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Abstract
In this paper, we study a new SEIRS epidemic model describing nonlinear incidence
with a more general form and the transmission of influenza virus with disease
resistance. The basic reproductive number �0 is obtained by using the method of
next generating matrix. If �0 < 1, the disease-free equilibrium is globally
asymptotically stable, and if �0 > 1, by using the geometric method, we obtain some
sufficient conditions for global stability of the unique endemic equilibrium. Finally,
numerical simulations are provided to support our theoretical results.
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1 Introduction
There are lots of people dying because of infectious diseases every day. From an epidemi-
ological viewpoint, it is important to study the global stability of disease transmission.
Mathematical models describing the infectious disease dynamics have played an impor-
tant role and provided the preventive strategies in a period. The SEIRS epidemic model
is an important model. It shows that the total population is divided into four classes: the
susceptible S, the exposed E, the infectious I and the removed R. This model has been
studied by many authors [1–11]; however, many literature works did not consider disease
resistance in humans. With the development and progress of society, people begin to un-
derstand the importance of health and exercise. In other words, people’s resistance has
improved greatly. So, disease resistance has become an indispensable factor in the study
of infectious disease models. Nguyen Huu Khanh considered the disease resistance and
formulated a mathematical model [3]. In the model, a person in the exposed group or
infected group can return to the susceptible group without treatment.

In fact, the disease incidence plays an important role in the study of mathematical epi-
demiological model. The general form of incidence rate is written as βU(N) S

N I , where
U(N) is usually called the contact rate. In many articles, the adequate contact rate takes
two forms frequently, the corresponding disease incidence is the bilinear incidence rate
βSI (U(N) = N ) and the standard incidence rate β S

N I (U(N) = 1). Between the two con-
tact rates, there is a more realistic saturated contact rate U(N) = αN

1+ωN [12]. Heesterbeek
et al. considered the saturated contact rate forming U(N) = αN

1+bN+
√

1+2bN
[13]. The above
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specific contact rates have the following common characteristic:

U(0) = 0, U ′(N) ≥ 0,
(

U(N)
N

)′
≤ 0.

Based on this characteristic, more general incidence rates have also been proposed, for
example, βIpSq [14, 15], βSg(I) [16], f (S, N , I) [17], f (S, I) [4, 18]. Moreover, Qi and Cui
established a new SEIRS epidemic model including a general incidence forming βh(S)I
[6], and it also satisfied the above characteristics.

In real life, many infectious diseases are transmitted through both exposed individuals
and infected individuals, for example, HIV, HBV and influenza. For the convenience of
mathematical research, we assume that the exposed and infected individuals have the same
infection rate. It is assumed that the nonlinear incidence is to be of the form βh(S)(E + I),
where h satisfies

(A1) for x ≥ 0, h(x) ≥ 0, with equality if and only if x = 0, h′(x) > 0 and h′′(x) ≤ 0 (where
′ represents differentiation with respect to x).

Our paper is organized as follows. In Section 2, we formulate an SEIRS mathematical
model and obtain the basic reproductive number �0. Furthermore, the existence of equi-
libria is given. In Section 3, we prove the global stability of the disease-free equilibrium.
Section 4 is devoted to the stability analysis of the endemic equilibria of the model. In Sec-
tion 5, some numerical simulations are given to justify the theoretical analysis. Finally, we
summarize this work.

2 The model and its basic properties
2.1 The structure of the model
We consider the transmission of influenza virus with disease resistance in humans. The
total population is divided into four classes of individuals which are the susceptible (S),
the exposed (E), the infected (I) and the recovered (R). The model is given by a system of
ordinary differential equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS
dt = A – βh(S)(E + I) + cE + bI + αR – μS,
dE
dt = βh(S)(E + I) – (c + ε + μ)E,
dI
dt = εE – (γ + b + μ)I,
dR
dt = γ I – (α + μ)R,

(2.1)

where A is the recruitment of susceptible, c, b are the rates at which the exposed and
infectious individuals become susceptible individuals without treatment, respectively, ε is
the constant rate for the exposed population becoming infectious, α is the rate at which
the recovered individuals become susceptible individuals again, γ is the constant rate for
recovery, and μ is the natural death rate of the human population. All parameters are
assumed to be positive. Consider the epidemiological implications, we assume that b < c.

Let N(t) = S(t) + E(t) + I(t) + R(t). The rate of change of N(t), which can be obtained by
adding all the equations in model (2.1), is given by

dN
dt

≤ A – μN .
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Therefore, from biological consideration, we study (2.1) in the closed set

� =
{

(S, E, I, R)
∣∣∣S, E, I, R ≥ 0, S + E + I + R ≤ A

μ

}
.

It is easy to see that the set � is a positively invariant set for (2.1).

2.2 Basic reproduction number
The basic reproduction number, denoted by �0, is ‘the expected number of secondary
cases produced, in a completely susceptible population, by a typical infective individual’
[19]. We use the method of next generating matrix to determinate the expression for �0

[20]. Let x = (E, I, S, R)T , we rewrite system (2.1) in the matrix form

dx
dt

= F (x) – V(x),

where

F (x) =

⎛
⎜⎜⎜⎝

βh(S)(E + I)
0
0
0

⎞
⎟⎟⎟⎠ , V(x) =

⎛
⎜⎜⎜⎝

(c + ε + μ)E
–εE + (γ + b + μ)I

–A + βh(S)(E + I) – cE – bI – αR + μS
–γ I + (α + μ)R

⎞
⎟⎟⎟⎠ .

We can get

F =

(
βh(S0) βh(S0)

0 0

)
, V =

(
c + ε + μ 0

–ε γ + b + μ

)
,

where S0 = A
μ

. The next generation matrix for model (2.1) is

FV –1 =
βh(S0)(b+γ +μ+ε)
(γ +b+μ)(c+ε+μ)

βh(S0)
γ +b+μ

0 0
.

The spectral radius ρ(FV –1) is βh(S0)(b+γ +μ+ε)
(γ +b+μ)(c+ε+μ) . According to Theorem 2 in [20], the basic

reproduction number of system (2.1) is �0 = βh(S0)(b+γ +μ+ε)
(γ +b+μ)(c+ε+μ) .

2.3 Existence of equilibria
Theorem 2.1 There exist at most two equilibria in �.

(i) System (2.1) has the disease-free equilibrium E0 = (S0, 0, 0, 0) = ( A
μ

, 0, 0, 0).
(ii) If �0 > 1, system (2.1) has two equilibria, the disease-free equilibrium E0 and the

unique endemic equilibrium Ec = (S∗, E∗, I∗, R∗).

Proof It is easy to see that the disease-free equilibrium E0 always exists.
From the second and third equations of (2.1), let their right-hand side be equal to zero,

we have

F(S) =: βh(S)(γ + b + ε + μ) – (c + ε + μ)(γ + b + μ) = 0. (2.2)
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It is easy to see that

F(0) = –(c + ε + μ)(γ + b + μ) < 0, F ′(S) = βh′(S)(γ + b + μ) > 0,

F(S0) = βh(S0)(γ + b + ε + μ)
(

1 –
1
�0

)
.

If �0 > 1, F(S0) > 0, then Eq. (2.2) has a unique root S∗ > 0. Hence, if �0 > 1, system (2.1)
has a unique endemic equilibrium Ec = (S∗, E∗, I∗, R∗), where

I∗ =
A – μS∗

(ε+μ)(γ +b+μ)
ε

– b – αγ

α+μ

, E∗ =
γ + b + μ

ε
I∗, R∗ =

γ

α + μ
I∗.

The proof of Theorem 2.1 is completed. �

3 The stability of the disease-free equilibrium
In this section, we analyze the stability of the disease-free equilibrium.

Theorem 3.1 E0 is locally asymptotically stable if �0 < 1, whereas E0 is unstable if �0 > 1.

Proof The Jacobian matrix at E0 is given by

JE0 =

⎛
⎜⎜⎜⎝

–μ c – βh(S0) b – βh(S0) α

0 βh(S0) – (c + ε + μ) βh(S0) 0
0 ε –(γ + b + μ) 0
0 0 γ –(α + μ)

⎞
⎟⎟⎟⎠ . (3.1)

We can obtain that the characteristic roots are λ1 = –μ, λ2 = –(α + μ) and the other two
roots λ3 and λ4 are the roots of the following equation:

λ2 + a1λ + a2 = 0, (3.2)

where

a1 = –βh(S0) + c + ε + μ + γ + b + μ,

a2 = –βh(S0)(γ + b + μ + ε) + (c + ε + μ)(γ + b + μ).

When �0 < 1, we have βh(S0)(γ + b +μ+ ε) < (c + ε +μ)(γ + b +μ) and βh(S0) < c + ε +μ.
It is clear that ai > 0; i = 1, 2. By Vieta’s theorem, all roots of (3.2) are negative. Hence, E0

is locally asymptotically stable.
When �0 > 1, we have a2 < 0, (3.2) has a positive root, so E0 is unstable. �

In the following, applying LaSalle’s invariance principle and the Lyapunov direct
method, we prove the global stability of the disease-free equilibrium.

Theorem 3.2 The disease-free equilibrium E0 is globally asymptotically stable if �0 < 1.
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Proof Define a Lyapunov function

V (t) = εE –
[
βh(S0) – (c + ε + μ)

]
I. (3.3)

When �0 < 1, we have βh(S0) < c + ε + μ, then V (t) ≥ 0. The total derivative of V along
the solutions of (2.1) is

V ′(t) = ε
[
βh(S)(E + I) – (c + ε + μ)E

]
–
[
βh(S0) – (c + ε + μ)

][
εE – (γ + b + μ)I

]
=
[
βh(S) – βh(S0)

]
εE + βh(S)εI +

[
βh(S0) – (c + ε + μ)

]
(γ + b + μ)I.

From h′(S) > 0 and 0 < S < S0, we have h(S) < h(S0), and then

V ′(t) ≤ βh(S0)εI +
[
βh(S0) – (c + ε + μ)

]
(γ + b + μ)I

=
[
βh(S0)(γ + b + μ + ε) –

βh(S0)(γ + b + μ + ε)
�0

]
I

= βh(S0)(γ + b + μ + ε)
(

1 –
1
�0

)
I. (3.4)

It is easy to see that V ′(t) ≤ 0 and V ′(t) = 0 if and only if I(t) = 0. It follows from (2.1) that
E(t) → 0, R(t) → 0, S(t) → S0 as t → +∞, and then E0 is the largest invariant subset of the
invariant set {(S, E, I, R) ∈ � : V ′(t) = 0}. Therefore, by the LaSalle’s invariance principle,
E0 is globally attractive in �. This, combined with the local stability of E0, completes the
proof. �

4 The stability of the endemic equilibrium
In this section, we analyze the stability of the endemic equilibrium.

Theorem 4.1 If �0 > 1, βh(S∗) ≤ c + ε and βh′(S∗)I∗ ≥ b+γ +μ–ε

b+γ +μ+ε
– (μ + b), then the endemic

equilibrium Ec is locally asymptotically stable.

Proof The Jacobian matrix at Ec is given by

JEc =

⎛
⎜⎜⎜⎝

–βh′(S∗)(E∗ + I∗) – μ c – βh(S∗) b – βh(S∗) α

βh′(S∗)(E∗ + I∗) βh(S∗) – (c + ε + μ) βh(S∗) 0
0 ε –(γ + b + μ) 0
0 0 γ –(α + μ)

⎞
⎟⎟⎟⎠ . (4.1)

The characteristic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (4.2)

where

a1 = G + 2μ + α + B + F ,

a2 = (G + μ)(α + μ) + M + (G + 2μ + α)(B + F) + G
(
βh

(
S∗) – c

)
,
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a3 = (G + 2μ + α)M + (G + μ)(α + μ)(B + F) + G
(
βh

(
S∗) – c

)
(B + α + μ)

+ εG
(
βh

(
S∗) – b

)
,

a4 = (G + μ)(α + μ)M + GB
(
βh

(
S∗) – c

)
(α + μ) + εG

(
βh

(
S∗) – b

)
(α + μ) – εGγα,

and

G = βh′(S∗)(γ + b + μ + ε

ε

)
I∗, B = γ + b + μ,

F = c + ε + μ – βh
(
S∗), M = (γ + b + μ)

(
c + ε + μ – βh

(
S∗)) – εβh

(
S∗).

From Eq. (2.2), we have (γ + b + μ)(c + ε + μ) – βh(S∗)(b + γ + μ + ε) = 0 and βh(S∗) <
c + ε + μ, so we get M = 0, F > 0.

When βh(S∗) ≥ c + ε and b < c, we have βh(S∗) > b + ε. Take notice of condition
βh′(S∗)I∗ ≥ b+γ +μ–ε

b+γ +μ+ε
– (μ + b). It is easy to see that ai > 0; i = 1, 2, 3, 4, a1a2 – a3 > 0 and

a4(a3(a1a2 – a3) – a2
1a4) > 0. By the Routh-Hurwitz criterion, all roots of (4.2) have nega-

tive real parts. Hence, the endemic equilibrium Ec of system (2.1) is locally asymptotically
stable.

The proof of Theorem 4.1 is completed. �

In the following, we use the geometric approach to discuss the global stability of the
endemic equilibrium. We will expand its application to four-dimensional systems, which
can also be seen in [21].

Firstly, we present some preliminaries on the geometric approach to prove global stabil-
ity [22].

Definition 4.1 System (2.1) is said to be uniformly persistent in � if there exists a con-
stant k > 0 such that any solution (S(t), E(t), I(t), R(t)) of system (2.1) with the initial value
(S(0), E(0), I(0), R(0)) ∈ int� satisfies

min
{

lim inf
t→∞ S(t), lim inf

t→∞ E(t), lim inf
t→∞ I(t), lim inf

t→∞ R(t)
}

≥ k.

Similar to [7], we can get the following.

Theorem 4.2 System (2.1) is uniformly persistent in � if and only if �0 > 1.

Remark 4.1 The uniform persistence of system (2.1) in the bounded set � is equivalent
to the existence of a compact K ⊂ � that is absorbing for (2.1) (see [23]). Denote

K =
{

(S, E, I, R)|δS ≤ S ≤ MS, δE ≤ E ≤ ME , δI ≤ I ≤ MI , δR ≤ R ≤ MR
}⊂ �,

where δi > 0, i = S, E, I, R.

Consider the autonomous dynamical system

dx
dt

= f (x), (4.3)

where x → f (x) ∈ Rn is a C1 function about x in �1 ⊂ Rn.
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Assume that the following hypotheses hold:
(H1) There is a compact absorbing set K ⊂ �1;
(H2) Differential equation (4.3) has a unique equilibrium x∗ in �1.
Let x → P(x) be a

( n
2
)× ( n

2
)

matrix-valued function that is C1 for x ∈ �1. Assume that
P–1(x) exists and is continuous for x ∈ K and consider

B = Pf P–1 + PJ [2]P–1,

where the matrix Pf is (pij(x))f = ( ∂pij(x)
∂x )T · f (x) = ∇pij(x) · f (x), J [2] is the second additive

compound matrix of the Jacobian matrix J , i.e., J(x) = Df (x). Consider the Lozinskĭı mea-

sure μ of Q with respect to a vector norm ‖ · ‖ in R
( n

2

)
(see [24]), that is,

μ(B) = lim
h→0+

‖I + hB‖ – 1
h

.

A quantity q is defined as follows:

q = lim sup
t→∞

sup
x∈K

1
t

∫ t

0
μ
(
B
(
x(s, x0)

))
ds.

The following global stable result is proved in Theorem 3.5 of [22].

Lemma 4.1 ([22]) Suppose that �1 is simply connected and that assumptions (H1) and
(H2) hold, then the unique equilibrium x∗ of system (4.3) is globally stable in �1 if
q < 0.

Now we apply Lemma 4.1 to prove the global stability of Ec.

Theorem 4.3 If �0 > 1, then the endemic equilibrium Ec of system (2.1) is globally asymp-
totically stable provided that

2μ > max
{

3βh(MS) – βh′(MS)(δE + δI) – c – ε – b,

ε + c – d – βh(δS) – βh′(MS)(δE + δI),

βh′(δS)(ME + MI) + 2βh(MS) – c – d – ε, ε – α – b – γ
}

, (4.4)

where d = min{b,α}.

Proof The Jacobian matrix of system (2.1) is given by

J =

⎛
⎜⎜⎜⎝

–βh′(S)(E + I) – μ c – βh(S) b – βh(S) α

βh′(S)(E + I) βh(S) – (c + ε + μ) βh(S) 0
0 ε –(γ + b + μ) 0
0 0 γ –(α + μ)

⎞
⎟⎟⎟⎠ . (4.5)
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Hence, the second additive compound matrix J [2] [21] of J is given by

J [2] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 βh(S) 0 βh(S) – b –α 0
ε M22 0 c – βh(S) 0 –α

0 γ M33 0 c – βh(S) b – βh(S)
0 βh′(S)(E + I) 0 M44 0 0
0 0 βh′(S)(E + I) γ M55 βh(S)
0 0 0 0 ε M66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

M11 = –βh′(S)(E + I) – μ + βh(S) – (c + ε + μ),

M22 = –βh′(S)(E + I) – μ – (γ + b + μ),

M33 = –βh′(S)(E + I) – μ – (α + μ), M44 = βh(S) – (c + ε + μ) – (γ + b + μ),

M55 = βh(S) – (c + ε + μ) – (α + μ), M66 = –(γ + b + μ) – (α + μ).

Let

P = P(S, E, I, R) = diag

(
1
I

,
1
I

,
1
I

,
1
I

,
1
I

,
1
I

)
,

then

Pf P–1 = diag

(
–

I ′

I
, –

I ′

I
, –

I ′

I
, –

I ′

I
, –

I ′

I
, –

I ′

I

)
.

Let

Q(S, E, I, R)

= Pf P–1 + PJ [2]P–1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 – I′
I βh(S) 0 βh(S) – b –α 0

ε M22 – I′
I 0 c – βh(S) 0 –α

0 γ M33 – I′
I 0 c – βh(S) b – βh(S)

0 βh′(S)(E + I) 0 M44 – I′
I 0 0

0 0 βh′(S)(E + I) γ M55 – I′
I βh(S)

0 0 0 0 ε M66 – I′
I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix Q(S, E, I, R) can be written in the block form

Q(S, E, I, R) =

⎛
⎜⎜⎜⎝

Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

⎞
⎟⎟⎟⎠ ,

where

Q11 = M11 –
I ′

I
, Q12 =

(
βh(S) 0

)
, Q13 =

(
βh(S) – b –α

)
,
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Q14 = 0, Q21 =
(
ε 0

)T
,

Q22 =

(
M22 – I′

I 0
γ M33 – I′

I

)
, Q23 =

(
c – βh(S) 0

0 c – βh(S)

)
,

Q24 =
(

–α b – βh(S)
)T

, Q31 = 0,

Q32 =

(
βh′(S)(E + I) 0

0 βh′(S)(E + I)

)
, Q33 =

(
M44 – I′

I 0
γ M55 – I′

I

)
,

Q34 =
(

0 βh(S)
)T

, Q41 = 0, Q42 = 0, Q43 = ε, Q44 = M66 –
I ′

I
.

Let z = (z1, z2, z3, z4, z5, z6) denote a vector in R6 � R
( 4

2

)
, we select a norm in R6 as

∥∥(z1, z2, z3, z4, z5, z6)
∥∥ = max

{|z1|, |z2| + |z3|, |z4| + |z5|, |z6|
}

.

Let σ (Q) be the Lozinskĭı measure of Q with respect to the induced matrix norm ‖ · ‖ in
R6, defined by

σ (Q) = lim
h→0+

‖I + hQ‖ – 1
h

.

We have the following estimate:

σ
(
Q(S, E, I, R)

)≤ sup{g1, g2, g3, g4},

where

g1 = σ1(Q11) + |Q12| + |Q13| + |Q14|, g2 = σ1(Q22) + |Q21| + |Q23| + |Q24|,
g3 = σ1(Q33) + |Q31| + |Q32| + |Q34|, g4 = σ1(Q44) + |Q41| + |Q42| + |Q43|.

|Qij| (i �= j, i, j = 1, 2, 3, 4) are matrix norms with respect to the l1 vector norm, and σ1 de-
notes the Lozinskĭı measure with respect to the l1 norm.

From the first equations of (2.1), we have

S′ = A –
(
βh(S) – c

)
E –

(
βh(S) – b

)
I + αR – μS. (4.6)

From equation (4.6), it easy to prove that there is t∗, when t > t∗, we have βh(S) – b > 0.
In fact, if βh(S) ≤ b, from equation (4.6) and b < c, we have S′ ≥ A – μS = μ( A

μ
– S) > 0,

which means that each solution starting from K must have crossed the curve βh(S) = b in
a limited time; this is contradiction to βh(S) ≤ b. To calculate the values of gi, we firstly
obtain that

σ1(Q11) = βh(S) – βh′(S)(E + I) – μ – (c + ε + μ) –
I ′

I
,

σ1(Q22) ≤ –d – 2μ – βh′(S)(E + I) –
I ′

I
,
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σ1(Q33) ≤ βh(S) – c – ε – 2μ – d –
I ′

I
,

σ1(Q44) = –α – b – γ – 2μ –
I ′

I
,

and

|Q12| = βh(S), |Q13| = βh(S) – b, |Q14| = 0,

|Q21| = ε, |Q23| = c – βh(S), |Q24| ≤ 0,

|Q31| = 0, |Q32| = βh′(S)(E + I), |Q34| = βh(S),

|Q41| = 0, |Q42| = 0, |Q43| = ε,

where d = min{α, b}. From h′′(S) < 0, we have h′(MS) < h′(S) < h′(δS). Then we further have

g1 = 3βh(S) – βh′(S)(E + I) – μ – (c + ε + μ) – b –
I ′

I

≤ –
I ′

I
+ 3βh(MS) – βh′(MS)(δE + δI) – 2μ – c – ε – b,

g2 = ε + c – βh(S) – d – 2μ – βh′(S)(E + I) –
I ′

I

≤ –
I ′

I
+ ε + c – 2μ – d – βh(δS) – βh′(MS)(δE + δI),

g3 = βh′(S)(E + I) + 2βh(S) – c – d – ε – 2μ –
I ′

I

≤ –
I ′

I
+ βh′(δS)(ME + MI) + 2βh(MS) – c – d – ε – 2μ,

g4 = –
I ′

I
+ ε – α – b – γ – 2μ.

Let

b̄ = min
{

2μ + βh′(MS)(δE + δI) + c + ε + b – 3βh(MS),

2μ – ε – c + d + βh(δS) + βh′(MS)(δE + δI),

2μ + c + d + ε – βh′(δS)(ME + MI) – 2βh(MS), 2μ + α + b + γ – ε
}

.

From condition (4.4), we have b̄ > 0 and

g1 ≤ –
I ′

I
– b̄, g2 ≤ –

I ′

I
– b̄, g3 ≤ –

I ′

I
– b̄, g4 ≤ –

I ′

I
– b̄.

Along each solution (S(t), I(t), R(t), I(t)) of system (2.1) with the initial value (S(0), I(0),
R(0), I(0)) ∈ K , when t > t∗, we have

1
t

∫ t

0
g1 ds ≤ 1

t

∫ t∗

0
g1 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
,

1
t

∫ t

0
g2 ds ≤ 1

t

∫ t∗

0
g2 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
,
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1
t

∫ t

0
g3 ds ≤ 1

t

∫ t∗

0
g2 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
,

1
t

∫ t

0
g4 ds ≤ 1

t

∫ t∗

0
g3 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
.

Furthermore, we have

1
t

∫ t

0
σ
(
Q(S, E, I, R)

)
) ds

≤ sup

{
1
t

∫ t∗

0
g1 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
,

1
t

∫ t∗

0
g2 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
,

1
t

∫ t∗

0
g3 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t
,

1
t

∫ t∗

0
g4 ds –

1
t

ln
I(t)
I(t∗)

– b̄
t – t∗

t

}
.

Therefore,

q = lim sup
t→∞

sup
x∈K

1
t

∫ t

0
σ
(
Q(S, E, I, R)

)
ds ≤ –b < 0.

The proof of Theorem 4.1 is completed. �

5 Numerical simulation
To support our main results, we perform some numerical simulations. We choose h(S) =

S
1+gS and consider the set of parameters:

(1) β = 0.025, α = 0.25, c = 0.15, μ = 0.15, A = 0.1, γ = 0.4, g = 0.8, ε = 0.25, with the
initial condition (S(0), E(0), I(0), R(0)) = (0.15, 0.15, 0.15, 0.15), we have �0 = 0.3403 < 1. In
this case, according to Theorem 3.2, the disease-free equilibrium E0 of system (2.1) is glob-
ally asymptotically stable (see Figure 1).

(2) β = 0.35, α = 0.04, b = 0.04, c = 0.05, μ = 0.23, A = 0.23, γ = 0.008, g = 0.1, ε = 0.25,
with the initial condition (S(0), E(0), I(0), R(0)) = (0.5, 0.1, 0.1, 0.1), we have �0 = 1.1402 > 1,
and 3βh(MS) – βh′(MS)(δE + δI) – c – ε – b = 0.4529, ε + c – d – βh(δS) – βh′(MS)(δE + δI) =
0.0948, βh′(δS)(ME +MI)+2βh(MS)–c–d –ε = 0.2778, ε –α –b–γ = 0.1620, so condition

Figure 1 The disease-free equilibrium E0 is globally asymptotically stable.
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Figure 2 The endemic equilibrium Ec of system (2.1) is globally asymptotically stable.

(4.4) is satisfied. According to Theorem 4.3, the endemic equilibrium Ec of system (2.1) is
globally asymptotically stable (see Figure 2).

6 Conclusions
In this paper, we have proposed a nonlinear mathematical model for influenza virus trans-
mission with disease resistance; nonlinear incidence has a more general form. Through
mathematical analysis we obtain the dynamic behaviors of the model. The basic repro-
duction number �0 is obtained. If �0 < 1, the disease-free equilibrium is globally asymp-
totically stable. It implies that the disease dies out eventually. When �0 > 1, the endemic
equilibrium is globally asymptotically stable under some conditions. It implies that the
disease persists in the population. All of these results imply that the disease resistance
and nonlinear incidence can influence the dynamic behaviors of the SEIRS model. From
the expression of �0, it is easy to see that when β is increased, b, c decrease and then �0

increases. �0 > 1 leads to the stability of the endemic equilibrium and then the prevalence
of the disease. So we can get some effective strategies for controlling the disease such as
reducing the contact rate β and increasing the b, c. That is to say, by taking proper isolation
of the population and increasing the resistance of people, we can avoid the development of
infectious diseases into endemic diseases. In reality, the exposed and infected individuals
have different infection rates, which will be the focus of our future research.
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