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Abstract
We use the p-adic q-integral and group action to count the number of the generating
functions of modified q-Euler polynomials in a prescribed set. Some generating
function yields modified q-Euler polynomials with the isotropy group D4 and some
gives Euler polynomials with the isotropy group V4.
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1 Introduction
We attribute a substantial study of Bernoulli polynomials and Euler polynomials to Carlitz.
He used an inductive method to define these special polynomials (see [1]).

In this paper we use the p-adic q-integral to define the special polynomials. It is Kim
who has established the theory of the p-adic q-integral (see [2]). The p-adic q-integral
provides fruitful and essential results in studying special polynomials such as Bernoulli,
Euler and Catalan polynomials. One of such results is the symmetry of the special poly-
nomials.

Throughout this paper p is a fixed odd prime number. We use the notations Zp, Qp

and Cp to express the ring of p-adic integers, the field of p-adic rational numbers and the
completion of algebraic closure of Qp, respectively. The p-adic norm | · |p is normalized as
|p|p = 1

p . For q, x ∈ Cp with |q – 1|p < p– 1
p–1 . We define the q-analogue of a number x to be

[x]q = 1–qx

1–q . Note that limq→1[x]q = x.
Let UD(Zp) be the space of uniformly differentiable functions on Zp and f ∈ UD(Zp).

Kim has introduced the fermionic p-adic q-integral I–q(f ) on Zp (see [1, 3–10]).

I–q(f ) =
∫
Zp

f (x) du–q(x) = lim
N→∞

1
[pN ]–q

pN –1∑
x=0

f (x)(–q)x. (1.1)

The q-Euler polynomials En,q(x) are defined by the generating function

∫
Zp

e[x+y]qt dμ–q(y) =
∞∑

n=0

En,q(x)
tn

n!
(
see [2, 10–18]

)
. (1.2)
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Also the modified q-Euler polynomials En,q(x) are defined by the generating function

∫
Zp

e[x+y]qt dμ–1(y) =
∞∑

n=0

En,q(x)
tn

n!
(
see [19, 20]

)
. (1.3)

Note that En,q(x) =
∫
Zp

[x + y]n
q dμ–q(y) and En,q(x) =

∫
Zp

[x + y]n
q dμ–1(y).

For v and w odd positive integers, put p(x, u, v, w) =
∑v–1

i=0 (–1)i ∫
Zp

e[ux+vy+wi]qt dμ–1(y).
Then

p(x, u, v, w) =
v–1∑
i=0

(–1)i
∫
Zp

e[ux+vy+wi]qt dμ–1(y)

=
v–1∑
i=0

(–1)i lim
N→∞

pN –1∑
y=0

e[ux+vy+wi]qt(–1)y

=
v–1∑
i=0

(–1)i lim
N→∞

pN –1∑
y=0

w–1∑
k=0

e[ux+v(k+wy)+wi]qt(–1)k+wy

=
v–1∑
i=0

w–1∑
k=0

(–1)i+k lim
N→∞

pN –1∑
y=0

e[ux+vwy+vk+wi]qt(–1)y. (1.4)

Note that the last line is invariant under the transposition (v, w). So we obtain the ’basic’
symmetry of the generating functions

p(x, u, v, w) = p(x, u, w, v). (1.5)

In this paper we use four weights w1, w2, w3, w4 instead of u, v, w. Then the symmet-
ric group S4 of degree 4 naturally acts on the generating functions. We shall describe the
group action more generally. Let p = p(x, w1, . . . , wn) be generating functions with a vari-
able x and n weights w1, . . . , wn involved in the definition of p. For σ ∈ Sn, define

σ
(
p(x, w1, . . . , wn)

)
= p

(
x, wσ (1), . . . , wσ (n)

)
. (1.6)

Then it is obvious that (i) id(p) = p and (ii) (στ )(p) = (σ (τ (p))) hold. Hence this is a group
action naturally.

In this paper we will consider a set X of 315 generating functions, p = p(x, w1, . . . , w4),
and let S4 act on this set. There will be 19 orbits in X under the action of S4, and 4 non-
isomorphic subgroups of S4 as the isotropy groups.

Throughout this paper w1, w2, w3, w4 are odd positive integers. Consider the generating
functions p(x), where

p(x) =
wjwk –1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wjwk y+wlwmi]qt dμ–1(y), (1.7)

where 1 ≤ a, b, c, d, j, k, l, m ≤ 4, a �= b, c �= d, j �= k, l �= m and wawb �= wcwd . That is, we use
square-free quadratic forms of w′s.
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By the abuse of notation, we denote p(x) by p(ab + cd, jk, lm). That is,

p(ab + cd, jk, lm) =
wjwk –1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wjwk y+wlwmi]qt dμ–1(y). (1.8)

Then, due to the ‘basic’ symmetry in (1.5), p(ab + cd, jk, lm) = p(ab + cd, lm, jk). Let X
be the set of all p(ab + cd, jk, lm). Then there are 15 × 6 generating functions of the form
p(ab + cd, jk, jk) and 15 × 15 generating functions of the form p(ab + cd, jk, lm), where
wjwk �= wlwm. So X is a set of 315 generating functions.

Let the symmetric group S4 act on X naturally. That is, for any σ ∈ S4,

σ
(
p(ab + cd, jk, lm)

)
= p

(
σ (a)σ (b) + σ (c)σ (d),σ (j)σ (k),σ (l)σ (m)

)
. (1.9)

We will find each orbit and the isotropy subgroup of S4 of an element in the orbit. Note
that we have the basic counting of group action such that the product of the cardinality of
an orbit and that of the corresponding isotropy subgroup is |S4| = 24.

2 Quadratic symmetry of the modified q-Euler polynomials with the isotropy
group D4

We use the notation in (1.8) and put f1 = p(12 + 34, 12, 34), f2 = p(13 + 24, 13, 24) and f3 =
p(14 + 24, 14, 23). Then, for τ = (2, 3, 4) and τ 2 = (2, 4, 3),

τ (f1) = τ
(
p(12 + 34, 12, 34)

)
= p

(
τ (1)τ (2) + τ (3)τ (4), τ (1)τ (2), τ (3)τ (4)

)

= p(13 + 42, 13, 42) = p(13 + 24, 13, 24) = f2,

τ 2(f1) = τ 2(p(12 + 34, 12, 34)
)

= p(14 + 23, 14, 23) = f3.

(2.1)

Hence f1, f2, f3 are in an orbit under the action of S4 on X.
Now consider a 4-cycle σ1 = (1, 3, 2, 4) and a 2-cycle σ2 = (1, 2). It is obvious that σ2

fixes f1. Note that w1w2 + w3w4 = w3w4 + w1w2. By the basic symmetry in (1.5), we ob-
tain

σ1
(
p(12 + 34, 12, 34)

)
= p

(
σ1(1)σ1(2) + σ1(3)σ1(4),σ1(1)σ1(2),σ1(3)σ1(4)

)

= p(34 + 12, 34, 12) = p(12 + 34, 12, 34). (2.2)

That is, σ1 fixes f1 also. Hence the dihedral group D4 = 〈(1, 3, 2, 4), (1, 2)〉 is a subgroup
of the isotropy subgroup of f1. However, we find three elements f1, f2, f3 in the orbit of f1

and |D4| = 8. Thus X1 = {f1, f2, f3} is the orbit of f1 and D4 = 〈(1, 3, 2, 4), (1, 2)〉 is the isotropy
subgroup of S4 fixing f1.

Further, we can check that the cyclic group 〈(2, 3, 4)〉 acts transitively on X1. That is,

(2, 3, 4)(f1) = (2, 3, 4)
(
p(12 + 34, 12, 34)

)
= p(13 + 42, 13, 42) = f2,

(2, 4, 3)(f1) = (2, 4, 3)
(
p(12 + 34, 12, 34)

)
= p(14 + 23, 14, 23) = f3.

(2.3)
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Theorem 2.1 Let X be the set of all generating functions of the form

p(ab + cd, jk, lm) =
wjwk –1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wjwk y+wlwmi]qt dμ–1(y)

and S4 act on X by permuting w1, w2, w3, w4. Take f1 = p(12 + 34, 12, 34) ∈ X. Then the
isotropy subgroup of f1 is the dihedral group D4 = 〈(1, 3, 2, 4), (1, 2)〉 and the orbit of f1 is
X1 = {f1, f2 = p(13 + 24, 13, 24), f3 = p(14 + 23, 14, 23)}. Moreover, the cyclic group 〈(2, 3, 4)〉
acts transitively on X1.

Remark Note that the isotropy subgroup of f2 = p(13 + 24, 13, 24) is D1
4 = 〈(1, 2, 3, 4), (1, 3)〉

and the isotropy subgroup of f3 = p(14 + 23, 14, 23) is D2
4 = 〈(1, 2, 4, 3), (1, 4)〉.

Now we need to transform the q-analogue in the definition of f1 = p(12 + 34, 12, 34) to
express it in the form of Euler polynomials.

[
(w1w2 + w3w4)x + w1w2y + w3w4i

]
q

=
1 – q(w1w2+w3w4)x+w1w2y+w3w4i

1 – q

=
(

1 – qw1w2

1 – q

)(
1 – q(w1w2+w3w4)x+w1w2y+w3w4i

1 – qw1w2

)

=
(

1 – qw1w2

1 – q

)(
1 – qw1w2{(1+ w3w4

w1w2
)x+y+ w3w4

w1w2
i}

1 – qw1w2

)

= [w1w2]q

[(
1 +

w3w4

w1w2

)
x + y +

w3w4

w1w2
i
]

qw1w2
. (2.4)

Hence

f1 = p(12 + 34, 12, 34)

=
w1w2–1∑

i=0

(–1)i
∫
Zp

e[(w1w2+w3w4)x+w1w2y+w3w4i]qt dμ–1(y)

=
∞∑

n=0

w1w2–1∑
i=0

(–1)i[w1w2]n
qEn,qw1w2

((
1 +

w3w4

w1w2

)
x +

w3w4

w1w2
i
)

tn

n!
. (2.5)

Theorem 2.2 For q ∈Cp with |q –1|p < p– 1
p–1 and n ≥ 0, the modified q-Euler polynomials

w1w2–1∑
i=0

(–1)i[w1w2]n
qEn,qw1w2

((
1 +

w3w4

w1w2

)
x +

w3w4

w1w2
i
)

(2.6)

are invariant under any permutation in the dihedral group D4 = 〈(1, 3, 2, 4), (1, 2)〉.

3 Quadratic symmetry of the modified q-Euler polynomials with the isotropy
group V4

In this section we investigate two orbits each consisting of six generating functions.
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Let X2 be the set of six generating functions g1 = p(13 + 24, 12, 34), g2 = p(14 + 23, 12, 34),
g3 = p(12+34, 13, 24), g4 = p(14+24, 13, 24), g5 = p(12+34, 14, 23) and g6 = p(13+24, 14, 23)
as in the notation of (1.8). That is, each gi is a generating function of the form

p(ab + cd, ac, bd) =
wawd–1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wawcy+wbwdi]qt dμ–1(y), (3.1)

where 1 ≤ a, b, c, d ≤ 4 and a, b, c, d are distinct.
Note that the action of S3 = 〈(1, 2), (1, 2, 3)〉 on X2 = {g1, . . . , g6} is well defined.

(1, 2)(g1) = (1, 2)
(
p(13 + 24, 12, 34)

)
= p(23 + 14, 21, 34) = g2,

(1, 3)(g1) = (1, 3)
(
p(13 + 24, 12, 34)

)
= p(31 + 24, 32, 14) = g6,

(2, 3)(g1) = (2, 3)
(
p(13 + 24, 12, 34)

)
= p(12 + 34, 13, 24) = g3,

(1, 2, 3)(g1) = (1, 2, 3)
(
p(13 + 24, 12, 34)

)
= p(21 + 34, 23, 14) = g5,

(1, 3, 2)(g1) = (1, 3, 2)
(
p(13 + 24, 12, 34)

)
= p(32 + 14, 31, 24) = g4.

(3.2)

Consider the normal subgroup V4 = {(1),γ = (1, 2)(3, 4), δ = (1, 3)(2, 4),γ δ = (1, 4)(2, 3)}
of S4.

γ (g1) = (1, 2)(3, 4)
(
p(13 + 24, 12, 34)

)
= p(24 + 13, 21, 34) = g1,

δ(g1) = (1, 3)(2, 4)
(
p(13 + 24, 12, 34)

)
= p(31 + 42, 34, 12) = g1.

(3.3)

Hence V4 fixes g1. Since |S3| × |V4| = |S4|, we obtain the following theorem.

Theorem 3.1 Let X be the set of all generating functions of the form

p(ab + cd, jk, lm) =
wjwk –1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wjwk y+wlwmi]qt dμ–1(y)

and S4 act on X by permuting w1, w2, w3, w4. Take g1 = p(13 + 24, 12, 34) ∈ X. Then the orbit
of g1 is X2 = {g1, . . . , g6} and the isotropy subgroup of g1 is V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4),
(1, 4)(2, 3)}. Moreover, S3 acts transitively on X2.

Remark The same computation in (3.3) shows that the isotropy group of each gi is the
normal subgroup V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} of S4.

Next we adapt the computation in (2.4) for the change of the q-analogue in g1 =
p(13 + 24, 12, 34) and obtain the corresponding modified q-Euler polynomials.

[
(w1w3 + w2w4)x + w1w2y + w3w4i

]
q = [w1w2]q

[(
w3

w2
+

w4

w1

)
x + y +

w3w4

w1w2
i
]

qw1w2
, (3.4)



Choi et al. Advances in Difference Equations  (2018) 2018:38 Page 6 of 9

g1 = p(13 + 24, 12, 34)

=
w1w2–1∑

i=0

(–1)i
∫
Zp

e[(w1w3+w2w4)x+w1w2y+w3w4i]qt dμ–1(y)

=
∞∑

n=0

w1w2–1∑
i=0

(–1)i[w1w2]n
qEn,qw1w2

((
w3

w2
+

w4

w1

)
x +

w3w4

w1w2
i
)

tn

n!
. (3.5)

Theorem 3.2 For q ∈Cp with |q –1|p < p– 1
p–1 and n ≥ 0, the modified q-Euler polynomials

w1w2–1∑
i=0

(–1)i[w1w2]n
qEn,qw1w2

((
w3

w2
+

w4

w1

)
x +

w3w4

w1w2
i
)

(3.6)

are invariant under any permutation in the normal subgroup V4 = {(1), (1, 2)(3, 4),
(1, 3)(2, 4), (1, 4)(2, 3)} of S4.

Now we consider the set X3 of six polynomials h1 = p(12 + 34, 12, 12), h2 =
p(13 + 24, 13, 13), h3 = p(14 + 23, 14, 14), h4 = p(12 + 34, 34, 34), h5 = p(13 + 24, 24, 24) and
h6 = p(14 + 23, 23, 23). That is, each hi is a polynomial of the form

p(ab + cd, ab, ab) =
wawb–1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wawby+wawbi]qt dμ–1(y),

where 1 ≤ a, b, c, d ≤ 4 and a, b, c, d are distinct.
Now we have the action of S4 to collect all of hi in an orbit.

(2, 3)(h1) = (2, 3)
(
p(12 + 34, 12, 12)

)
= p(13 + 24, 13, 13) = h2,

(2, 4)(h1) = (2, 3)
(
p(12 + 34, 12, 12)

)
= p(14 + 32, 14, 14) = h3,

(1, 3)(2, 4)(h1) = (1, 3)(2, 4)
(
p(12 + 34, 12, 12)

)
=

(
p(34 + 12, 12)

)
= h4,

(1, 2, 4)(h1) = (1, 2, 4)
(
p(12 + 34, 12, 12)

)
=

(
p(24 + 31, 24, 24)

)
= h5,

(1, 2, 3)(h1) = (1, 2, 3)
(
p(12 + 34, 12, 12)

)
=

(
p(23 + 14, 23, 23)

)
= h6.

(3.7)

It is obvious that each permutation in the subgroup V̂4 = 〈(1, 2), (3, 4)〉 of S4 fixes h1. As
|V̂4| × 6 = 24, we conclude the following.

Theorem 3.3 Let X be the set of all generating functions of the form

p(ab + cd, jk, lm) =
wjwk –1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wjwk y+wlwmi]qt dμ–1(y)

and S4 act on X by permuting w1, w2, w3, w4. Take h1 = p(12 + 34, 12, 12) ∈ X. Then the
orbit of h1 is X3 = {h1, . . . , h6} and the isotropy subgroup of h1 is V̂4 = 〈(1, 2), (3, 4)〉 in S4.

Remark The subgroup V̂4 = 〈(1, 2), (3, 4)〉 is not normal in S4. Further, none of four sub-
groups of order 6 in S4 act transitively on X3.
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A slight change of the formula in (2.4) makes h1 = p(13 + 24, 12, 34) to be modified q-
Euler polynomials.

[
(w1w2 + w3w4)x + w1w2y + w1w2i

]
q = [w1w2]q

[(
1 +

w3w4

w1w2

)
x + y + i

]
qw1w2

, (3.8)

h1 = p(12 + 34, 12, 12)

=
w1w2–1∑

i=0

(–1)i
∫
Zp

e[(w1w2+w3w4)x+w1w2y+w1w2i]qt dμ–1(y)

=
∞∑

n=0

w1w2–1∑
i=0

(–1)i[w1w2]n
qEn,qw1w2

((
1 +

w3w4

w1w2

)
x + i

)
tn

n!
. (3.9)

Theorem 3.4 For q ∈Cp with |q –1|p < p– 1
p–1 and n ≥ 0, the modified q-Euler polynomials

w1w2–1∑
i=0

(–1)i[w1w2]n
qEn,qw1w2

((
1 +

w3w4

w1w2

)
x + i

)
(3.10)

are invariant under any permutation in the subgroup V̂4 = 〈(1, 2), (3, 4)〉 of S4.

4 Less symmetric modified q-Euler polynomials
When S4 acts on the set X of 315 generating functions listed in (1.8), there are seven orbits
having 12 generating functions and nine orbits having 24 generating functions. That is,
these are the generating functions whose isotropy subgroup is a cyclic group of order 2 or
a trivial group. In this section we just illustrate a typical one for each case.

Let X4 be the set of all generating functions of the form

p(ac + ad, ab, ab) =
wawb–1∑

i=0

(–1)i
∫
Zp

e[(wawc+wawd)x+wawby+wawbi]qt dμ–1(y), (4.1)

where 1 ≤ a, b, c, d ≤ 4 and a, b, c, d are distinct.
That is, X4 consists of the following 12 polynomials:

f1 = p(13 + 14, 12, 12), f2 = p(23 + 24, 12, 12),

f3 = p(12 + 14, 13, 13), f4 = p(32 + 34, 13, 13),

f5 = p(12 + 13, 14, 14), f6 = p(42 + 43, 14, 14),

f7 = p(21 + 24, 23, 23), f8 = p(31 + 34, 23, 23),

f9 = p(21 + 23, 24, 24), f10 = p(41 + 43, 24, 24),

f11 = p(31 + 32, 34, 34), f12 = p(41 + 42, 34, 34).

(4.2)
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We can check that the alternating group A4 acts on X4 transitively.

(1, 2, 3)f1 = f7, (1, 3, 2)f1 = f4,

(1, 2, 4)f1 = f9, (1, 4, 2)f1 = f6,

(1, 3, 4)f1 = f8, (1, 4, 3)f1 = f10,

(2, 3, 4)f1 = f3, (2, 4, 3)f1 = f5,

(1, 2)(3, 4)f1 = f2, (1, 3)(2, 4))f1 = f11,

(1, 4)(2, 3))f1 = f12.

(4.3)

As (3, 4)f1 = (3, 4)(p(13 + 14, 12, 12)) = p(14 + 13, 12, 12) = f1, the isotropy subgroup of
f1 is 〈(3, 4)〉 and X4 is the orbit of f . Note that 〈(3, 4)〉 consists of one even permutation
(1) and one odd permutation (3, 4). So, for any p(ac + ad, ab, ab) ∈ X4, there is an even
permutation τ such that τ (f1) = p(ac + ad, ab, ab). Hence the alternating subgroup A4 of
S4 acts transitively on X4.

Theorem 4.1 Let X be the set of all generating functions of the form

p(ab + cd, jk, lm) =
wjwk –1∑

i=0

(–1)i
∫
Zp

e[(wawb+wcwd)x+wjwk y+wlwmi]qt dμ–1(y)

and S4 act on X by permuting w1, w2, w3, w4. Take f1 = p(13 + 14, 12, 12) ∈ X. Then the orbit
of f1 is X4 consisting of 12 polynomials as above and the isotropy subgroup of f1 is 〈(3, 4)〉.
Moreover, A4 acts transitively on X4.

Finally, we illustrate one of the nine orbits each consisting of 24 generating functions.
Let X5 be the set of all generating functions of the form

p(ab + ac, ab, ab) =
wawb–1∑

i=0

(–1)i
∫
Zp

e[(wawb+wawc)x+wawby+wawbi]qt dμ–1(y), (4.4)

where 1 ≤ a, b, c ≤ 4 and a, b, c are distinct. Note that there are six choices for the coeffi-
cient wawb of y and four choices for the coefficient wawb + wawc of x. Hence X5 consists of
24 generating functions. We use g = p(12 + 13, 12, 12) ∈ X5, then we can see that the action
of S4 on X5 is transitive.

5 Conclusion
In this paper we investigate the symmetric property of the Euler polynomials. If we use
n weights w1, . . . , wn in the definition of the generating functions of Euler polynomials,
then the symmetric group Sn naturally acts on a prescribed set of generating functions of
the Euler polynomials. This paper uses four weights w1, . . . , w4 in a quadratic form. We
find that the dihedral group D4 (or the Klein 4 group V4) is an isotropy group of some
generating function. As a result, the corresponding Euler polynomial is fixed by D4 (or
V4). The results in the paper extend to other special polynomials such as degenerate Euler
polynomials and Catalan polynomials. It is a further problem to find special polynomials
that are invariant under the alternating group An.
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