\*? 1 [/ M\?
e_\/szl—(—> x+——x2——(—> x3+—(—> A (20)
&

2 ¢ 6\ ¢ 24\ ¢

Substituting Egs. (16) and (20) into Eq. (19), we have

L[(x é:) _ E _ E <51(w+9)(1 _ %-—19)71 )I/Zx . iél’(ﬁ”")(l B E*ﬁ)fl xz
’ & & E; 2 e
c Sl—(w+9)(1 _%-—19)—1 3/2 5 c 51_(w+9)(1 _g):—ﬂ)—l 9 \

B @ & r+ E c X4
S ) R A
& ﬁé (1 § ) x

+ ig—(mw(l _g) e

_ KCm35(1-3<w+9))/2(1 _ g—ﬁ)*3/2xs

C  c1-2(w+0) —9\"2_ 4
+@§ T -ET) (21)
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Finally, using Table 1, we can easily obtain

(w+0-1)/2 £1/2 (Xl?)

c
ulx, x)=c— ﬁx)( 9,(1+(z +0))/2

C 2 w1 )
+ —x E
% X 0, +60 (X )

C 3. 3(@+6-1)/2 3/2 ]
_683/2x X o E 3(w+6)-1 )/Z(X )

2(w +0— 1)E2

——x'x 9,2(w +60)-1 (Xﬂ)+"'

242

c(=x)" 0-1)/2 g/ 0
+Z|: X" 2Eg,i(m+9-1)/2+1(X ) : (22)

nlgn/z

3.2 Numerical analyses of the ADM

In this subsection, we illustrate the numerical analyses of the ADM from multiple angles.
Firstly, we analyze the convergence of Eq. (22) by discussing the values of n. Secondly, the
comparisons between the conventional diffusion and the anomalous diffusion are pre-
sented graphically. Next, the characteristics of the anomalous diffusion with the varied
fractional orders are represented. Finally, the ADMs with several varied parameters are
shown graphically.

The applications of the series solution with the complete terms are not conducive to
solving the practical problems. In fact, the series solution may converge to its finite terms.
For Eq. (22) with & = 0.2, we compare its results graphically when n takes 1, 2, 3 and 4,
respectively. As shown in Figure 1, when # tends to 4, the solution of Eq. (22) is almost con-
sistent with the result with # = 3, which indicates that Eq. (22) when # = 4 can be treated
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4
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X

Figure 1 Numerical solution of the anomalous diffusion equation (22) as a function of time x and
spacexforc=0.5,6=0.8, w =0.5,0 =0.3,# =0.2,n=4.




Liang et al. Advances in Difference Equations (2018) 2018:25 Page 7 of 11

as the convergence solution. Similarly, when ¢ takes 0.4 and 0.6, Eq. (22) also converges
to the result with # = 4 (see Figure 2).

In order to illustrate the differences between the conventional diffusion and the anoma-
lous diffusion, we give the exact solution of the conventional diffusion model as follows
[39]:

u(x,x):cxerfc(zjﬁ). (23)

Eq. (23) is compared to the results of Eq. (22) with ¢ = 0.2 and 0.4 graphically. As shown

in Figure 3, the anomalous diffusion processes present different characteristics from the

0465

b 0445

041

(a) (b)

Figure 2 (a) Numerical solution of the anomalous diffusion equation (22) as a function of time x and
space xforc=0.5,& =0.8, w =0.5,0 =0.3, # =0.4,n=1, 2, 3,4, (b) numerical solution of the
anomalous diffusion equation (22) as a function of time x and space x for c=0.5, & =0.8, @ =0.5,
0=03,9=0.6,n=1,2,3,4.

0.48

0.46

Figure 3 Comparisons between conventional diffusion with ¢ = 0.5, & = 0.8 and anomalous diffusion
withc=0.5,£=0.8, w =0.5,0 =0.3, ¥ =0.2,0.4, n=4.
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Figure 4 Comparisons of anomalous diffusion processes with different fractional orders.

conventional diffusion. The gradient of anomalous diffusion is smaller than that of the
conventional diffusion.

Figure 4 shows the effects of different orders on the anomalous diffusion processes.
Clearly, the smaller the orders are, the stronger the diffusion processes are. Under the
same conditions, the diffusion concentrations approximately range from 0.45 to 0.4 for
? = 0.2, 0.46 to 0.425 for ¥ = 0.4, 0.47 to 0.44 for ¥ = 0.6 and 0.475 to 0.45 for ¥ = 0.8,
respectively.

Considering the effect of different parameters on the anomalous diffusion processes, we
present the diffusion processes with several varied parameters in Figure 5. The values of
different parameters are listed in Table 2.

4 Conclusions

In the current paper, we have solved a new ADM based on a new Liouville-Caputo general
FDO with the extension of Wiman function. The analytic series solution was obtained and
its convergence was discussed. The results show that the numerical solutions can satisfy
the accuracy when # = 4, and the new FDO is effective in describing the anomalous dif-
fusion phenomena. In addition, the anomalous diffusion processes exhibit different char-
acteristics from the conventional diffusion, and they are greatly affected by the varied pa-
rameters. Specially, the smaller the orders are, the stronger the diffusion processes are.
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Figure 5 Numerical solutions of the anomalous diffusion equation (22) as a function of time x and
space x with different parameters shown in Table 2.

Table 2 Different parameters for the anomalous diffusion model

Figure numbers Parameters

4 e w 0 s n
Figure 5(a) 0.5 0.8 0.2,04,06,08 03 0.2 4
Figure 5(b) 0.5 0.8 0.2,04,06,08 0.5 0.2 4
Figure 5(c) 0.5 0.8 0.2,04,06,08 0.7 0.2 4
Figure 5(d) 0.5 0.8 0.2,04,06,08 09 0.2 4
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