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Abstract
In the present paper, a new partial differential equation has been obtained to
describe the Rossby solitary waves with complete Coriolis force by employing
multi-scale analysis and perturbation method, we call it combined ZK-mZK equation.
The equation can reflect the propagation of Rossby waves on the plane and is more
appropriate for the real ocean and atmosphere than the (1 + 1) dimensional models
(such as KdV and mKdV), which can only represent the propagation of Rossby solitary
waves in a line. Furthermore, by adopting the multiplier method, we construct
conservation laws of the combined ZK-mZK equation, which is meaningful for
researching the global stability of solutions. Finally, we deduce the exact solutions of
the combined ZK-mZK equation via the semi-inverse variational principle. By applying
these exact solutions, some propagation features of Rossby solitary waves are
analyzed.
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1 Introduction
The Rossby waves on behalf of huge vortices which exist in the ocean and atmosphere play
an increasingly significant role in transporting energy, which can determine the weather
and climate change in the earth to a large extent [1–3]. In the last few decades , the research
on constructing mathematical models to study the generation and evolution of Rossby
waves has attracted a lot of attention, and a series of mathematical models, such as KdV [4,
5], mKdV [6, 7], ZK [8, 9], modified Kawahara equation [10], and so on [11, 12], have been
obtained. Meanwhile, some natural phenomena related to Rossby waves were explained
with the help of mathematical models [13]. We notice that the former research has the
following two disadvantages:

(1) The motion equations describing ocean and atmosphere, including momentum
equation, continuity equation, and so on, are very complicated. For the sake of simplic-
ity, we can find that (1 + 1) dimensional nonlinear partial differential equations are used to
describe the evolution of nonlinear Rossby waves. However, real oceanic and atmospheric
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motions are not just in one direction. Providing higher dimensional theories for the non-
linear Rossby waves is necessary. So, in this paper, we discuss a new (2 + 1) dimensional
model [14].

(2) All the time, the complete Coriolis force has been an important research hot spot
in dealing with the atmosphere and ocean. On the one hand, the horizontal component
of the complete Coriolis force shows the imbalance of the motion, which is an important
factor that causes the development of weather system. On the other hand, the theoreti-
cal research on the nonlinear Rossby waves in the atmosphere has been a very important
subject in meteorology. So, it is necessary to analyze the effect of intact Coriolis force on
atmospheric dynamics. However, in order to calculate and study it conveniently, many
researchers ignore the complete Coriolis force. As we know, the TA is suitable for quan-
titative studies. In the past, Kasahara [15] pointed out that the errors made by ignoring
the vertical acceleration may be much larger than those made by ignoring the horizontal
component of complete Coriolis force. However, it is controversial from the dynamical
perspective [16, 17]. White and Bromley [18] indicated the necessity to retain the hori-
zontal component of Coriolis force by scale analysis of the zonal momentum equations. It
is necessary to include the cosine Coriolis terms for fully understanding the atmospheric
motion, which is named ‘non-traditional approximation’ (NTA). Based on the NTA, the
near-inertial waves were considered by Gerkema and Shrira [19] from primitive equa-
tions. Using the variational method, a conserved potential vorticity equation with com-
plete Coriolis force was obtained by Dellar and Salmon [20]. According to the Hamilton
least-action principle [21], Dellar also derived a generalized beta plane equation. So, the
NTA is more important for tropical atmosphere, such as the stability theory [22–24], the
dispersion relation [25, 26], the Madden-Julian Oscillation(MJO) [27, 28], and so on [29–
31].

Conservation laws [32, 33] are a power tool for studying the global stability of solu-
tions and numerical integration for PDEs emerging in nonlinear science. Numerous pow-
erful methods have been used to seek the conservation laws: Laplace direct technique
[34], characteristic form given by Stuedel [35], q-homotopy analysis transform method (q-
HATM) [36], multiplier approach [37, 38]. In this thesis, based on the modified Camassa-
Holm equation [39] and ZK-BBM equations [40] for each multiplier, and the method of
Ibragimov (nonlocal conservation method) [41–43], using the multiplier approach, con-
servation laws and the corresponding conserved quantities are discussed.

The investigation of the soliton solutions [44–46] for PDEs has become highly active in
all areas of applied research. Many efficient techniques, such as homogeneous balance
technique [47], symmetry theory [48], Jacobi elliptic function method [49], homotopy
analysis transform method [50], homotopy perturbation transform method [51], Darboux
transformation [52–54], Bilinear method [55, 56], and so on [57], have been proposed to
seek solitary waves solutions. In addition, some numerical methods, i.e., modified bino-
mial and Monte Carlo methods [58], high accurate NRK, and MWENO [59–61], have
also been used to solve partial differential equations. In the paper, we use the semi-inverse
variational principle [62, 63] to obtain the soliton solutions of PDEs.

In this article, by using multi-scale analysis and perturbation method, a (2 + 1) dimen-
sional combined ZK-mZK model for Rossby solitary waves is obtained. According to the
new model, we have a discussion. The construction of this paper is as follows. In Section 2,
applying the quasi-geostrophic potential vorticity equation, we obtain a new combined
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ZK-mZK equation. The property of conservation laws and the corresponding conserved
quantities of the new equation are discussed in Section 3. Later, the soliton solutions of
the combined ZK-mZK equation are established in Section 4. According to the soliton
solution, we research the solitary wave profiles for various timescales and the collisions
between two waves with different velocities and various timescales. Finally, some conclu-
sions are drawn.

2 The derivation of combined ZK-mZK equation
Based on the basic equations of geophysical fluid dynamics, after reasonable assumption,
we can easily obtain the following non-dimensional quasi-geostrophic potential vorticity
equation:

(
∂

∂t
+

∂�

∂x
∂

∂y
–

∂�

∂y
∂

∂x

)

·
[
∇2� +

∂

∂z

(
f 2
0

N(z)2
∂�

∂z

)
+ β(y)y +

f0

H
G(x, y) – fH

∂G(x, y)
∂y

]
= 0. (1)

The vertical velocity is

W =
f0

N(z)2

(
∂

∂t
+

∂�

∂x
∂

∂y
–

∂�

∂y
∂

∂x

)
∂�

∂z
, (2)

where � is the stream function. Normal component of the complete Coriolis is f = f0 +
β(y)y, and horizontal component is fH , where f0, fH are unknown constants. G(x, y) is the
topographic effect. N(z) is the function of z. ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator.

The lateral boundary condition is

�(0) = �(+∞) = 0. (3)

The vertical boundary condition is

W (0) = W (+∞) = 0. (4)

Take the dimensionless variables into Eq. (1) and Eq. (2), then Eq. (1) and Eq. (2) are
transformed into the dimensionless equation:

(
∂

∂t
+

∂�

∂x
∂

∂y
–

∂�

∂y
∂

∂x

)

·
[
∇2� +

∂

∂z

(
K2 ∂�

∂z

)
+ β(y)y + G(x, y) – θ

∂G(x, y)
∂y

]
= 0, (5)

W = R0K2
(

∂

∂t
+

∂�

∂x
∂

∂y
–

∂�

∂y
∂

∂x

)
∂�

∂z
, (6)

where K2 = L2
0f 2

0 /N2H2
0 , R0 = U0/f0L0, θ = fH ∗ H/f0 ∗ L0. L0 is the horizontal feature of

space, U0 is the velocity characteristic quantity, and H0 is the characteristic quantity of
fluid thickness.
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Assume G(x, y) = ε
3
2 O(y) and the stream function � as the sum of zonal flow and per-

turbation stream function ψ

� = –
∫ y(

U(s) – c0
)

ds + εψ , (7)

where the constant c0 is the sign of the velocity of non-dispersive part of linear Rossby
waves. ε � 1 is a small parameter used to measure the magnitude of nonlinear feature.

Substituting the stream function � into Eq. (5), we have

∂

∂t

[
∇2ψ +

∂

∂z

(
K2 ∂ψ

∂z

)]
+ (U – c0)

∂

∂x

[
∇2ψ +

∂

∂z

(
K2 ∂ψ

∂z

)]
+ β̃

∂ψ

∂x

+ ε
3
2 J[ψ , O] + ε

3
2 θ J

[
ψ ,

∂O
∂y

]
+ εJ

[
ψ ,∇2ψ +

∂

∂z

(
K2 ∂ψ

∂z

)]
= 0, (8)

W = εR0K2
[

∂

∂t
+ (U – c0)

∂

∂x

]
∂ψ

∂z
+ ε2J

[
ψ ,

∂ψ

∂z

]
, (9)

where β̃ = (β(y)y)′ – U ′′. Further, J[A, B] = ∂A
∂X

∂B
∂Y – ∂A

∂Y
∂B
∂X .

We introduce the following multiple time-space scale transform in the Rossby waves
equation:

T = ε
3
2 t, X = ε

1
2 x, Y = ε

3
4 y, z = z. (10)

Substituting Eq. (10) into Eq. (8), we have

ε
1
2

{
∂

∂X

[
∂2ψ

∂y2 +
∂

∂z

(
K2 ∂ψ

∂z

)]
+ β̃

∂ψ

∂X

}
+ ε

5
4

{
2(U – c0)

∂3ψ

∂X∂y∂Y

}
+ ε

6
4

{
∂3ψ

∂T∂y2

+
∂2

∂T∂z

(
K2 ∂ψ

∂z

)
+ (U – c0)

∂3

∂X3 +
∂ψ

∂X
∂3ψ

∂y3 +
∂ψ

∂X
∂2

∂y∂z

(
K2 ∂ψ

∂z

)
–

∂ψ

∂y
∂3ψ

∂X∂y2

–
∂ψ

∂y
∂2

∂X∂z

(
K2 ∂ψ

∂z

)}
+ ε2

{
(U – c0)

∂3ψ

∂X∂Y 2

}
+ ε2 ∂ψ

∂X
∂O
∂y

+ ε2θ
∂ψ

∂X
∂2O
∂y2

+ ε
9
4

{
2

∂3ψ

∂T∂y∂Y
+ 3

∂ψ

∂X
∂3ψ

∂y2∂Y
+

∂ψ

∂X
∂2

∂z∂Y

(
K2 ∂ψ

∂z

)
–

∂ψ

∂y
∂3ψ

∂X∂y∂Y

–
∂ψ

∂Y
∂3ψ

∂X∂y2 –
∂ψ

∂Y
∂2

∂z∂X

(
K2 ∂ψ

∂z

)}
+ ε

5
2

{
∂3ψ

∂T∂X2 +
∂ψ

∂X
∂3ψ

∂y∂X2 –
∂ψ

∂y
∂3ψ

∂X3

}

+ ε3
{

∂3ψ

∂T∂Y 2 + 3
∂ψ

∂X
∂3ψ

∂y∂Y 2 –
∂ψ

∂y
∂3ψ

∂X∂Y 2 – 2
∂ψ

∂Y
∂3ψ

∂X∂y∂Y

}
+ o

(
ε3) = 0. (11)

The boundary conditions can be written in the following form:

ψ(0) = ψ(+∞) = 0. (12)

Therefore, in the vertical direction, the boundary satisfies

∂ψ

∂z
= 0, z → +∞. (13)
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Assume the perturbation stream function expanded with small parameter ε,

ψ = ψ0 + ε
1
4 ψ1 + ε

2
4 ψ2 + ε

3
4 ψ3 + ε

4
4 ψ4 + ε

5
4 ψ5 + ε

6
4 ψ6 + · · · . (14)

Substituting Eq. (14) into Eq. (11) leads to all-order perturbation equations about ε.
In the first place, introduce the operator L

L = (U – c0)
∂

∂X

[
∂2

∂y2 +
∂

∂z

(
K2 ∂

∂z

)
+

β̃

U – c0

]
. (15)

First-order approximation

o
(
ε

1
2
)

: L(ψ0) = 0. (16)

The boundary conditions can be written as follows:

ψ0(0) = ψ0(+∞) = 0. (17)

The vertical boundary condition is

∂ψ0

∂z
= 0, z → +∞. (18)

Owing to Eq. (16) being the linear equation, we assume the solution of ψ0 is as follows:

ψ0 = A(X, Y , T)φ0(y)P0(z). (19)

Substituting the solution of ψ0 Eq. (19) into Eq. (16) and Eq. (17), we get the eigenvalue
problem on level eigenfunction φ0, P0:

⎧⎨
⎩

φ′′
0 + k2

0φ0 + β̃

U–c0
φ0 = 0,

(K2P′
0)′ + k2

0P0 = 0.
(20)

Similar to the first approximation, we continue to consider the higher order problem

ε
3
4 : L(ψ1) = 0. (21)

Take the variables form of ψ1 in the following form:

ψ1 = A2(X, Y , T)φ1(y)P1(z). (22)

Further,

ε1 : L(ψ2) = 0. (23)

Similar to Eq. (19), assume the solution of ψ2

ψ2 = A(X, Y , T)φ2(y)P2(z). (24)
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Substituting Eq. (22), Eq. (24) into Eq. (21) and Eq. (23), the eigenfunction equations about
ψ1, ψ2, P1, P2 can be obtained as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ′′
1 + k2

1φ1 + β̃

U–c0
φ1 = 0,

(K2P′
1)′ + k2

1P1 = 0,

φ′′
2 + k2

2φ2 + β̃

U–c0
φ2 = 0,

(K2P′
2)′ + k2

2P2 = 0.

(25)

Analogously, the boundary conditions can be written as follows:

ψ1(0) = ψ1(+∞) = 0, ψ2(0) = ψ2(+∞) = 0. (26)

The vertical boundary condition is

∂ψ1

∂z
= 0,

∂ψ1

∂z
= 0, z → +∞. (27)

In order to obtain the singularity elimination condition, it is important to make further
discussion.

ε
5
4 : L(ψ3) = –2(U – c0)

∂3ψ0

∂X∂y∂Y
. (28)

Substituting Eq. (19) into Eq. (28), we get

⎧⎨
⎩

φ′′
3 + k2

3φ3 + β̃

U–c0
φ3 = –2φ′

0,

(K2P′
3)′ + k2

3P3 = –2P0.
(29)

The boundary conditions are no less than the above conditions. Based on Eq. (28), we can
have the separate variables form of ψ3

ψ3 = AY (X, Y , T)φ3(y)P3(z), (30)

ε
3
2 :

L(ψ4) = –
{

2(U – c0)
∂3ψ1

∂X∂y∂Y
+

∂3ψ0

∂T∂y2 +
∂2

∂T∂z

(
K2 ∂ψ0

∂z

)
+ (U – c0)

∂3ψ0

∂X3

+
∂ψ0

∂X
∂3ψ0

∂y3 +
∂ψ0

∂X
∂2

∂y∂z

(
K2 ∂ψ0

∂z

)
–

∂ψ0

∂y
∂3ψ0

∂X∂y2 –
∂ψ0

∂y
∂2

∂X∂z

(
K2 ∂ψ0

∂z

)}

= –
{

AT
[
φ′′

0 P0 + k2
0φ0

(
K2P′

0
)′] + (U – c0)AXXXφ0P0 + AAX

(
φ0φ

′′′
0 P2

0

– φ′
0φ

′′
0 P2

0
)

+ 4(U – c0)(AY AX + AAXY )φ′
1P1

}
, (31)

ε
7
4 :

L(ψ5) = –
{

2(U – c0)
∂3ψ2

∂X∂y∂Y
+

∂3ψ1

∂T∂y2 +
∂2

∂T∂z

(
K2 ∂ψ1

∂z

)
+ (U – c0)

∂3ψ1

∂X3

+
∂ψ0

∂X
∂3ψ1

∂y3 +
∂ψ0

∂X
∂2

∂y∂z

(
K2 ∂ψ1

∂z

)
–

∂ψ0

∂y
∂3ψ1

∂X∂y2 –
∂ψ0

∂y
∂2

∂X∂z

(
K2 ∂ψ1

∂z

)
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+
∂ψ1

∂X
∂3ψ0

∂y3 +
∂ψ1

∂X
∂2

∂y∂z

(
K2 ∂ψ0

∂z

)
–

∂ψ1

∂y
∂3ψ0

∂X∂y2

–
∂ψ1

∂y
∂2

∂X∂z

(
K2 ∂ψ0

∂z

)}
, (32)

ε2 :

L(ψ6) = –
{

(U – c0)
∂3ψ0

∂X∂Y 2 + 2(U – c0)
∂3ψ3

∂X∂y∂Y
+

∂3ψ2

∂T∂y2 +
∂2

∂T∂z

(
K2 ∂ψ2

∂z

)

+ (U – c0)
∂3ψ2

∂X3 +
∂ψ0

∂X
∂3ψ2

∂y3 +
∂ψ0

∂X
∂2

∂y∂z

(
K2 ∂ψ2

∂z

)
–

∂ψ0

∂y
∂3ψ2

∂X∂y2

–
∂ψ0

∂y
∂2

∂X∂z

(
K2 ∂ψ2

∂z

)
+

∂ψ2

∂X
∂3ψ0

∂y3 +
∂ψ2

∂X
∂2

∂y∂z

(
K2 ∂ψ0

∂z

)
–

∂ψ2

∂y
∂3ψ0

∂X∂y2

–
∂ψ2

∂y
∂2

∂X∂z

(
K2 ∂ψ0

∂z

)
+

∂ψ1

∂X
∂3ψ1

∂y3 +
∂ψ1

∂X
∂2

∂y∂z

(
K2 ∂ψ1

∂z

)
–

∂ψ1

∂y
∂3ψ1

∂X∂y2

–
∂ψ1

∂y
∂2

∂X∂z

(
K2 ∂ψ1

∂z

)
+

∂ψ0

∂X
∂O
∂y

+ θ
∂ψ0

∂X
∂2O
∂y2

}

= –
{[

φ′′
2 P2 + k2

2φ2
(
K2P′

2
)′]AT +

[
φ′

0O′(y) + θφ′′
0 O′′(y)

]
P0AX + (U – c0)AXXX

· φ2P2 + (U – c0)AXYY
(
2φ′

3P3 + φ0P0
)

+ A
{

AX
[
φ0φ

′′′
2 P0P2 + k2

2φ0φ
′
2
(
K2P′

2
)′

– φ′
0φ

′′
2 P0P2 – k2

2φ
′
0φ2

(
K2P′

2
)′ + φ2φ

′′′
0 P0P2 + k2

0φ2φ
′
0
(
K2P′

0
)′ – φ′

2φ
′′
0 P0P2

– k2
0φ

′
2φ0

(
K2P′

0
)′] + 2A2AX

[
φ1φ

′′′
1 P2

1 – φ′
1φ

′′
1 P2

1
]}}

. (33)

Multiplying Eq. (33) by φ0, integrating Eq. (33) with respect to y, z from 0 to +∞, and using
the following identical equation

φ0
∂2ψ6

∂y2 =
∂

∂y

(
φ0

∂ψ6

∂y

)
–

∂

∂y

(
ψ6

∂ψ0

∂y

)
+ ψ6

∂2ψ0

∂y2 , (34)

we can obtain

AT + a0AX + a1AAX + a2A3AX + a3AXXX + a4AXYY = 0, (35)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a =
∫ +∞

0
∫ +∞

0
1

U–c0
[φ′′

2 P2 + k2
2φ2(K2P′

2)′] dy dz,

a0 =
∫ +∞

0
∫ +∞

0 [φ′
0O′(y) + θφ′′

0 O′′(y)]P0 dy dz/a,

a1 =
∫ +∞

0
∫ +∞

0
1

U–c0
[φ0φ

′′′
2 P0P2 + k2

2φ0φ
′
2(K2P′

2)′ – φ′
0φ

′′
2 P0P2 – k2

2φ
′
0φ2(K2P′

2)′

+ φ2φ
′′′
0 P0P2 + k2

0φ2φ
′
0(K2P′

0)′ – φ′
2φ

′′
0 P0P2 – k2

0φ
′
2φ0(K2P′

0)′] dy dz/a,

a2 =
∫ +∞

0
∫ +∞

0
2

U–c0
[φ1φ

′′′
1 P2

1 – φ′
1φ

′′
1 P2

1] dy dz/a,

a3 =
∫ +∞

0
∫ +∞

0 φ2P2 dy dz/a,

a4 =
∫ +∞

0
∫ +∞

0 (2φ′
3P3 + φ0P0) dy dz/a.

(36)

Remark Eq. (35) is a new (2 + 1) dimensional model. The coefficient a0 is in connection
with topographic effect G. The second term a0AX represents the effect of complete Cori-
olis force and topography on the evolution of Rossby solitary waves. Based on a1AAX and
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a2A3AX , we know that the new equation is the combination of ZK equation and mZK
equation. So, the new model Eq. (35) is called combined ZK-mZK equation. Compared
with other models, the combined ZK-mZK model can describe Rossby solitary waves
more accurately.

In order to facilitate the calculation, we ignore the effect of complete Coriolis force. In-
troducing the transformation T ′ = T , X ′ = X – a0T and Y ′ = Y , substituting the transfor-
mation into Eq. (35), and omitting the apostrophe, we can rewrite the combined ZK-mZK
equation in the following form:

AT + a1AAX + a2A3AX + a3AXXX + a4AXYY = 0. (37)

3 The derivation of conservation laws
To learn more about the new model, the conservation laws of the combined ZK-mZK
equation are discussed. The research process of conservation laws is as follows. The Euler
operator is defined as [64]

δ

δu
=

∂

∂u
– Dt

∂

∂ut
– Dx

∂

∂ux
– Dy

∂

∂uy
+ D2

t
∂

∂utt
+ D2

x
∂

∂uxx
+ D2

y
∂

∂uyy
· · · , (38)

where Dt , Dx,and Dy are defined as follows:

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ uxt

∂

∂ux
+ uyt

∂

∂uy
+ · · · , (39)

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ uyx

∂

∂uy
+ · · · , (40)

Dy =
∂

∂y
+ uy

∂

∂u
+ uyx

∂

∂ux
+ uty

∂

∂ut
+ uyy

∂

∂uy
+ · · · . (41)

Consider the nth-order partial differential equation of t, x, and y as follows:

H(t, x, y, u, ut , ux, uy, utt , utx, uty, . . .) = 0. (42)

A vector Q = (Qt , Qx, Qy) such that

Dt
(
Qt) + Dx

(
Qx) + Dy

(
Qy) = 0 (43)

holds for all solutions of Eq. (42) and is defined as the conserved vector of Eq. (42).
The multiplier � for Eq. (42) has the property as follows:

Dt
(
Qt) + Dx

(
Qx) + Dy

(
Qy) = �H . (44)

For an arbitrary function u(x, y, t), the determining equations for multiplier are acquired
by taking the variational derivative of Eq. (44)

δ

δu
(�H) = 0. (45)
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For an arbitrary function u(x, y, t), Eq. (45) sets up forever. Using Eq. (44) and computing
the multiplier from Eq. (45), we can derive the conserved vectors.

According to Section 2, the combined ZK-mZK equation is given by

AT + a1AAX + a2A3AX + a3AXXX + a4AXYY = 0.

According to the defining equation for multiplier �(X, Y , T , A(X, Y , T)) from Eq. (37), after
simplification, we can have

�A
(
AT + a1AAX + a2A3AX + a3AXXX + a4AXYY

)
+ �

(
a1AX + 2a2A2AX

)
– DT (�) – DX

[
�

(
a1A + a2A3)] – D3

X(a3�) – D2
Y
[
DX(a4�)

]
= 0. (46)

The coefficients of different derivatives of A of Eq. (46) for multiplier � give

�(X, Y , T , A) = c1A + F(Y ). (47)

By calculating, conserved quantities for Eq. (37) are obtained as follows:

QT
1 =

1
2

A2, (48)

DT
(
QT

1
)

= AAT + AAT = 2AAT , (49)

QX
1 =

a1

3
A3 +

a2

5
A5 – a3

(
AAXX –

1
2

A2
X

)
– a4

(
AAYY +

1
2

A2
Y

)
, (50)

DX
(
QX

1
)

= a1A2AX + a2A4AX – a3(AXAXX + AAXXX – AXAXX) – a4(AXAYY + AAXYY

+ AY AXY ) + AX
(
a1A2 + a2A4 – a3AXX – a4AYY

)
– a3(AAXXX – AxAXX)

– a4(AAXYY + AY AXY ), (51)

QY
1 = a4AXAY , (52)

DY
(
QY

1
)

= 2a4(AXAYY + AY AXY ). (53)

So, we can have

DT
(
QT

1
)

+ DX
(
QX

1
)

+ DY
(
QY

1
)

= 2AAT + 2a1A2AX + 2a2A4AX – 2a3AAXXX – 2a4AAXYY

= 2A
(
AT + a1AAX + a2A3AX – a3AXXX – a4AXYY

)
. (54)

For the multiplier �(X, Y , T , A) = F(Y ), the physical conserved quantities are as follows:

QT
F = F(Y )A, (55)

QY
F =

1
2

a1F(Y )A2 +
1
2

a2F(Y )A4 – a3F(Y )AXX + 2a4F(Y )AYY

–
1
2

a4FY AY –
1
2

a4FYY A, (56)

QY
F = a4

(
FY AX – F(Y )AXY

)
. (57)
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4 The soliton solutions
In order to seek the soliton solution [65, 66] of a partial differential equation, the semi-
inverse variational principle is used. Its steps are as follows:

Step 1. For an arbitrary function u(x, y, t), assuming u(x, y, t) = u(x + y – ct) and ξ = x + y –
ct, we can convert the partial differential equation into an ordinary differential equation

H(u, cuξ , c0) = 0, (58)

where c is the wave speed and c0 is the integration constant.
Step 2. A steady integral is constructed in the following form:

I =
∫ +∞

–∞
c0 dξ . (59)

Step 3. In order to find the one soliton to Eq. (42), we let

u(ξ ) = p sechn(qξ ), (60)

where p is the wave amplitude of Rossby solitary waves, q is the inverse width of Rossby
solitary waves, n is the exponent, and it is obtained by equating the exponents of the high-
est derivatives and nonlinear terms.

Step 4. Substituting Eq. (37) into Eq. (59), letting ∂I
∂p = 0 and ∂I

∂q = 0, and solving them to
determine the constants p and q, respectively, we determine the solitary wave solutions of
Eq. (37).

In this section, by using the semi-inverse variational principle, we seek the soliton solu-
tions of ZK-mZK equation. We convert Eq. (37) into ODE wave transformation:

ξ = X + Y – cT , A(ξ ) = A(X + Y – cT), (61)

and Eq. (37) has the following form:

–cA′ + a1
(
A2)′ +

1
4

a2
(
A4)′ + (a3 + a4)A(3) = 0 (62)

and

–cA + a1A2 +
1
4

a2A4 + (a3 + a4)A(2) = 0. (63)

Assuming n = 2/3, A = p sech
2
3 (qξ ) and integrating the above equation, we can get

I =
∫ +∞

–∞
–cA + a1A2 +

1
4

a2A4 + (a3 + a4)A(2) dξ

=
1
q

∫ +∞

–∞

{
–cp sech

2
3 (qξ ) + a1p2 sech

4
3 (qξ ) +

1
4

a2p4 sech
8
3 (qξ ) + (a3 + a4)p

· [sech
2
3 (qξ )

]′′′
}

d(qξ ). (64)
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Eq. (64) can be rewritten as follows:

I =
1
q

[
–cp

√
π

3 �( 1
6 )

�( 2
3 )

+ a1p2 3�( 2
3 )�( 5

6 )√
π

+
1
4

a2p4
√

π�( 4
3 )

�( 11
6 )

]
, (65)

where �(x) =
∫ +∞

0 tx–1e–t dt, τ1 =
√

π
3 �( 1

6 )
�( 2

3 )
= 4.21, τ2 = 3�( 2

3 )�( 5
6 )√

π
= 2.587, τ3 =

√
π�( 4

3 )
�( 11

6 )
= 1.68,

τ4 = 3
√

π�( 4
3 )

2�( 11
6 )

= 2.52.

According to Eq. (65), taking a derivative with respect to q and p, we can have the fol-
lowing equations:

∂I
∂q

= 7 –
1
q2

[
–cp

√
π

3 �( 1
6 )

�( 2
3 )

+ a1p2 3�( 2
3 )�( 5

6 )√
π

+
1
4

a2p4
√

π�( 4
3 )

�( 11
6 )

]
+ (a3 + a4)p

·
[

–
2
3

√
π

3 �( 1
6 )

�( 2
3 )

+
10
9

3
√

π�( 4
3 )

2�( 11
6 )

]
= 0 (66)

and

∂I
∂p

=
1
q

[
–c

√
π

3 �( 1
6 )

�( 2
3 )

+ 2a1p
3�( 2

3 )�( 5
6 )√

π
+ a2p3

√
π�( 4

3 )
�( 11

6 )

]
+ (a3 + a4)q

·
[

–
2
3

√
π

3 �( 1
6 )

�( 2
3 )

+
10
9

3
√

π�( 4
3 )

2�( 11
6 )

]
= 0. (67)

So, we can get the equation as follows:

⎧⎨
⎩

–[–4.21c + 2.587a1p + 1
4 1.68a2p3] + (a3 + a4)q2[– 2

3 4.21 + 10
9 2.52] = 0,

[–4.21c + 2 × 2.587a1p + 1.68a2p3] + (a3 + a4)q2[– 2
3 4.21 + 10

9 2.52] = 0.
(68)

After calculation, we can obtain the expression of p and q as follows:

p =
1
5

[(20
√

5
√

4a3
1τ3

2 +5a2c2τ2
1 τ3

τ3a2
+ 100τ1c)τ 2

3 a2
2]

1
3

τ3a2

–
4τ2a1

[(20
√

5
√

4a3
1τ3

2 +5a2c2τ2
1 τ3

τ3a2
+ 100τ1c)τ 2

3 a2
2]

1
3

, (69)

q =

√
–τ2a1p – 3

4τ3a2p3

2(a3 + a4)[– 2
3τ1 + 10

9 τ4]
. (70)

At this time, we can get the soliton solution of the combined ZK-mZK equation in the
following form:

A = p sech
2
3

[( –τ2a1p – 3
4τ3a2p3

2(a3 + a4)(– 2
3τ1 + 10

9 τ4)

) 1
2

(X + Y – cT)
]

. (71)
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Assuming a1 = –0.5, a2 = 1, a3 = 5, a2 = 5, c = 0.5 and substituting them into Eq. (69), Eq.
(70), and Eq. (71), we can get p = 1.7 and

A = 1.7 sech
2
3
√

30(X + Y – 0.5T), as c = 0.5. (72)

When c = 5, we also have the other equation about solution as follows:

A = 3 sech
2
3
√

226(X + Y – 5T), as c = 5. (73)

Soliton is a solitary wave packet which is caused by the delicate balance between non-
linearity effect and dispersion effect. It is a single hump that has infinite tails or infinite
wings and preserves their form and speed after an entire interaction with other solitons.
In this section, we display the soliton solutions and the solitary wave profiles for various
timescales in Figure 1. According to Figure 1, we can know that the soliton moves to the
right with a fixed velocity and almost unaltered amplitude as time increases. In Figure 2,
the collisions between two waves with different velocities and various timescales appear.
We also know that the wave speed c plays a critical role in a physical structure of the so-
lutions for the combined ZK-mZK equation. Then we can guess that the solitary wave
profile moves in the positive axes when c is a positive value, and the solitary wave profile
moves in the negative axes when c is a negative value.

Figure 1 The soliton solution and the solitary wave profiles for various timescales for T = 0, T = 3, and
T = 5, respectively.
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Figure 2 The collisions between two waves with different velocities for c = 0.5 and c = 5, respectively,
and various timescales for t = 0.08, t = 0.1, and t = 0.2, respectively.

5 Conclusions and discussions
In this paper, using the quasi-geostrophic potential vorticity equation, we get a new (2 + 1)
dimensional combined ZK-mZK model for Rossby solitary waves by applying the multi-
scale analysis and perturbation method. Based on the new model, we study conservation
laws and the soliton solutions of the new equation. By theory and image analysis, the fol-
lowing conclusions can be obtained:

(1) A combined ZK-mZK equation is a new (2 + 1) dimensional model which includes
the cosine Coriolis terms. Compared with (1 + 1) dimensional models, it can describe the
actual situation of ocean and atmosphere. Besides, in the actual ocean and atmosphere,
the cosine Coriolis is not ignored. It is necessary to include the cosine Coriolis terms for
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fully understanding the atmospheric motion. So, the combined ZK-mZK equation is more
suitable to describe Rossby solitary waves.

(2) According to the combined ZK-mZK equation, using the multiplier approach, we
obtain conservation laws and the corresponding conserved quantities. In addition, the
semi-inverse variational principle is a robust and efficient method which gives the varia-
tional principles for nonlinear problems. By using the semi-inverse variational principle,
we obtain soliton solution for the new equation. According to the soliton solution, some
propagation features of Rossby solitary waves are discussed.
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