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Abstract
In this paper, we establish some criteria on robust exponential stability by using the
formula for the variation of parameters and estimating the Cauchy matrix. More
importantly, the robust stability criteria do not require the stability of the
corresponding continuous system, and so they can be more widely applied to
stabilize the unstable continuous system with time delays and uncertainties by using
random impulsive control. Further, we give some numerical examples to illustrate the
theoretical results.
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1 Introduction
Uncertainties happen frequently in various engineering, biological, economical, etc. sys-
tems. Delay differential systems usually encounter the uncertainties because of system
parameters, modeling error or some factors. The uncertainties that affect a time delay
system fall into two different categories. They can be classified into delay dependent and
delay independent criteria. Since the delay dependent criteria make use of information on
the length of delays, they are less conservative than the delay independent ones. It is well
known that uncertainties often result in instability. Therefore, the robust stability is per-
formed for generally bounded and uncertain domains. The robust stability has received
considerable attention in recent years. Yang and Xu in [1] presented robust stability for
an uncertain impulsive control system with time-varying delay. Li in [2] established ro-
bust exponential stability for impulsive systems with state-dependent delays, and several
interesting results were established in [3–11].

Impulsive differential systems and impulsive control systems have attracted increasing
interest in recent years. Such systems arise in many fields of science and engineering, see
[2, 12–20]. When impulse time is random, the solutions of the differential system behave
as a stochastic process. There are several research works in the literature on random im-
pulsive differential systems. Wu et al. in [21] studied the existence and uniqueness of solu-
tions to random impulsive differential systems. In [22] Anguraj and Vinodkumar proved
the existence, uniqueness and stability results of random impulsive semilinear differen-
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tial systems. Ravi Agarwal et al.[23] proved exponential stability for differential equations
with random impulses at random times. For further study, refer to [21, 22, 24–30] and the
references therein. So far there has been no paper reported dealing with uncertain random
impulsive delay differential systems. Therefore, it is necessary to investigate the stability
of uncertain random impulsive delay differential systems.

The paper is organized as follows. In Section 2, we recall briefly the notations, defini-
tions, lemmas and preliminaries which are used throughout this paper. In Section 3, we
prove robust exponential stability of uncertain random impulsive linear and nonlinear in-
finite delay differential systems by using the method of variation of parameters. Finally, in
Section 4, we give some examples to illustrate our result.

2 Preliminaries
Let �n be the n-dimensional Euclidean space and � be a nonempty set. Assume that
{τk}∞k=1 is a sequence of independent exponentially distributed random variables with pa-
rameter λ, and each random variable τk is defined from � to Dk

def.= (0, dk) for k = 1, 2, . . . ,
where 0 < dk < +∞. Let us denote by {Bt , t ≥ 0} the simple counting process generated by
{ξn}, that is, {Bt ≥ n} = {ξn ≤ t}, and denote by Ft the σ -algebra generated by {Bt , t ≥ 0}.
Then (�, P, {Ft}) is a probability space. E stands for the mathematical expectation opera-
tor with respect to the given probability measure P.

For x ∈ �n and A ∈ �n×n, the norm is defined as follows:

‖x‖ =

√
√
√
√

n
∑

j=1

x2
j , ‖A‖ =

√

λmax
(

AT A
)

, μ(A) =
1
2
λmax

(

A + AT)

,

where λmax(·) is the largest eigenvalue of the matrix.
Consider the following nonlinear uncertain random impulsive control system with infi-

nite delays:

ẋ(t) = (A + �A)x(t) + (B + �B)xμ1
(

t – τ (t)
)

+ (C + �C)
∫ ∞

0
h(η)xμ2 (t – η) dη, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . ,

x(s) = ϕ(s), s ≤ t0,

(1)

where μ1 ≥ 1, μ2 ≥ 1. Let PC((–∞, t0],�n) = {ϕ : (–∞, t0] → �n, ϕ(t) is piecewise
continuous}, and for ϕ ∈ PC((–∞, t0],�n), the norm is defined as E‖ϕ‖2 =
supt≤t0 E‖ϕ(t)‖2; A, B, C ∈ �n×n are matrices; τ (t) is the time-varying delay function with
0 ≤ τ (t) ≤ τ , τ is a given positive constant; �A, �B, �C are the uncertain matrices,
which vary within the range of ‖�A‖ ≤ a, ‖�B‖ ≤ b, ‖�C‖ ≤ c, where a, b, c are known
nonnegative constants; h(s) ∈ C(�+,�) satisfies

∫ +∞
0 |h(s)|eμ2ηs ds < ∞, where η > 0 is a

given constant; bk : Dk → �n×n is a matrix-valued function for each k = 1, 2, . . . ; ξ0 = t0

and ξk = ξk–1 + τk for k = 1, 2, . . . , here t0 ∈ � is an arbitrary real number. Obviously,
t0 = ξ0 < ξ1 < ξ2 < · · · < limk→∞ ξk = ∞; x(ξ–

k ) = limt↑ξk x(t) according to their paths with
the norm E‖x‖2 = supt0≤s≤t E‖x(s)‖2 for each t satisfying t ≥ t0.
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When μ1,μ2 = 1, system (1) becomes the linear uncertain random impulsive control
system with infinite delays of the form

ẋ(t) = (A + �A)x(t) + (B + �B)x
(

t – τ (t)
)

+ (C + �C)
∫ +∞

0
h(η)x(t – η) dη, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . ,

x(s) = ϕ(s), s ≤ t0.

(2)

If h(η) = 0, then system (2) becomes the linear uncertain random impulsive control system
with infinite delays.

ẋ(t) = (A + �A)x(t) + (B + �B)x
(

t – τ (t)
)

, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . , (3)

x(s) = ϕ(s), s ≤ t0.

In particular, �A,�B = 0 then system (3) becomes the random impulsive control system
with infinite delays.

ẋ(t) = Ax(t) + Bx
(

t – τ (t)
)

, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . , (4)

x(s) = ϕ(s), s ≤ t0.

We always assume that the solution x(t) of (1) is continuous on the right and limitable on
the left. Now, we introduce the following lemma and hypotheses used in our discussion.

Lemma 1 ([23]) The probability that there will be exactly k impulses until the time t, t ≥ t0,
where impulse moments ξk , k = 1, 2, . . . , follow exponential distribution with parameter λ,
is given by the equality P(I[ξk ,ξk+1)(t)) = λk (t–t0)k

k! e–λ(t–t0), where the events I[ξk ,ξk+1)(t) = {ω ∈
� : ξk(ω) < t < ξk+1(ω)}, k = 1, 2, . . . .

Remark 1 From [23], the expected value of solution x(t) for the random impulsive differ-
ential equations is given as

E
[∥
∥x(t)

∥
∥
]

=
∞

∑

k=0

E
[∥
∥x(t)

∥
∥|I[ξk ,ξk+1)(t)

]

P
(

I[ξk ,ξk+1)(t)
)

,

where the impulse moments ξk , k = 1, 2, . . . , follow exponential distribution with parame-
ter λ.

Definition 1 Assume x(t) = x(t, t0,ϕ) to be the solution of (1) through (t0,ϕ). Then the
zero solution of (1) is said to be globally exponentially mean square stable if, for any initial
data xt0 = ϕ, there exist two positive numbers γ > 0, M ≥ 1 such that

E
∥
∥x(t)

∥
∥

2 ≤ ME‖ϕ‖2e–γ (t–t0), t ≥ t0.
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Remark 2 The uncertain random impulsive dynamical system (1) is called robust expo-
nentially mean square stable if the zero solution x = 0 of the system is globally exponen-
tially mean square stable for any ‖�A‖ ≤ a, ‖�B‖ ≤ b, ‖�C‖ ≤ c, where a, b, c are known
nonnegative constants.

Hypothesis (H1) The condition E{maxi,k{∏k
j=i ‖bj(τj)‖}} is uniformly bounded. That is,

there is a constant α > 0 such that

E

{

max
i,k

{ k
∏

j=i

∥
∥bj(τj)

∥
∥

}}

≤ α for all τj ∈ Dj, j = 1, 2, . . . .

3 Main results
We need the following lemma to prove the main results.

Lemma 2 Let φ(t, t0) be the Cauchy matrix of the linear system:

ẋ(t) = Ax(t), t �= ξk , t ≥ t0

x
(

ξ+
k
)

= bk(τk)x
(

ξ–
k
)

, (5)

x(s) = ϕ(s), s ≤ t0.

Then it satisfies ‖φ(t, t0)‖ ≤ e[μ(A)–λ(1–α)](t–t0), t ≥ t0.

Proof For any x0 ∈ �n, let x(t) = x(t, t0, x0) be a solution through (t0, x0). Calculating the
upper right derivative D+‖x(t)‖ along the solution x(t) of equation (5), we have

D+∥
∥x(t)

∥
∥ ≤ μ(A)

∥
∥x(t)

∥
∥, t �= ξk , t ≥ t0

and

∥
∥x(t)

∥
∥

2 ≤
[∥
∥
∥
∥
∥

k
∏

j=1

bj(τj)

∥
∥
∥
∥
∥

eμ(A)(t–t0)∥∥x(t0)
∥
∥I[ξk ,ξk+1](t)

]2

, t ∈ [ξk , ξk+1], t ≥ t0,

E
∥
∥x(t)

∥
∥

2 ≤
∞

∑

k=0

k
∏

j=1

∥
∥bj(τj)

∥
∥

2eμ(A)(t–t0)E
∥
∥x(t0)

∥
∥

2P
(

I[ξk ,ξk+1](t)
)

, t ≥ t0,

E
∥
∥x(t)

∥
∥

2 ≤ eμ(A)(t–t0)E
∥
∥x(t0)

∥
∥

2
∞

∑

i=0

αλi(t – t0)i

i!
e–λ(t–t0), t ≥ t0

≤ eμ(A)(t–t0)E
∥
∥x(t0)

∥
∥

2e–(1–α)λ(t–t0),

E
∥
∥x(t)

∥
∥

2 ≤ e[μ(A)–λ(1–α)](t–t0)E
∥
∥x(t0)

∥
∥

2.

Since x(t) = φ(t, t0)x(t0), we obtain

∥
∥φ(t, t0)

∥
∥ = sup

‖x(t0)‖�=0

e[μ(A)–λ(1–α)](t–t0)E‖x(t0)‖2

E‖x(t0)‖2 ,

∥
∥φ(t, t0)

∥
∥ ≤ e[μ(A)–λ(1–α)](t–t0), t ≥ t0.

This completes the proof. �
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Now consider the linear uncertain random impulsive control system (3).

Theorem 1 Assume that hypothesis (H1) holds, then the zero solution of system (3) is ro-
bustly exponentially stable provided 2a2 + 2(b + ‖B‖)2 + 2k < 0, where k = [μ(A) – λ(1 – α)].

Proof Since 2a2 + 2(b + ‖B‖)2 + 2k < 0, we choose small enough γ ∈ (0,η) such that 2a2 +
2(b + ‖B‖)2eγ (τ–t0) + 2k + γ < 0, and e–γ t0 ≤ 1.

Furthermore, for any ε ∈ (0,γ ), we have

0 ≤ 2a2 + 2
(

b + ‖B‖)2e(γ –ε)(τ–t0) ≤ –(2k + γ – ε). (6)

By the formula for variation of parameters, the solution of (3) can be presented as follows:

x(t) = φ(t, t0)x(t0) +
∫ t

t0

φ(t, s)
[

�Ax(s) + (B + �B)x
(

s – r(s)
)]

ds,

where φ(t, t0) is the Cauchy matrix of the impulsive linear system (5). Then we have

∥
∥x(t)

∥
∥

2 ≤ 2
∥
∥φ(t, t0)

∥
∥

2∥
∥x(t0)

∥
∥

2

+ 2
[∫ t

t0

∥
∥φ(t, s)

∥
∥
(

a
∥
∥x(s)

∥
∥ +

(

b + ‖B‖)∥∥x
(

s – r(s)
)∥
∥
)

ds
]2

,

E
∥
∥x(t)

∥
∥

2 ≤ 2
∥
∥φ(t, t0)

∥
∥

2E
∥
∥x(t0)

∥
∥

2

+ 2
[∫ t

t0

∥
∥φ(t, s)

∥
∥
(

aE
∥
∥x(s)

∥
∥ +

(

b + ‖B‖)E
∥
∥x

(

s – r(s)
)∥
∥
)

ds
]2

,

E
∥
∥x(t)

∥
∥

2 ≤ 2e2k(t–t0)E
∥
∥x(t0)

∥
∥

2

+ 2
∫ t

t0

e2k(t–s)(2a2E
∥
∥x(s)

∥
∥

2 + 2
(

b + ‖B‖)2E
∥
∥x

(

s – r(s)
)∥
∥

2)ds, t ≥ t0.

(7)

Without loss of generality, we assume that E‖ϕ‖2 > 0. From γ > ε, we get

E
∥
∥x(t)

∥
∥

2 ≤ E‖ϕ‖2 < E‖ϕ‖2e–(γ –ε)(t–t0) for t ≤ t0. (8)

In the following, we shall prove that

E
∥
∥x(t)

∥
∥

2 < E‖ϕ‖2e–(γ –ε)(t–t0) for t ≥ t0. (9)

If this is not true, by (8) and the piecewise continuity of x(t), there must exist t∗ > t0 such
that

E
∥
∥x

(

t∗)∥∥2 ≥ E‖ϕ‖2e–(γ –ε)(t∗–t0), (10)

E
∥
∥x(t)

∥
∥

2 ≤ E‖ϕ‖2e–(γ –ε)(t–t0), t < t∗. (11)
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From (6), (7) and (11), we get

E
∥
∥x

(

t∗)∥∥2 ≤ 2e2k(t∗–t0)E‖ϕ‖2

+ 2
∫ t∗

t0

e2k(t∗–s)(2a2e–(γ –ε)sE‖ϕ‖2 + 2
(

b + ‖B‖)2e–(γ –ε)(s–r(s))E‖ϕ‖2)ds

≤ 2e2k(t∗–t0)E‖ϕ‖2

+ 2
∫ t∗

t0

e2k(t∗–s)e–(γ –ε)sE‖ϕ‖2(2a2 + 2
(

b + ‖B‖)2e(γ –ε)(r(s)))ds

≤ 2e2k(t∗–t0)E‖ϕ‖2

+ 2e2kt∗E‖ϕ‖2(2a2 + 2
(

b + ‖B‖)2e(γ –ε)(r(s)))
∫ t∗

t0

e–(2k+(γ –ε))s ds

≤ 2e2k(t∗–t0)E‖ϕ‖2

×
[

1 +
(

2a2 + 2
(

b + ‖B‖)2e(γ –ε)(τ–t0))e2kt0

∫ t∗

t0

e–(2k+γ –ε)s ds
]

≤ 2e2k(t∗–t0)E‖ϕ‖2(1 +
(

2a2 + 2
(

b + ‖B‖)2e(γ –ε)(τ–t0)) × (

–(2k + γ – ε)
)–1

× {

e2kt0
[

e–(2k+γ –ε)t∗ – e–(2k+γ –ε)t0
]})

≤ 2e2k(t∗–t0)E‖ϕ‖2[1 + e–2k(t∗–t0)–(γ –ε)t∗ – 1
]

≤ 2e2k(t∗–t0)E‖ϕ‖2(e–2k(t∗–t0)–(γ –ε)t∗),

E
∥
∥x

(

t∗)∥∥2 ≤ 2E‖ϕ‖2e–(γ –ε)t∗ .

This contradicts (10), and so estimate (9) holds. Letting ε → 0, we have

E
∥
∥x(t)

∥
∥

2 ≤ 2E‖ϕ‖2e–γ t , t ≥ t0.

This completes the proof. �

In the following theorem, we prove that the nonlinear uncertain random impulsive con-
trol system (1) is robust exponentially mean square stable.

Theorem 2 Assume that hypothesis (H1) holds, then the zero solution of system (1)
is robustly exponentially stable provided 4a2 + 4(b + ‖B‖)2E‖ϕ‖2(μ1–1) + 2(c + ‖C‖)2 ×
E‖ϕ‖2(μ2–1)M + 2k < 0, where k = [μ(A) – λ(1 – α)] and M =

∫ ∞
0 ‖h(s)‖eμ2ηs ds.

Proof Since 4a2 + 4(b + ‖B‖)2E‖ϕ‖2(μ1–1) + 2(c + ‖C‖)2E‖ϕ‖2(μ2–1)M + 2k < 0, we choose
small enough γ ∈ (0,η) such that

4a2 + 4
(

b + ‖B‖)2E‖ϕ‖2(μ1–1)eμ1γ (τ–t0) + 2
(

c + ‖C‖)2E‖ϕ‖2(μ2–1)M + (2k + γ ) < 0,

and

e–γ t0 ≤ 1.
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Furthermore, for any ε ∈ (0,γ ), we have

0 ≤ 4a2 + 4
(

b + ‖B‖)2E‖ϕ‖2(μ1–1)eμ1(γ –ε)(τ–t0) + 2
(

c + ‖C‖)2E‖ϕ‖2(μ2–1)M

≤ –(2k + γ – ε). (12)

By the formula for variation of parameters, the solution x(t) can be represented as

x(t) = φ(t, t0)x(t0) +
∫ t

t0

φ(t, s)
(

�Ax(s) + (B + �B)xμ1
(

s – r(s)
)

+ (C + �C)
∫ ∞

0
h(η)xμ2 (s – η) dη

)

ds,

where φ(t, t0) is the Cauchy matrix of impulsive linear system (5). Then we have

∥
∥x(t)

∥
∥

2 ≤ 2
∥
∥φ(t, t0)

∥
∥

2∥
∥x(t0)

∥
∥

2

+ 2
(∫ t

t0

∥
∥φ(t, s)

∥
∥

(

a
∥
∥x(s)

∥
∥ +

(

b + ‖B‖)∥∥xμ1
(

s – r(s)
)∥
∥

+
(

c + ‖C‖)
∫ ∞

0

∥
∥h(η)

∥
∥
∥
∥xμ2 (s – η)

∥
∥dη

)

ds
)2

,

E
∥
∥x(t)

∥
∥

2 ≤ 2e2k(t–t0)E
∥
∥x(t0)

∥
∥

2

+ 2
(∫ t

t0

ek(t–s)
(

aE
∥
∥x(s)

∥
∥ +

(

b + ‖B‖)E
∥
∥xμ1

(

s – r(s)
)∥
∥

+
(

c + ‖C‖)
∫ ∞

0

∥
∥h(η)

∥
∥E

∥
∥xμ2 (s – η)

∥
∥dη

)

ds
)2

≤ 2e2k(t–t0)E
∥
∥x(t0)

∥
∥

2

+ 2
∫ t

t0

e2k(t–s) ds
(

aE
∥
∥x(s)

∥
∥ +

(

b + ‖B‖)E
∥
∥xμ1

(

s – r(s)
)∥
∥

+
(

c + ‖C‖)
∫ ∞

0

∥
∥h(η)

∥
∥E

∥
∥xμ2 (s – η)

∥
∥dη

)2

,

E
∥
∥x(t)

∥
∥

2 ≤ 2e2k(t–t0)E
∥
∥x(t0)

∥
∥

2

+ 2
(

4a2E
∥
∥x(s)

∥
∥

2 + 4
(

b + ‖B‖)2E
∥
∥xμ1

(

s – r(s)
)∥
∥

2

+ 2
(

c + ‖C‖)2
∫ ∞

0

∥
∥h(η)

∥
∥E

∥
∥xμ2 (s – η)

∥
∥

2 dη

)∫ t

t0

e2k(t–s) ds.

(13)

Without loss of generality, we assume that E‖ϕ‖2 > 0. From γ > ε, it is easily observed that

E
∥
∥x(t)

∥
∥

2 ≤ E‖ϕ‖2 < E‖ϕ‖2e–(γ –ε)(t–t0) for t ≤ t0. (14)

We shall prove that

E
∥
∥x(t)

∥
∥

2 ≤ E‖ϕ‖2 < E‖ϕ‖2e–(γ –ε)(t–t0) for t ≥ t0. (15)
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If this is not true, by (14) and the piecewise continuity of x(t), there must exist t∗ > t0 such
that

E
∥
∥x

(

t∗)∥∥2 ≥ E‖ϕ‖2e–(γ –ε)(t∗–t0), (16)

E
∥
∥x(t)

∥
∥

2 ≤ E‖ϕ‖2e–(γ –ε)(t–t0), t < t∗. (17)

From (12), (13) and (17), we get

E
∥
∥x

(

t∗)∥∥2 ≤ 2e2k(t∗–t0)E‖ϕ‖2 + 2
∫ t∗

t0

e2k(t∗–s)

×
(

4a2e–(γ –ε)sE‖ϕ‖2 + 4
(

b + ‖B‖)2e–μ1(γ –ε)(s–r(s))E‖ϕ‖2μ1

+ 2
(

c + ‖C‖)2
∫ ∞

0

∥
∥h(η)

∥
∥e–μ2(γ –ε)(s–η)E‖ϕ‖2μ1 dη

)

ds

≤ 2e2k(t∗–t0)E‖ϕ‖2

+ 2e2kt∗E‖ϕ‖2
∫ t∗

t0

e–(2k+γ –ε)s

×
(

4a2 + 4
(

b + ‖B‖)2E‖ϕ‖2(μ1–1)e(γ –ε)(s–μ1s+μ1r(s))

+ 2
(

c + ‖C‖)2E‖ϕ‖2(μ2–1)
∫ ∞

0

∥
∥h(η)

∥
∥e(γ –ε)(s–μ2s+μ2η) dη

)

ds

≤ 2e2k(t∗–t0)E‖ϕ‖2

+ 2e2kt∗E‖ϕ‖2(4a2 + 4
(

b + ‖B‖)2E‖ϕ‖2(μ1–1)eμ1(γ –ε)(τ–t0)

+ 2
(

c + ‖C‖)2E‖ϕ‖2(μ2–1)M
)
∫ t∗

t0

e–(2k+γ –ε)s ds

≤ 2e2k(t∗–t0)E‖ϕ‖2

+ 2e2kt∗E‖ϕ‖2(4a2 + 4
(

b + ‖B‖)2E‖ϕ‖2(μ1–1)eμ1(γ –ε)(τ–t0)

+ 2
(

c + ‖C‖)2E‖ϕ‖2(μ2–1)M

× (

–(2k + γ – ε)
)–1)[e–(2k+γ –ε)t∗ – e–(2k+γ –ε)t0

]

≤ 2e2k(t∗–t0)E‖ϕ‖2[1 + e2kt0
(

e–(2k+γ –ε)t∗ – e–(2k+γ –ε)t0
)]

≤ 2e2k(t∗–t0)E‖ϕ‖2[1 + e–2k(t∗–t0)–(γ –ε)t∗ – 1
]

,

E
∥
∥x

(

t∗)∥∥2 ≤ 2E‖ϕ‖2e–(γ –ε)t∗ .

This contradicts (16), and so estimate (15) holds. Letting ε → 0, we have

E
∥
∥x(t)

∥
∥

2 ≤ 2E‖ϕ‖2e–γ t , t ≥ t0.

This completes the proof. �

Especially, for the linear case, we have the following result.
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Corollary 1 Assume that hypothesis (H1) holds, then the zero solution of system (2) is
robustly exponentially stable provided 4a2 + 4(b + ‖B‖)2 + 2(c + ‖C‖)2M + 2k < 0, where
k = [μ(A) – λ(1 – α)] and M =

∫ ∞
0 ‖h(η)‖e(γ –ε)η dη.

Proof The proof is similar to that of Theorem 2, when μ1 = 1, μ2 = 1. �

4 Example
In this section, we will give four numerical examples to illustrate that our results can be
applied to stabilize the unstable continuous systems by using random impulsive control.

Example 1 Consider the following linear uncertain random impulsive control system
with infinite delays:

ẋ(t) = (A + �A)x(t) + (B + �B)x
(

t – τ (t)
)

+ (C + �C)
∫ ∞

0
h(η)x(t – η) dη, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . ,

(18)

where τ (t) is a time-varying delay function with τ (t) ∈ [0, τ ], h(η) = 0.1e–1.2η , η > 0 and
with the following parameter matrices:

A =

[

1.2 –1.1
0.7 0.8

]

,

B =

[

–1.3 0.7
–0.9 0.5

]

,

C =

[

–0.1 –0.22
0.43 0.65

]

.

The zero solution of system (18) is robust exponentially mean square stable provided λ(1–
α) > 9.4263.

Proof By Corollary 1, and let us take η = 0.2, then M = 0.1
∫ ∞

0 e–η dη = 0.1. Now, the eigen-
values of A are 1 + 0.8544i, 1 – 0.8544i. Further, we use the defined matrix norm and the
matrix measure to get μ(A) = 1.2828, ‖B‖ = 1.7999, ‖C‖ = 0.8151 and ‖�A‖ ≤ a = 0.1,
‖�B‖ ≤ b = 0.2, ‖�C‖ ≤ c = 0.3.

4a2 + 4
(

b + ‖B‖)2 + 2
(

c + ‖C‖)2M + 2k < 0,

4a2 + 4
(

b + ‖B‖)2 + 2
(

c + ‖C‖)2M + 2
(

μ(A) – λ(1 – α)
)

< 0,

4(0.1)2 + 4(0.2 + 1.7999)2 + 2(0.3 + 0.8151)2(0.1) + 2
(

1.2828 – λ(1 – α)
)

< 0,

18.8526 – 2λ(1 – α) < 0,

λ(1 – α) > 9.4263.

Hence (18) is robust exponentially mean square stable. �
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Example 2 Consider the following nonlinear uncertain random impulsive infinite delay
differential system:

ẋ(t) = (A + �A)x(t) + (B + �B)xμ1
(

t – τ (t)
)

+ (C + �C)
∫ ∞

0
h(η)xμ2 (t – η) dη, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . ,

(19)

where μ1,μ2 ≥ 1 with A, B and C defined as in Example 1. Then there exists a constant η >
0 such that M =

∫ ∞
0 |h(s)|eμ2ηs ds < ∞. Then the zero solution of system (19) is robust expo-

nentially mean square stable provided 2.6056+15.9984E‖ϕ‖2(μ1–1) +2.4868ME‖ϕ‖2(μ2–1) –
2λ(1 – α) < 0.

Proof By Theorem 2, we get

4a2 + 4
(

b + ‖B‖)2E‖ϕ‖2(μ1–1) + 2
(

c + ‖C‖)2E‖ϕ‖2(μ2–1)M + 2k < 0,

2.6056 + 15.9984E‖ϕ‖2(μ1–1) + 2.4868ME‖ϕ‖2(μ2–1) – 2λ(1 – α) < 0.

Hence (19) is robust exponentially mean square stable. �

Example 3 Consider the following uncertain random impulsive control system with in-
finite delays:

ẋ(t) = (A + �A)x(t) + (B + �B)x
(

t – τ (t)
)

, t �= ξk , t ≥ t0,

x
(

ξ+
k
)

= bi(τi)x
(

ξ–
k
)

, k = 1, 2, . . . .
(20)

We take the following parameter matrices:

A =

⎡

⎢
⎣

–1 0 0.5
0.5 2.5 –1.5
0 3 –1.5

⎤

⎥
⎦ ,

B =

⎡

⎢
⎣

–0.5 0.1 0.3
0.2 –0.5 0.1

–0.3 0 0.2

⎤

⎥
⎦ .

Then the zero solution of system (20) is robust exponentially mean square stable provided
λ(1 – α) > 6.4562.

Proof Checking the eigenvalues of A, we find that they are –0.5, 0, 0.5. By Theorem 1,
the matrix norm and the matrix measure are defined as μ(A) = 2.6591, ‖B‖ = 0.7353, and
‖�A‖ ≤ a = 1.2, ‖�B‖ ≤ b = 0.8. Then

2a2 + 2
(

b + ‖B‖)2 + 2k < 0,

2a2 + 2
(

b + ‖B‖)2 + 2
(

μ(A) – λ(1 – α)
)

< 0,
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2(1.2)2 + 2(2.3571) + 2
(

2.6591 – λ(1 – α)
)

< 0,

12.9124 – 2λ(1 – α) < 0,

λ(1 – α) > 6.4562.

Hence (20) is robust exponentially mean square stable. �

Example 4 Consider the following linear random impulsive delay differential system of
the form (4):

[

x1(t)
x2(t)

]′
=

[

0 1
–0.012 1

][

x1(t)
x2(t)

]

+

[

0 0
0.12 0

]

×
[

x1(t – 0.05)
x2(t – 0.05)

]

.

The zero solution of the system is exponentially mean square stable provided λ(1 – α) >
1.2173.

Proof Checking the eigenvalues of A, we find that they are 0.0121 and 0.9879. By Theo-
rem 1, we take the values are μ(A) = 1.2029, ‖B‖ = 0.12 and ‖�A‖ ≤ a = 0, ‖�B‖ ≤ b = 0,
using the matrix norm and the matrix measure. Then

2a2 + 2
(

b + ‖B‖)2 + 2k < 0,

2a2 + 2
(

b + ‖B‖)2 + 2
(

μ(A) – λ(1 – α)
)

< 0,

2(0.12)2 + 2(1.2029) – 2λ(1 – α) < 0,

λ(1 – α) > 1.2173.

This system without impulses is unstable, but by Theorem 1 this system can be exponen-
tially mean square stable. �
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