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1 Introduction
The concept of fuzzy derivative was first introduced by Chang and Zadeh [1]. Kaleva
[2], Puri and Ralescu [3] introduced the notion of fuzzy derivative as an extension of
the Hukuhara derivative and the fuzzy integral, which was the same as that proposed by
Dubois and Prade [4]. There has been a significant development in the study of fuzzy dif-
ferential and integral equations (see, for example, [5–8], and the references therein). Under
suitable conditions, it was proved in [9] that the boundedness of solutions of the following
fuzzy integral equation:

x(t) =
∫ t

0
G(t, s)x(s) ds + f (t), (1.1)

where

G : � :=
{

(t, s) : 0 ≤ s ≤ t < ∞} →R,

is continuous and f : [0, +∞) → En is bounded. Furthermore, authors considered the
boundedness of solutions of the fuzzy differential equation

x′(t) = f
(
t, x(t)

)
, t ∈R

+ = [0, +∞), (1.2)

where f : R+ × En → En is continuous.
The purpose of this paper is to investigate the boundedness of solutions of the following

fuzzy functional integral equation with fractional order:

x(t) =
∫ t

0
(t – s)q–1[G1(t, s)x(s) + G2(t, s)x

(
θ (s)

)]
ds + f (t), (1.3)
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where

Gi : � :=
{

(t, s) : 0 ≤ s ≤ t < ∞} → R

are continuous for i = 1, 2, 0 < q ≤ 1, f ∈ C(R+, En), 0 ≤ θ (t) ≤ t.
Moreover, we also study the boundedness of solutions of the fuzzy integral equation

x(t) =
∫ t

0
(t – s)q–1G(t, s)x(s) ds + f (t), (1.4)

where G ∈ C(�,R) and f ∈ C1–q(R+, En),

C1–q
(
R

+, En) =
{

x ∈ C
(
(0, +∞), En) : t1–qx(t) ∈ C

(
R

+, En)}.

Inspired by the work of [9, 10], in the present paper we aim to establish some sufficient
conditions for the boundedness of every solution of fractional order fuzzy integral equa-
tions as well as certain fuzzy differential equations. The paper is organized as follows.
In Section 2, we present some preliminaries and lemmas. We also correct and complete
some previous results. In Section 3, we discuss the boundedness of solution for a partic-
ular fuzzy fractional differential equation. In Section 4, the boundedness of solutions for
problems (1.3) and (1.4) are given, respectively.

2 Preliminaries and lemmas
Let Pk(Rn) be the family of all nonempty compact convex subsets of Rn. For A, B ∈ Pk(Rn),
the Hausdorff-Pompeiu metric is defined by

dH (A, B) = max
{

sup
a∈A

inf
b∈B

‖a – b‖, sup
b∈B

inf
a∈A

‖a – b‖
}

.

A fuzzy set in R
n is a function with domain R

n and values in [0, 1], that is, an element of
[0, 1]Rn .

We denote by En the space of all fuzzy sets u : Rn → [0, 1] with the following properties:
(i) u is normal, that is, there exists x0 ∈R

n such that u(x0) = 1;
(ii) u is fuzzy convex;

(iii) u is upper-semicontinuous;
(iv) [u]0 = cl{x ∈ R

n|u(x) > 0} is compact.
E1 is called the space of fuzzy numbers. Obviously R ⊂ E1. Here R ⊂ E1 is understood

as R = {χ{x} : x is the usual real number}.
Let u ∈ En, then the set

[u]α =
{

x ∈R
n : u(x) ≥ α

}
, α ∈ (0, 1],

is called the α-level set of u.
The fuzzy zero is defined by

χ{0}(x) =

⎧⎨
⎩

0, x 
= 0,

1, x = 0.
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Let d∞ : En × En → [0, +∞) be defined by

d∞(u, v) = sup
{

dH
(
[u]α , [v]α

)
: α ∈ [0, 1]

}
,

where dH is the Hausdorff-Pompeiu metric for nonempty compact convex subsets of Rn.
Then (En, d∞) is a complete metric space. This defines a linear structure on En such that,
for all u, v, w, z ∈ En and λ ∈ R, we have d∞(u + w, v + w) = d∞(u, v) and d∞(λu,λv) =
|λ|d∞(u, v). Also, we can prove that d∞(u + v, w + z) ≤ d∞(u, w) + d∞(v, z).

A mapping u : T → En is bounded, where T is an interval of the real line, if there exists
r > 0 such that

d∞
(
u(x),χ{0}

) ≤ r, ∀x ∈ T .

Let u, v ∈ En and c be a positive number, the addition u + v and cv in En are defined in
terms of the α-level sets by

[u + v]α = [u]α + [v]α , [cv]α = c[v]α

for every α ∈ [0, 1].
A fuzzy function f : T → En is measurable if, for all α ∈ [0, 1], the set-valued mapping

fα : T → Pk(Rn) defined by fα(t) = [f (t)]α is measurable.
We denote by S1

f the set of all Lebesgue integrable section of F : T → Pk(Rn), that is,
S1

f = {g ∈ L1(T ,Rn) : g(t) ∈ f (t) a.e.}.
A fuzzy function f : T → En is integrably bounded if there exists an integrable function h

such that ‖x‖ ≤ h(t) for all x ∈ f0(t). A measurable and integrably bounded fuzzy function
f : T → En is said to be integrable over T if there exists F ∈ En such that Fα =

∫
T fα(t) dt =

{∫T g(t) dt : g ∈ S1
fα } for all α ∈ [0, 1].

Definition 2.1 ([11]) The Riemann-Liouville fractional integral of order β > 0 for a func-
tion f : R+ →R is given by

Iβ f (t) =
1

�(β)

∫ t

0
(t – s)β–1f (s) ds.

Definition 2.2 ([11]) The Riemann-Liouville fractional derivative of order 0 < β < 1 for a
function f : R+ →R is defined by

Dβ f (t) =
1

�(1 – β)
d
dt

∫ t

0
(t – s)–β f (s) ds.

Definition 2.3 ([12]) Let f : R+ → En be an integrable fuzzy function. The fuzzy fractional
integral of order β > 0 of the function f ,

Iβ f (t) =
1

�(β)

∫ t

0
(t – s)β–1f (s) ds,

is defined by

Iβ f (t)(x) = sup
{
α ∈ [0, 1] : x ∈ Iβ fα

}
.
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Its level sets are given by

[
Iβ f (t)

]α =
{

x ∈R
n : Iβ f (t)(x) ≥ α

}
, α ∈ [0, 1];

that is, we have

[
Iβ f (t)

]α =
1

�(β)

∫ t

0
(t – s)β–1[f (s)

]α ds.

Let x, y ∈ En. If there exists z ∈ En such that x = y + z, then we call z the H-difference of
x and y, denoted by x –H y.

A fuzzy function f : T → En is said to be differentiable at t ∈ T if there exists d
dt f (t) ∈ En

such that the limits

lim
h→0+

f (t + h) –H f (t)
h

and lim
h→0+

f (t) –H f (t – h)
h

exist and are equal to d
dt f (t).

Definition 2.4 ([12]) If f : [0, +∞) → En, then the Riemann-Liouville fractional derivative
of order 0 < β ≤ 1 of f is defined as

Dβ f (t) =
1

�(1 – β)
d
dt

∫ t

0
(t – s)–β f (s) ds,

provided that the equation defines a fuzzy number Dβ f (t) ∈ En. It is easy to see that
Dβ f (t) = d

dt I1–β f (t), t ∈ [0, +∞).

Definition 2.5 ([11]) For α > 0, the classical Mittag-Leffler function Eα(z) and the gener-
alized Mittag-Leffler function Eα,β (z) are defined by

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, Eα,β (z) =

∞∑
k=0

zk

�(αk + β)
.

Definition 2.6 ([13]) f : R → R is locally Hölder continuous in t1 if there exist a neigh-
borhood U of t1 and constants c > 0, 0 < ν < 1 such that, for all t, s ∈ U ,

∣∣f (t) – f (s)
∣∣ ≤ c|t – s|ν .

Lemma 2.1 ([14]) Let m : R+ → R be locally Hölder continuous with exponent λ > q such
that, for any t1 > 0, we have

m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1. (2.1)

Then it follows that Dqm(t1) ≥ 0.

We note that Lemma 2.1 is very limited in the sense that the condition imposed on the
m is quite restrictive. We shall be concerned with the problem of finding the appropriate
modifications that are needed to prove the results when m satisfies a weaker assumption.
To illustrate this idea, we shall next give the result which is an improvement of Lemma 2.1.



Wang Advances in Difference Equations  (2018) 2018:45 Page 5 of 19

Lemma 2.2 Let m : R+ → R. If there exists δ ≥ 0 such that tδm(t) is locally Hölder con-
tinuous with exponent λ > q such that, for any t1 > 0, (2.1) holds, then it follows that
Dqm(t1) ≥ 0.

Proof The proof is similar to Lemma 2.1, but for the sake of completeness, we give the
details of it. Let H(t) =

∫ t
0 (t – s)–qm(s) ds. Consider, for sufficiently small h > 0 such that

t1 – h > 0,

H(t1) – H(t1 – h) =
∫ t1–h

0

[
(t1 – s)–q – (t1 – h – s)–q]m(s) ds

+
∫ t1

t1–h
(t1 – s)–qm(s) ds = I1 + I2.

Since [(t1 – s)–q – (t1 – h – s)–q] < 0 for 0 ≤ s ≤ t1 – h and m(s) ≤ 0 by hypothesis, we have
I1 ≥ 0. Also, H(t1) – H(t1 – h) ≥ I2. Since tδm(t) is locally Hölder continuous and m(t1) = 0,
there exists a constant K(t1) > 0 such that, for t1 – h ≤ s ≤ t1 + h,

–K(t1)(t1 – s)λ ≤ sδm(s) ≤ K(t1)(t1 – s)λ,

where λ > q and 0 < λ < 1. We then get

I2 =
∫ t1

t1–h
(t1 – s)–qs–δsδm(s) ds ≥ –K(t1)

∫ t1

t1–h
(t1 – s)λ–qs–δ ds

≥ –K(t1)
(t1 – h)δ(λ + 1 – q)

hλ+1–q.

Hence H(t1)–H(t1 –h) ≥ – K (t1)
(t1–h)δ (λ+1–q) hλ+1–q. Letting h → 0+, we obtain H ′(t1) ≥ 0, which

implies Dqm(t1) = 1
�(1–q) H ′(t1) ≥ 0 and the proof is complete. �

Remark 2.1 If there exists 0 ≤ δ < 1 such that tδm(t) is locally Hölder continuous with
exponent λ, then for any c ∈ R, tδ(m(t)–c) is also locally Hölder continuous with exponent
max{λ, δ}.

In Theorem 4.1 of [14], authors considered the global existence of solution of the prob-
lem

Dqu(t) = g
(
t, u(t)

)
, lim

t→0+
t1–qu(t) = u0, (2.2)

by constructing the auxiliary problem

Dqu(t) = g
(
t, u(t)

)
+ ε, lim

t→0+
t1–qu(t) = u0 + ε, ε > 0.

The idea is very interesting, but we find out that there are no conditions to ensure the
existence of solution for ε > 0. So, we revise the corresponding theorem as follows. Next,
we give the notion of maximal solution which is of the same form as that in [15].
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Definition 2.7 Let r(t) be a solution of the scalar differential equation (2.2) on (0, +∞).
Then r(t) is said to be a maximal solution of (2.2) if, for every solution u(t) of (2.2) existing
on (0, +∞), the inequality u(t) ≤ r(t), t ∈ (0, +∞) holds.

Theorem 2.1 Let C1–q(R+,R) = {x ∈ C((0, +∞),R) : t1–qx(t) ∈ C(R+,R)}. Assume that m –
η ∈ C1–q(R+,R), there exists 0 ≤ δ < 1 such that tδ(m – η) is locally Hölder continuous with
exponent λ > q, g ∈ C((0, +∞) ×R,R) satisfies

g(t, x) – g(t, y) ≥ L(x – y)
tq�(1 – q)

, wherever t ∈ (0, +∞), x ≥ y, L > 1 (2.3)

and

Dqm(t) ≤ g
(
t, m(t)

)
, t ∈ (0, +∞). (2.4)

Let η(t) be the maximal solution of (2.2) in (0, +∞) such that limt→0+ t1–qm(t) < u0, then
we have m(t) ≤ η(t), t ∈ (0, +∞).

Proof For ε > 0, let ηε(t) = η(t) – ε, t ∈ (0, +∞). Then, by Definition 2.2 and (2.3),

Dqηε(t) = Dqη(t) –
ε

tq�(1 – q)

= g
(
t,ηε(t) + ε

)
–

ε

tq�(1 – q)

≥ g
(
t,ηε(t)

)
+

(L – 1)ε
tq�(1 – q)

> g
(
t,ηε(t)

)
, t ∈ (0, +∞)

and limt→0+ t1–qηε(t) = u0. Next, we claim m(t)–ηε(t) < 0, t ∈ (0, +∞). Assume that it is not
true. Then, for limt→0+ t1–q(m(t) – ηε(t)) < 0 , it follows that there exists t1 ∈ (0, +∞) such
that m(t1) – ηε(t1) = 0 and m(t) – ηε(t) < 0, t ∈ (0, t1). Using Lemma 2.2 and Remark 2.1,
we obtain Dqm(t1) ≥ Dqηε(t1). So, we have

g
(
t1, m(t1)

) ≥ Dqm(t1) ≥ Dqηε(t1) > g
(
t1,ηε(t1)

)
,

which contradicts with m(t1) = ηε(t1). That is, m(t) < ηε(t), t ∈ (0, +∞). By the arbitrariness
of ε, we can get m(t) ≤ η(t), t ∈ (0, +∞). �

Corollary 2.1 Let g ∈ C((0, +∞) × R,R) satisfy (2.3). Let v,η ∈ C1–q(R+,R), and there
exists 1 – q ≤ δ < 1 such that tδ[Iqg(t, v(t)) – η] is locally Hölder continuous with exponent
λ > q. Moreover, η(t) is the maximal solution of (2.2) existing in (0, +∞). If

v(t) ≤ tq–1v0 +
∫ t

0
(t – s)q–1g

(
s, v(s)

)
ds, t ∈ (0, +∞), (2.5)

where v0 < u0, then v(t) ≤ η(t) holds in (0, +∞).
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Proof Let V (t) be the right-hand side of (2.5), so that v(t) ≤ V (t) and DqV (t) = g(t, v(t)),
limt→0+ t1–qV (t) = v0 < u0. By (2.3), DqV (t) ≤ g(t, V (t)). Hence Theorem 2.1 implies that
V (t) ≤ η(t) in (0, +∞), thus v(t) ≤ η(t) holds. �

Theorem 2.2 Let g : (0, +∞) ×R →R

(t, u) → g(t, u)

be continuous and satisfy inequality (2.3), and let η be the maximal solution of (2.2) exist-
ing for t ∈ (0, +∞). Let f : (0, +∞) × En → En be continuous such that

d∞
(
f (s, x),χ{0}

) ≤ g
(
s, d∞(x,χ{0})

)
, ∀s ∈ (0, +∞), x ∈ En.

If there exists 1–q ≤ δ < 1 such that tδ[Iqg(t, d∞(x(t),χ{0}))–η] is locally Hölder continuous
with exponent λ > q such that

d∞(x0,χ{0}) < u0,

then all solutions x of

x(t) = tq–1x0 +
∫ t

0
(t – s)q–1f

(
s, x(s)

)
ds

satisfy

d∞
(
x(t),χ{0}

) ≤ η(t), t ∈ (0, +∞).

Moreover, if η is bounded, then x is bounded.

Proof Let m(t) = d∞(x(t),χ{0}), t ∈ (0, +∞). Then

m(t) = d∞
(

tq–1x0 +
∫ t

0
(t – s)q–1f

(
s, x(s)

)
ds,χ{0}

)

≤ tq–1d∞(x0,χ{0}) +
∫ t

0
(t – s)q–1d∞

(
f
(
s, x(s)

)
,χ{0}

)
ds

≤ tq–1d∞(x0,χ{0}) +
∫ t

0
(t – s)q–1g

(
s, m(s)

)
ds, t ∈ (0, +∞).

The conclusion is obtained by using Corollary 2.1. �

Here, we list some basic properties of class and generalized Mittag-Leffler functions
which will be used in the later discussion.

Lemma 2.3 ([16]) Let 0 < q < 1, λ > 0. Then functions Eq and Eq,q are nonnegative and
have the following properties:

(i) For any t > 0, Eq(–λtq) ≤ 1, Eq,q(–λtq) ≤ 1
�(q) . Moreover, Eq(0) = 1, Eq,q(0) = 1

�(q) .
(ii) For any t1, t2 > 0 and t1 ≤ t2, Eq(–λtq

2) ≤ Eq(–λtq
1), Eq,q(–λtq

2) ≤ Eq,q(–λtq
1).
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Lemma 2.4 ([16]) Let q > 0, then the relation between Eq(·) and Eq,q(·) is given by the fol-
lowing integration:

∫ t

0
(t – s)q–1Eq,q

(
–λ(t – s)q)ds =

1 – Eq(–λtq)
λ

.

Lemma 2.5 ([17]) Let α,β ,μ > 0, then the following formulas hold:

1
�(μ)

∫ x

t
(x – s)μ–1(s – t)β–1Eα,β

(
λ(s – t)α

)
ds = (x – t)β+μ–1Eα,β+μ

(
λ(x – t)α

)
,

1
�(μ)

∫ x

t
(s – t)μ–1(x – s)β–1Eα,β

(
λ(x – s)α

)
ds = (x – t)β+μ–1Eα,β+μ

(
λ(x – t)α

)
.

3 A particular equation
In this section, firstly, we consider the problem

⎧⎨
⎩

Dqx(t) + Mx(t) = σ (t), t ∈ (0, +∞),

limt→0+ t1–qx(t) = x0 ∈ E1,
(3.1)

where 0 < q ≤ 1, M > 0 and σ ∈ C(R+, E1). Secondly, we discuss the boundedness of solu-
tion for problem (3.1).

Lemma 3.1 ([18]) Let f : T → E1 be differentiable. Denote [f (t)]α = [fαl(t), fαr(t)], α ∈ [0, 1].
Then fαl and fαr are differentiable and [f ′(t)]α = [f ′

αl(t), f ′
αr(t)].

Lemma 3.2 Let x : (0, +∞) → E1. If for each t ∈ (0, +∞) there exists h0 > 0 such that the
H-differences

x(t + h) –H x(t), and x(t) –H x(t – h)

exist for all 0 < h < h0, then for each t ∈ (0, +∞) and q > 0, the H-differences

Iqx(t + h) –H Iqx(t), and Iqx(t) –H Iqx(t – h)

also exist for all 0 < h < h0.

Proof We shall prove that the H-differences of Iqx(t + h) –H Iqx(t) exist. Similar reasoning
can be used for Iqx(t) –H Iqx(t – h). First, for 0 < h < h0 and 0 ≤ α ≤ β ≤ 1, it is clear that

∫ h

0
(t + h – s)q–1xαl(s) ds ≤

∫ h

0
(t + h – s)q–1xαr(s) ds, (3.2)

∫ h

0
(t + h – s)q–1xαl(s) ds ≤

∫ h

0
(t + h – s)q–1xβl(s) ds (3.3)

and

∫ h

0
(t + h – s)q–1xβr(s) ds ≤

∫ h

0
(t + h – s)q–1xαr(s) ds. (3.4)
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On the one hand, since the H-differences x(t + h) –H x(t) exist, we have

xαl(s + h) – xαl(s) ≤ xαr(s + h) – xαr(s). (3.5)

Multiply (3.5) by (t – s)q–1 and then integrate on [0, t] to obtain

∫ t+h

h
(t + h – s)q–1xαl(s) ds –

∫ t

0
(t – s)q–1xαl(s) ds ≤

∫ t+h

h
(t + h – s)q–1xαr(s) ds

–
∫ t

0
(t – s)q–1xαr(s) ds

together with (3.2), we can see that

Iqxαl(t + h) – Iqxαl(t) ≤ Iqxαr(t + h) – Iqxαr(t).

On the other hand, we check that the family of intervals

{[
Iqxαl(t + h) – Iqxαl(t), Iqxαr(t + h) – Iqxαr(t)

]
: α ∈ [0, 1]

}

defines a fuzzy interval. Indeed, for 0 ≤ α ≤ β ≤ 1,

xαl(s + h) – xαl(s) ≤ xβl(s + h) – xβl(s), xβr(s + h) – xβr(s) ≤ xαr(s + h) – xαr(s).

Multiplying both sides of the above two inequalities by (t – s)q–1 and integrating on [0, t],
together with (3.3), (3.4), we can get

Iqxαl(t + h) – Iqxαl(t) ≤ Iqxβl(t + h) – Iqxβl(t)

and

Iqxβr(t + h) – Iqxβr(t) ≤ Iqxαr(t + h) – Iqxαr(t).

Finally, the left continuity of Iqxαl(t + h) – Iqxαl(t) and Iqxαr(t + h) – Iqxαr(t) at (0, 1] and
their right continuity at 0 with respect to α are guaranteed. Given ε > 0, for fixed h ∈ (0, h0),
by the right continuity of xαl(t + h), xαr(t + h), xαl(t + h) – xαl(t) and xαr(t + h) – xαr(t) at 0,
the following inequalities are satisfied:

∣∣xαl(t + h) – x0l(t + h)
∣∣ → 0,

∣∣[xαl(t + h) – xαl(t)
]

–
[
x0l(t + h) – x0l(t)

]∣∣ → 0,
∣∣xαr(t + h) – x0r(t + h)

∣∣ → 0,
∣∣[xαr(t + h) – xαr(t)

]
–

[
x0r(t + h) – x0r(t)

]∣∣ → 0

as α → 0+. Hence, we have

∣∣[Iqxαl(t + h) – Iqxαl(t)
]

–
[
Iqx0l(t + h) – Iqx0l(t)

]∣∣

≤ 1
�(q)

∫ 0

–h
(t – s)q–1∣∣xαl(s + h) – x0l(s + h)

∣∣ds

+
1

�(q)

∫ t

0
(t – s)q–1∣∣[xαl(s + h) – xαl(s)

]
–

[
x0l(s + h) – x0l(s)

]∣∣ds → 0, α → 0+,
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and similarly for Iqxαr(t +h)– Iqxαr(t), so that Iqxαl(t +h)– Iqxαl(t) and Iqxαr(t +h)– Iqxαr(t)
are right continuous at 0, respectively. Following the same steps as above, we can show the
left continuity of Iqxαl(t +h)– Iqxαl(t) and Iqxαr(t +h)– Iqxαr(t) at (0, 1]. Therefore, for t > 0,
Iqx(t + h) –H Iqx(t) exists for 0 < h < h0 and the proof is complete. �

Theorem 3.1 Problem (3.1) has a unique solution in (0, +∞), given by

x(t) = x0χ{�(q)tq–1Eq,q(–Mtq)} +
∫ t

0
σ (s)χ{(t–s)q–1Eq,q(–M(t–s)q)} ds, t ∈ (0, +∞), (3.6)

if for each t ∈ (0, +∞), there exists h0 > 0 such that the H-differences

x(t + h) –H x(t), and x(t) –H x(t – h)

exist for all 0 < h < h0.

Proof Taking [x(t)]α = [xαl(t), xαr(t)], then by Definitions 2.3, 2.4 and Lemma 3.1, problem
(3.1) is written level-wise as follows:

⎧⎪⎪⎨
⎪⎪⎩

Dqxαl(t) + Mxαl(t) = σαl(t), t ∈ (0, +∞),

Dqxαr(t) + Mxαr(t) = σαr(t), t ∈ (0, +∞),

limt→0+ t1–qxαl(t) = (x0)αl, limt→0+ t1–qxαr(t) = (x0)αr .

Using Theorem 4.1 in [11] and limt→0+ t1–qxαl(t) = Dq–1xαl(0+)
�(q) , we get

xαl(t) = �(q)(x0)αltq–1Eq,q
(
–Mtq) +

∫ t

0
σαl(s)(t – s)q–1Eq,q

(
–M(t – s)q)ds,

and analogously for xαr(t), producing (3.6).
Now we study the fractional differentiability of x. Let t ∈ (0, +∞) and h > 0, by

Lemma 3.2, the H-differences of I1–qx(t + h) –H I1–qx(t) and I1–qx(t) –H I1–qx(t – h) also
exist. Then, for every α ∈ [0, 1], with Lemma 2.5, we have

(
I1–qx(t + h) –H I1–qx(t)

h

)
αl

= (x0)αl�(q)
Eq(–M(t + h)q) – Eq(–Mtq)

h

+
∫ t

0
σαl(s)

Eq(–M(t + h – s)q) – Eq(–M(t – s)q)
h

ds

+
∫ t+h

t
σαl(s)

Eq(–M(t + h – s)q)
h

ds

and
(

I1–qx(t + h) –H I1–qx(t)
h

)
αr

= (x0)αr�(q)
Eq(–M(t + h)q) – Eq(–Mtq)

h

+
∫ t

0
σαr(s)

Eq(–M(t + h – s)q) – Eq(–M(t – s)q)
h

ds

+
∫ t+h

t
σαr(s)

Eq(–M(t + h – s)q)
h

ds.
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The limits of these functions as h → 0+ uniformly in α are, respectively,

zαl(t) = σαl(t) – �(q)Mtq–1(x0)αlEq,q
(
–Mtq) – M

∫ t

0
σαl(s)(t – s)q–1Eq,q

(
–M(t – s)q)ds

and

zαr(t) = σαr(t) – �(q)Mtq–1(x0)αrEq,q
(
–Mtq) – M

∫ t

0
σαr(s)(t – s)q–1Eq,q

(
–M(t – s)q)ds

since E′
q(t) = Eq,q(t)

q , (x0)αl , (x0)αr are bounded uniformly in α ∈ [0, 1], σαl(s), σαr(s) are
bounded on [0, t] uniformly in α (σ is bounded in the compact [0, t] by continuity). The
same behavior can be checked for the left-sided quotients

(
I1–qx(t) –H I1–qx(t – h)

h

)
αl

, and
(

I1–qx(t) –H I1–qx(t – h)
h

)
αr

, h > 0.

This proves that

lim
h→0+

dH

([(
I1–qx(t + h) –H I1–qx(t)

h

)]α

,
[
zαl(t), zαr(t)

])
= 0

uniformly in α by Definition 2.4, so that

lim
h→0+

d∞
(
Dqx(t), z(t)

)
= 0,

where for t ∈ (0, +∞), [z(t)]α = [zαl(t), zαr(t)] is a fuzzy number since E1 is complete. Note
that

Dqx(t) + Mx(t) = z(t) + Mx(t) = σ (t), t ∈ (0, +∞),

and limt→0+ t1–qx(t) = x0, so that we obtain the solution of (3.1). �

Theorem 3.2 If the nonnegative map

t → t1–q
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)d∞

(
σ (s),χ{0}

)
ds, t ∈R

+

is bounded and x is the unique solution of problem (3.1), then t1–qx is bounded. If x0 = χ{0}
and the nonnegative map

t →
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)d∞

(
σ (s),χ{0}

)
ds, t ∈R

+

is bounded, then x is bounded.
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Proof For t ∈ R
+, we have

d∞
(
t1–qx(t),χ{0}

) ≤ �(q)Eq,q
(
–Mtq)d∞(x0,χ{0})

+ t1–q
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)d∞

(
σ (s),χ{0}

)
ds

≤ d∞(x0,χ{0})

+ t1–q
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)d∞

(
σ (s),χ{0}

)
ds,

which implies that t1–qx is bounded.
If x0 = χ{0}, we conclude that

d∞
(
x(t),χ{0}

) ≤
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)d∞

(
σ (s),χ{0}

)
ds,

and the proof is complete. �

Corollary 3.1 If t1–qσ (t) is bounded, and x is the unique solution of problem (3.1), then
t1–qx is bounded. If x0 = χ{0} and σ is bounded, then x is bounded.

Proof Firstly, it is easy to calculate that

t2q–1Eq,2q
(
–Mtq) =

tq–1

–M

(
Eq,q

(
–Mtq) –

1
�(q)

)
.

Then it follows from Lemmas 2.3, 2.5 that

t1–q
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)d∞

(
σ (s),χ{0}

)
ds

= t1–q
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)sq–1d∞

(
s1–qσ (s),χ{0}

)
ds

≤ Kt1–q
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)sq–1 ds

= Kt1–q�(q)t2q–1Eq,2q
(
–Mtq)

= K�(q)
1

–M

(
Eq,q

(
–Mtq) –

1
�(q)

)
≤ K

M
.

Finally, by hypothesis, there exists K ≥ 0 such that

d∞
(
t1–qσ (t),χ{0}

) ≤ K , t ∈R
+.

Therefore, in this case, for t ∈R
+,

d∞
(
t1–qx(t),χ{0}

) ≤ �(q)Eq,q
(
–Mtq)d∞(x0,χ{0}) +

K
M

≤ d∞(x0,χ{0}) +
K
M

.

In the case of x0 = χ{0}, if σ is bounded, then there exists K ≥ 0 such that

d∞
(
σ (t),χ{0}

) ≤ K , t ∈R
+.
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Hence, by Lemmas 2.3, 2.4, for t ∈ R
+,

d∞
(
x(t),χ{0}

) ≤ K
∫ t

0
(t – s)q–1Eq,q

(
–M(t – s)q)ds

= K
1 – Eq(–Mtq)

M
≤ K

M
.

The proof is therefore complete. �

Example 3.1 Consider the following problem:

⎧⎨
⎩

D 1
2 x(t) + x(t) = σ (t), t ∈ (0, +∞),

limt→0+ t1–qx(t) = χ{0},
(3.7)

where q = 1
2 , M = 1 and σ is a 0-symmetric constant fuzzy number with level sets [σ ]α =

[– 1
1+α

, 1
1+α

] for every α ∈ [0, 1].
Firstly, by (3.6) and Lemma 2.4, we have

diam
([

x(t)
]α)

=
∫ t

0
diam

([
σ (s)

]α)
(t – s)– 1

2 E 1
2 , 1

2

(
–(t – s)

1
2
)

ds

=
2

1 + α

(
1 – E 1

2

(
–t

1
2
))

is a nondecreasing function in t for every α ∈ [0, 1].
Secondly, using Lemmas 2.3 and 2.4, we obtain

x(t + h)αl – x(t)αl =
∫ t+h

0
σαl(s)(t + h – s)– 1

2 E 1
2 , 1

2

(
–(t + h – s)

1
2
)

ds

–
∫ t

0
σαl(s)(t – s)– 1

2 E 1
2 , 1

2

(
–(t – s)

1
2
)

ds

= –
1

1 + α

(
E 1

2

(
–t

1
2
)

– E 1
2

(
–(t + h)

1
2
))

,

which implies that x(t + h)αl – x(t)αl is nondecreasing in α. Similarly, we have x(t)αl – x(t –
h)αl is a nondecreasing function in α and x(t + h)αr – x(t)αr , x(t)αr – x(t – h)αr are nonin-
creasing functions in α.

Hence, the H-differences x(t + h) –H x(t) and x(t) –H x(t – h) exist. By Corollary 3.1, it
follows that the unique solution x of problem (3.7) is bounded.

In fact, the solution of problem (3.7) can be solved by [x(t)]α = [–
1–E 1

2
(–t

1
2 )

1+α
,

1–E 1
2

(–t
1
2 )

1+α
],

which is represented for t ∈ [0, 20] in Figure 1.

4 Main results
Lemma 4.1 ([19]) Let m, h, q, v ∈ C(R+,R+) and suppose that

m(t) ≤ h(t) +
∫ t

t0

q(t)v(s)m(s) ds, t ≥ t0.
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Figure 1 The level sets of x in (3.7),
α = 0, 0.1, . . . , 1.

Then

m(t) ≤ h(t) + q(t)
∫ t

t0

e
∫ t

s v(ξ )q(ξ ) dξ v(s)h(s) ds, t ≥ t0.

Theorem 4.1 Let m, v1, v2, q1, q2, h ∈ C(R+,R+) such that

m(t) ≤ h(t) +
∫ t

0
q1(t)v1(s)m(s) ds +

∫ t

0
q2(t)v2(s) sup

0≤θ≤s
m(θ ) ds, t ∈ R

+. (4.1)

Then

m(t) ≤
(

1 + sup
0≤s≤t

h(s)
)

esup0≤r≤t Q(r)
∫ t

0 V (ξ ) dξ , t ∈R
+,

where V (t) = v1(t) + v2(t) and Q(t) = sup{q1(t), q2(t)}.

Proof Let

x(t) =

⎧⎨
⎩

1, 0 ≤ m(t) ≤ 1,

m(t), m(t) > 1.

Then, for t ∈R
+, we have max{1, m(t)} ≤ x(t) ≤ 1 + m(t), and hence by (4.1)

x(t) ≤ 1 + h(t) +
∫ t

0
q1(t)v1(s)x(s) ds +

∫ t

0
q2(t)v2(s) sup

0≤θ≤s
x(θ ) ds

≤ 1 + h(t) + Q(t)
∫ t

0
V (τ ) sup

0≤θ≤τ

x(θ ) dτ . (4.2)

Thus,

sup
0≤s≤t

x(s) ≤ 1 + sup
0≤s≤t

h(s) + sup
0≤s≤t

Q(s)
∫ t

0
V (τ ) sup

0≤θ≤τ

x(θ ) dτ . (4.3)
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Together with Lemma 4.1, we can get

sup
0≤s≤t

x(s) ≤ 1 + sup
0≤s≤t

h(s) + sup
0≤s≤t

Q(s)
∫ t

0
e
∫ t
τ V (ξ ) sup0≤r≤ξ Q(r) dξ

× V (τ )
(

1 + sup
0≤r≤τ

h(r)
)

dτ

≤
(

1 + sup
0≤s≤t

h(s)
)(

1 + sup
0≤s≤t

Q(s)
∫ t

0
e
∫ t
τ V (ξ ) sup0≤r≤ξ Q(r) dξ V (τ ) dτ

)

≤
(

1 + sup
0≤s≤t

h(s)
)(

1 + sup
0≤s≤t

Q(s)
∫ t

0
esup0≤r≤t Q(r)

∫ t
τ V (ξ ) dξ V (τ ) dτ

)

=
(

1 + sup
0≤s≤t

h(s)
)

esup0≤r≤t Q(r)
∫ t

0 V (ξ ) dξ , (4.4)

where we used the fact that

sup
0≤s≤t

Q(s)
∫ t

0
esup0≤r≤t Q(r)

∫ t
τ V (ξ ) dξ V (τ ) dτ = esup0≤r≤t Q(r)

∫ t
0 V (ξ ) dξ – 1,

note that m(t) ≤ x(t) ≤ sup0≤s≤t x(s), we can complete the proof. �

Remark 4.1 If h in Theorem 4.1 is nondecreasing, q1(t) = q2(t) ≡ 1, we can obtain the
estimate

m(t) ≤ [
1 + h(t)

]
e
∫ t

0 V (ξ ) dξ .

Theorem 4.2 (Generalized Gronwall inequality) For βi,γi ∈ (0, 1], i = 1, 2, let 1 < p <
min{ 1

1–βi
, 1

1–γi
: i = 1, 2} and m, h, v1, v2, tp(β1+γ1–2)+1qp

1, tp(β2+γ2–2)+1qp
2 ∈ C(R+,R+) such that

m(t) ≤ h(t) +
∫ t

0
(t – s)β1–1sγ1–1q1(t)v1(s)m(s) ds

+
∫ t

0
(t – s)β2–1sγ2–1q2(t)v2(s) sup

0≤θ≤s
m(θ ) ds, t ∈R

+.
(4.5)

Then

m(t) ≤
[(

1 + 3
1

p–1 sup
0≤s≤t

h
p

p–1 (s)
)

e3
1

p–1 sup0≤r≤t Q(r)
∫ t

0 V (ξ ) dξ
] p–1

p , t ∈R
+,

where V (t) = v
p

p–1
1 (t) + v

p
p–1
2 (t) and

Q(t) = sup
{

q
p

p–1
i (t)

[
B
(
p(γi – 1) + 1, p(βi – 1) + 1

)
tp(βi+γi–2)+1] 1

p–1 , i = 1, 2
}

. (4.6)

Proof We know that
∫ t

0 (t – s)p(β–1)sp(γ –1) ds = B(p(γ – 1) + 1, p(β – 1) + 1)tp(β+γ –2)+1. Here,
B(·, ·) denotes the beta function.
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It follows from condition (4.5) and the Hölder inequality that

m(t) ≤ h(t) +
∫ t

0
(t – s)β1–1sγ1–1q1(t)v1(s)m(s) ds

+
∫ t

0
(t – s)β2–1sγ2–1q2(t)v2(s) sup

0≤θ≤s
m(θ ) ds

≤ h(t) + q1(t)
[∫ t

0
(t – s)p(β1–1)sp(γ1–1) ds

] 1
p
[∫ t

0

(
v1(s)m(s)

) p
p–1 ds

] p–1
p

+ q2(t)
[∫ t

0
(t – s)p(β2–1)sp(γ2–1) ds

] 1
p
[∫ t

0

(
v2(s) sup

0≤θ≤s
m(θ )

) p
p–1 ds

] p–1
p

. (4.7)

Note that (sup0≤s≤t m(s))
p

p–1 = sup0≤s≤t m
p

p–1 (s); consequently,

m
p

p–1 (t) ≤ 3
1

p–1 h
p

p–1 (t) + 3
1

p–1 Q(t)
∫ t

0

(
v1(s)m(s)

) p
p–1 ds

+ 3
1

p–1 Q(t)
∫ t

0

(
v2(s) sup

0≤θ≤s
m(θ )

) p
p–1 ds.

By Theorem 4.1, one can see that

m
p

p–1 (t) ≤
(

1 + 3
1

p–1 sup
0≤s≤t

h
p

p–1 (s)
)

e3
1

p–1 sup0≤r≤t Q(r)
∫ t

0 V (ξ ) dξ ,

then we can complete the rest of the proof immediately. �

Corollary 4.1 For β ,γ ∈ (0, 1], let 1 < p < min{ 1
1–β

, 1
2–γ –β

} and m, h ∈ C1–β(R+,R+), v,
tp(γ +β–2)+1qp ∈ C(R+,R+) such that

m(t) ≤ h(t) +
∫ t

0
(t – s)β–1sγ –1q(t)v(s)m(s) ds, t ∈ (0, +∞). (4.8)

Then, for t ∈ (0, +∞),

t1–βm(t) ≤
[(

1 + 3
1

p–1 sup
0≤s≤t

(
s1–βh(s)

) p
p–1

)
e3

1
p–1 sup0≤r≤t Q(r)

∫ t
0 V (ξ ) dξ

] p–1
p ,

where V (t) = v
p

p–1 (t) and

Q(t) =
(
t1–βq(t)

) p
p–1

[
B
(
p(γ + β – 2) + 1, p(β – 1) + 1

)
tp(γ +2β–3)+1] 1

p–1 . (4.9)

Proof Using (4.8), we obtain

t1–βm(t) ≤ t1–βh(t) + t1–βq(t)
∫ t

0
(t – s)β–1sγ +β–2v(s)s1–βm(s) ds, t ∈ (0, +∞),

then the conclusion follows from Theorem 4.2. �

We now apply the previous results to obtain bounds for the solutions of fuzzy fractional
integral equations.
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Theorem 4.3 Let 1 < p < 1
1–q and f ∈ C(R+, En) be bounded and

Gi : � =
{

(t, s) : 0 ≤ s ≤ t < +∞} →R

be continuous such that

∣∣Gi(t, s)
∣∣ ≤ wi(t)vi(s), ∀(t, s) ∈ �, i = 1, 2,

where tp(q–1)+1wp
i , vi ∈ C(R+,R+). Assume that the map

t → sup
0≤r≤t

Q(r)
∫ t

0
V (ξ ) dξ , t ∈R

+ is bounded, (4.10)

where V (t) = v
p

p–1
1 (t) + v

p
p–1
2 (t) and

Q(t) = sup
{

w
p

p–1
i (t)

[
B
(
1, p(q – 1) + 1

)
tp(q–1)+1] 1

p–1 : i = 1, 2
}

. (4.11)

Then all the solutions of fuzzy fractional functional integral equation (1.3) are bounded.

Proof Let x be a solution of (1.3), and let m(t) = d∞(x(t),χ{0}), t ∈R
+, then

m(t) = d∞
(∫ t

0
(t – s)q–1[G1(t, s)x(s) + G2(t, s)x

(
θ (s)

)]
ds + f (t),χ{0}

)

≤ d∞
(∫ t

0
(t – s)q–1G1(t, s)x(s) ds,χ{0}

)

+ d∞
(∫ t

0
(t – s)q–1G2(t, s)x

(
θ (s)

)
ds,χ{0}

)
+ d∞

(
f (t),χ{0}

)

≤
∫ t

0
(t – s)q–1∣∣G1(t, s)

∣∣m(s) ds

+
∫ t

0
(t – s)q–1∣∣G2(t, s)

∣∣m(
θ (s)

)
ds + d∞

(
f (t),χ{0}

)

≤ w1(t)
∫ t

0
(t – s)q–1v1(s)m(s) ds

+ w2(t)
∫ t

0
(t – s)q–1v2(s)m

(
θ (s)

)
ds + d∞

(
f (t),χ{0}

)
, t ∈ R

+.

Applying Theorem 4.2, we get

m(t) ≤
[(

1 + 3
1

p–1 sup
0≤s≤t

d
p

p–1∞
(
f (s),χ{0}

))
e3

1
p–1 sup0≤r≤t Q(r)

∫ t
0 V (ξ ) dξ

] p–1
p ,

and the proof is complete. �

Example 4.1 Let us consider the fuzzy fractional order functional integral equation

x(t) =
∫ t

0
(t – s)–0.25 1

es
√

1 + t
x
(
θ (s)

)
ds + f (t),
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where f : R+ → E1 is defined by the α-cut [f (t)]α = [ α
1+t , 2–α

1+t ], 0 ≤ θ (t) ≤ t, p = 2, q =
0.75, G1(t, s) = 0, G2(t, s) = 1

es√1+t . Observe that d∞(f (t),χ{0}) = supα∈[0,1] max{ α
1+t , 2–α

1+t } ≤ 1,
which implies that f is bounded.

Let w(t) = 1√
1+t , v(t) = e–t , then V (t) = e–2t and Q(t) =

√
t

1+t B(1, 0.5). Obviously,
sup0≤r≤t Q(r)

∫ t
0 V (ξ ) dξ ≤ B(1,0.5)

2 . Now, conditions in Theorem 4.3 are satisfied, which
guarantees all the solutions of this fuzzy fractional functional integral equation are
bounded.

Theorem 4.4 Let 1 < p < 1
1–q , f ∈ C1–q(R+, En) and t1–qf be bounded and

G : � =
{

(t, s) : 0 ≤ s ≤ t < +∞} →R

be continuous such that

∣∣G(t, s)
∣∣ ≤ w(t)v(s), ∀(t, s) ∈ �,

where tp(q–1)+1wp, v ∈ C(R+,R+). Assume that the map

t → sup
0≤r≤t

Q(r)
∫ t

0
V (ξ ) dξ , t ∈R

+ is bounded, (4.12)

where V (t) = v
p

p–1 (t) and

Q(t) =
(
t1–qw(t)

) p
p–1

[
B
(
p(q – 1) + 1, p(q – 1) + 1

)
t2p(q–1)+1] 1

p–1 . (4.13)

Then, for all solutions x of (1.4), t1–qx are bounded.

Proof If x is a solution of (1.4) and m(t) = d∞(x(t),χ{0}), t ∈ (0, +∞), then

m(t) ≤ w(t)
∫ t

0
(t – s)q–1v(s)m(s) ds + d∞

(
f (t),χ{0}

)
, t ∈ (0, +∞).

Thus, the conditions of Corollary 4.1 are satisfied, and hence

t1–qm(t) ≤
[(

1 + 3
1

p–1 sup
0≤s≤t

(
s1–qd∞

(
f (s),χ{0}

)) p
p–1

)
e3

1
p–1 sup0≤r≤t Q(r)

∫ t
0 V (ξ ) dξ

] p–1
p .

This completes the proof. �

Example 4.2 Consider the following fractional order fuzzy integral equation:

x(t) =
∫ t

0
(t – s)

2
3

1
1 + t 2

3
x(s) ds + f (t),

where f ∈ C 1
3

(R+, E1) is given by the α-cut [f (t)]α = [t– 1
3 (α – 1), t– 1

3 (1 –α)], p = 5
4 , q = 2

3 and

G(t, s) = s

1+t
2
3

. It is easy to see that t 1
3 f is bounded. Moreover, w(t) = 1

1+t
2
3

, v(t) = 1, Q(t) =

t
7
3

(1+t
2
3 )5

B5( 7
12 , 7

12 ) and sup0≤r≤t Q(r)
∫ t

0 V (ξ ) dξ ≤ B5( 7
12 , 7

12 ). Theorem 4.4 implies that, for

all solutions x of this fuzzy fractional integral equation, t 1
3 x are bounded.
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5 Conclusions
In the present paper, we consider the boundedness of solutions of certain fractional fuzzy
differential equations as well as fuzzy integral equations. By introducing some differential
and integral inequalities, which are more general than those in the previous literature, we
obtain some results for the boundedness of solutions of fractional fuzzy integral equations.
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