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Abstract
This paper is concerned with the entire solutions of the spruce budworm model, i.e.,
solutions defined for all (x, t) ∈ R

2. Using the comparison argument and
sub-super-solution method, three types of the entire solutions are obtained, and each
one of them behaves like two traveling fronts that come from both sides of the real
axis and mix.
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1 Introduction and statement of main results
In 1978, Ludwig et al. [1] considered the spruce budworm population dynamics to be gov-
erned by the equation

dN
dt

= rBN
(

1 –
N
KB

)
– P(N). (1.1)

Here N is the spruce budworm population density, rB is the linear birth rate of the
budworm and KB is the carrying capacity which is related to the density of foliage
available on the trees. The P(N)-term represents predation, generally by birds. To
be specific, we take the form for P(N) suggested by Ludwig et al., namely BN2

A2+N2 ,
where A and B are positive constants, and the dynamics of N(t) is then governed
by

dN
dt

= rBN
(

1 –
N
KB

)
–

BN2

A2 + N2 . (1.2)

Let u = N
A , r = ArB

B , q = KB
A , τ = Bt

A , (1.2) becomes

du
dτ

=
r
q

u(q – u) –
u2

1 + u2 . (1.3)

Here r and q are positive real numbers. For the range of r and q (see Figure 1), there can
be three positive steady states of (1.3), two linearly stable ones k1 and k3, and one unstable
one k2 (see Figure 2). The steady state k0 = 0 is also unstable. The lower steady state k1
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Figure 1

Figure 2

corresponds to a refuge for the budworm, while k3 corresponds to an outbreak. For more
background of this model, one can see [1, 2].

In this paper, we investigate the entire solutions of the following equation with diffusion
proposed by Ludwig et al. [3]:

ut = uxx +
r
q

u(q – u) –
u2

1 + u2 , x ∈R, t ∈ R. (1.4)

First, let us look for traveling fronts of (1.4). Set u(x, t) = φ(ξ ), ξ = x + ct, then φ′′ –
cφ′ + f (φ) = 0, where f (φ) = r

q φ(q – φ) – φ2

1+φ2 . Let φ′ = v, then the phase plane system
is

⎧⎨
⎩

φ′ = v,

v′ = cv – f (φ).
(1.5)

For (r, q) in the shadow region of Figure 1, there are four singular points of (1.5):
(0, 0), (k1, 0), (k2, 0), (k3, 0). Note that f ′(0) > 0, f ′(k2) > 0, f ′(k1) < 0 and f ′(k3) < 0,
then, using the standard phase plane analysis, it is easy to get (0, 0) and (k2, 0) are un-
stable nodes if c ≥ 2 max{√f ′(0),

√
f ′(k2)} and (k1, 0) and (k3, 0) are saddle points for

all c.
For later use of this paper, in the following we first give some results on the existence

of traveling fronts of (1.4) which can be proved by classical methods (see [4, 5]). Here we
omit the proof.
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Lemma 1.1
(i) (1.4) has two traveling front types φ1(x + ct) and φ1(–x + ct) satisfying

⎧⎨
⎩

(φ1)′′ – c(φ1)′ + r
q φ1(q – φ1) – φ2

1
1+φ2

1
= 0,

φ1(–∞) = 0, φ1(+∞) = k1,

if and only if c ≥ 2
√

f ′(0). Moreover, φ1(ξ ) satisfies

φ1(ξ ) =

⎧⎨
⎩

A1eλ1–ξ + o(eλ1–ξ ), c > 2
√

f ′(0),

–Ã1ξe
√

f ′(0)ξ + O(e
√

f ′(0)ξ ), c = 2
√

f ′(0),
as ξ → –∞,

k1 – φ1(ξ ) = B1eλ1+ξ + o
(
eλ1+ξ

)
, as ξ → +∞,

where A1, Ã1 and B1 are some positive constants and λ1– = c–
√

c2–4f ′(0)
2 ,

λ1+ = c–
√

c2–4f ′(k1)
2 .

(ii) (1.4) has two traveling front types φ2(x + ct) and φ2(–x + ct) satisfying

⎧⎨
⎩

(φ2)′′ – c(φ2)′ + r
q φ2(q – φ2) – φ2

2
1+φ2

2
= 0,

φ2(–∞) = k2, φ2(+∞) = k3,

if and only if c ≥ 2
√

f ′(k2). Moreover, φ2(ξ ) satisfies

φ2(ξ ) – k2 =

⎧⎨
⎩

A2eλ2–ξ + o(eλ2–ξ ), c > 2
√

f ′(k2),

–Ã2ξe
√

f ′(k2)ξ + O(e
√

f ′(k2)ξ ), c = 2
√

f ′(k2),
as ξ → –∞,

k3 – φ2(ξ ) = B2eλ2+ξ + o
(
eλ2+ξ

)
, as ξ → +∞,

where A2, Ã2 and B2 are some positive constants and λ2– = c–
√

c2–4f ′(k2)
2 ,

λ2+ = c–
√

c2–4f ′(k3)
2 .

(iii) Suppose that
∫ k3

k1
f (u) du > 0. Then there exists a unique c∗ > 0 such that (1.4) has

two traveling front types φ3(x + c∗t) and φ3(–x + c∗t) satisfying

⎧⎨
⎩

(φ3)′′ – c∗(φ3)′ + r
q φ3(q – φ3) – φ2

3
1+φ2

3
= 0,

φ3(–∞) = k1, φ3(+∞) = k3.

Moreover, φ3(ξ ) satisfies

φ3(ξ ) – k1 = A3eλ3–ξ + o
(
eλ3–ξ

)
, as ξ → –∞,

k3 – φ3(ξ ) = B3eλ3+ξ + o
(
eλ3+ξ

)
, as ξ → +∞,

with A3 and B3 some positive constants and λ3– = c+
√

c2–4f ′(k1)
2 , λ3+ = c–

√
c2–4f ′(k3)

2 .

It is well known that traveling waves are special entire solutions which are defined in the
whole space and for all time t ∈ R. But it is not enough for us to understand the whole
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dynamics of a reaction-diffusion equation or systems only by traveling waves. The first
successful example of new types of the entire solution was given by Hamel and Nadirashvili
[6, 7] (we can also see [8]). In their papers, they established the entire solutions for Fisher-
KPP equation in one- and high-dimensional spaces by combining traveling fronts with
different speeds. For more research of the entire solutions for a reaction-diffusion equation
or systems, please see [9–19] and the references therein.

The purpose of this paper is to consider the entire solutions of (1.4) in three cases. More
precisely, we prove the existence of entire solutions which behave like two traveling fronts
propagating from both sides of the x-axis. As t → +∞, these solutions converge to one of
the positive roots of f (u) = 0. For some other results about budworm population dynamics,
we refer to the papers [20–23].

In this paper, we need the following technical assumptions:
(H1) – 2r

q (1 + k2
2)2(1 + k2

3)2 – 2 + 2k2k3(k2k3 + k2
2 + k2

3 + 2) < 0.
(H2) – 2r

q (1 + k2
1)2(1 + k2

3)2 – 2 + 2k1k3(k1k3 + k2
1 + k2

3 + 2) < 0.
Here 0 < k1 < k2 < k3 are the three positive roots of f (u) = 0, where f (u) = r

q u(q – u) – u2

1+u2 .

Remark 1.1 Assumption (H1) holds in many cases. For example, we choose r = 1
2 , q = 10,

then there are three positive roots of f (u) = 0: k1 = 4 –
√

11, k2 = 2 and k3 = 4 +
√

11. In this
case, the left-hand side of the inequality in (H1) is –2626 – 796

√
11 and (H1) obviously

holds.
In fact, k3 is increasing as q is increasing when r is fixed (see Figure 2). Then for fixed r

and large q, it is easy to see that the dominate term in the left-hand side of the inequality
in (H1) is – 2r

q (1 + k2
2)2k4

3 and then (H1) obviously holds.
Similarly, assumption (H2) also holds in many cases.

Now we will state the main result of this paper as follows.

Theorem 1 Let φi (i = 1, 2, 3) be the traveling fronts of (1.4) satisfying Lemma 1.1, and let
φi1(x + ·) = φi(x + ·), φi2(–x + ·) = φi(–x + ·), i = 1, 2.

(i) For c2 ≥ c1 ≥ 2
√

f ′(0) and any given constants θ11 and θ12, there exists a solution
u1(x, t) ((x, t) ∈R

2) of (1.4) satisfying

lim
t→–∞

{
sup
x≥0

∣∣u1(x, t) – φ11(x + c1t + θ11)
∣∣

+ sup
x≤0

∣∣u1(x, t) – φ12(–x + c2t + θ12)
∣∣} = 0,

(1.6)

lim
t→+∞ sup

x∈R

∣∣u1(x, t) – k1
∣∣ = 0. (1.7)

(ii) Assume (H1) holds. For c2 ≥ c1 ≥ 2
√

f ′(k2) and any given constants θ21 and θ22,
there exists a solution u2(x, t) ((x, t) ∈R

2) of (1.4) satisfying

lim
t→–∞

{
sup
x≥0

∣∣u2(x, t) – φ21(x + c1t + θ21)
∣∣ + sup

x≤0

∣∣u2(x, t) – φ22(–x + c2t + θ22)
∣∣} = 0,

lim
t→+∞ sup

x∈R

∣∣u2(x, t) – k3
∣∣ = 0.
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(iii) Assume (H2) holds. For c = c∗ and any given constant θ3, there exists a solution
u3(x, t) ((x, t) ∈R

2) of (1.4) satisfying

lim
t→–∞

{
sup
x≥0

∣∣u3(x, t) – φ3(x + c∗t + θ3)
∣∣ + sup

x≤0

∣∣u3(x, t) – φ3(–x + c∗t + θ3)
∣∣} = 0,

lim
t→+∞ sup

x∈R

∣∣u3(x, t) – k3
∣∣ = 0.

2 Proof of Theorem 1
The idea of the proof of Theorem 1 is from [9, 16] and [18]. We will prove the existence
of the entire solutions by constructing appropriate upper-lower solutions for (1.4). The
complexity of f (u) will bring some difficulties when we use this method. First, we give the
following lemma which is important for us to prove Theorem 1.

Lemma 2.1

φ′
1(ξ )

φ1(ξ )
,

φ′
2(ξ )

φ2(ξ ) – k2
,

φ′
3(ξ )

φ3(ξ ) – k1
≥ r1, ξ ≤ 0, (2.1)

0 < φ1(ξ ),φ2(ξ ) – k2,φ3(ξ ) – k1 ≤ M exp(ωξ ), ξ ≤ 0. (2.2)

Here r1, ω and M are positive constants.

We can obtain this lemma from Lemma 1.1 directly, here the proof is omitted.
To construct the super-solution of (1.4), we introduce the following ODEs:

⎧⎪⎪⎨
⎪⎪⎩

ṗ1 = c1 + Leωp1 ,

ṗ2 = c2 + Leωp1 ,

p2(0) ≤ p1(0) < 0, c2 ≥ c1 > 0,

t ≤ 0, (2.3)

where · = d
dt and ω > 0 is defined by (2.2). It is easy to see that p1(t) and p2(t) are monotone

increasing for t ≤ 0. After some calculation, we get the solution of (2.3) as

p1(t) = c1t –
1
ω

ln

{
e–ωp1(0) +

L(1 – ec1ωt)
c1

}
< 0, t ≤ 0,

p2(t) = p2(0) – p1(0) + c2t –
1
ω

ln

{
e–ωp1(0) +

L(1 – ec1ωt)
c1

}
< 0, t ≤ 0,

and p2(t) ≤ p1(t), for t ≤ 0,

lim
t→–∞

(
p1(t) – c1t

)
= –

1
ω

ln

{
e–ωp1(0) +

L
c1

}
� q1.

lim
t→–∞

(
p2(t) – c2t

)
= p2(0) – p1(0) + q1 � q2.

2.1 Proof (i) of Theorem 1
Let L(u) = ut – uxx – f (u) with f (u) = r

q u(q – u) – u2

1+u2 , t ≤ 0, and ū(x, t) = min{k1,φ11(x +
p1(t)) + φ12(–x + p2(t))}.
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If (x, t) ∈ {(x, t) : φ11(x + p1(t)) + φ12(–x + p2(t)) ≥ k1}, then ū(x, t) = k1 and it is obvious
that L(ū) = 0.

If (x, t) ∈ {(x, t) : φ11(x + p1(t)) + φ12(–x + p2(t)) < k1}, then we have

L(ū) = (φ11 + φ12)t – (φ11 + φ12)xx – f (φ11 + φ12)

= ṗ1(t)φ′
11 + ṗ2(t)φ′

12 –
(
φ′′

11 + φ′′
12

)
– f (φ11 + φ12)

=
(
ṗ1(t) – c1

)
φ′

11 +
(
ṗ2(t) – c2

)
φ′

12 –
{

f (φ11 + φ12) – f (φ11) – f (φ12)
}

= Leωp1(t){φ′
11 + φ′

12
}

–
{

f (φ11 + φ12) – f (φ11) – f (φ12)
}

with

f (φ11 + φ12) – f (φ11) – f (φ12)

=
r
q
{

(φ11 + φ12)(q – φ11 – φ12) – φ11(q – φ11) – φ12(q – φ12)
}

+
φ2

11
1 + φ2

11
+

φ2
12

1 + φ2
12

–
(φ11 + φ12)2

1 + (φ11 + φ12)2

= –
2r
q

φ11φ12 +
φ2

11
1 + φ2

11
+

φ2
12

1 + φ2
12

–
(φ11 + φ12)2

1 + (φ11 + φ12)2 .

Let I1(x, p) = φ2
11(x+p1(t))

1+φ2
11(x+p1(t)) , I2(x, p) = φ2

12(–x+p2(t))
1+φ2

12(–x+p2(t)) , with pi(t) < 0, i = 1, 2.
For x ≥ 0, –x + p2(t) ≤ 0, it follows from (2.1) and (2.2) that

I2(x, p)
φ′

11(x + p1(t)) + φ′
12(–x + p2(t))

≤ φ2
12(–x + p2(t))

φ′
11(x + p1(t)) + φ′

12(–x + p2(t))

≤ φ12
(
–x + p2(t)

)φ12(–x + p2(t))
φ′

12(–x + p2(t))
≤ 1

r1
φ12

(
–x + p2(t)

)

≤ 1
r1

M exp
(
ω

(
–x + p2(t)

)) ≤ 1
r1

M exp
(
ωp2(t)

)
. (2.4)

For x ≤ 0, x + p1(t) ≤ 0, by (2.1) and (2.2), we get

I1(x, p)
φ′

11(x + p1(t)) + φ′
12(–x + p2(t))

≤ φ2
11(x + p1(t))

φ′
11(x + p1(t)) + φ′

12(–x + p2(t))

≤ φ11
(
x + p1(t)

)φ11(x + p1(t))
φ′

11(x + p1(t))
≤ 1

r1
φ11

(
x + p1(t)

)

≤ 1
r1

M exp
(
ω

(
x + p1(t)

)) ≤ 1
r1

M exp
(
ωp1(t)

)
. (2.5)

Note that I1(x, p) – (φ11+φ12)2

1+(φ11+φ12)2 < 0 and I2(x, p) – (φ11+φ12)2

1+(φ11+φ12)2 < 0, thus by (2.4) and (2.5),
f (φ11 + φ12) – f (φ11) – f (φ12) ≤ 1

r1
M exp(ωp1(t)){φ′

11 + φ′
12} for x ∈ R.
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Choose L > 1
r1

M, then L(ū) ≥ 0 and ū(x, t) is a super-solution of (1.4) for t ≤ 0.
It is easy to check that

u(x, t) = max
{
φ11(x + c1t + q1),φ12(–x + c2t + q2)

}

is a sub-solution of (1.4) and for (x, t) ∈R× (–∞, 0],

u(x, t) ≤ ū(x, t).

Applying a similar argument as in [18], we can prove the existence and the asymptotic
behavior (1.6)-(1.7) of the entire solution u1(x, t) for (1.4) by applying the comparison prin-
ciple and some detailed computations. Here we omit the proof.

2.2 Proof (ii) of Theorem 1
To prove (ii) of Theorem 1 easier, we let v(x, t) = u(x, t) – k2, then v(x, t) satisfies

vt = vxx +
r
q

(v + k2)(q – v – k2) –
(v + k2)2

1 + (v + k2)2 . (2.6)

Denote φ21(x + c1t) – k2 = ψ(x + c1t), φ22(–x + c2t) – k2 = ψ̃(–x + c2t), where φ21(x + c1t)
and φ22(–x + c2t) are defined in Theorem 1.

Let L(v) = vt – vxx – g(v) with g(v) = r
q (v + k2)(q – v – k2) – (v+k2)2

1+(v+k2)2 , t ≤ 0, and v̄(x, t) =
min{k3 – k2,ψ(x + p1(t)) + ψ̃(–x + p2(t))}.

If (x, t) ∈ {(x, t) : ψ(x + p1(t)) + ψ̃(–x + p2(t)) ≥ k3 – k2}, then v̄(x, t) = k3 – k2, and it is
obvious that L(v̄) = 0.

If (x, t) ∈ {(x, t) : ψ(x + p1(t)) + ψ̃(–x + p2(t)) < k3 – k2}, then we have

L(v̄) = (ψ + ψ̃)t – (ψ + ψ̃)xx – g(ψ + ψ̃)

= ṗ1(t)ψ ′ + ṗ2(t)ψ̃ ′ –
(
ψ ′′ + ψ̃ ′′) – g(ψ + ψ̃)

=
(
ṗ1(t) – c1

)
ψ ′ +

(
ṗ2(t) – c2

)
ψ̃ ′ –

{
g(ψ + ψ̃) – g(ψ) – g(ψ̃)

}
= Leωp1(t){ψ ′ + ψ̃ ′} –

{
g(ψ + ψ̃) – g(ψ) – g(ψ̃)

}
,

with

g(ψ + ψ̃) – g(ψ) – g(ψ̃)

=
r
q
{

(ψ + ψ̃ + k2)(q – ψ – ψ̃ – k2) – (ψ + k2)(q – ψ – k2) – (ψ̃ + k2)(q – ψ̃ – k2)
}

+
(ψ + k2)2

1 + (ψ + k2)2 +
(ψ̃ + k2)2

1 + (ψ̃ + k2)2
–

(ψ + ψ̃ + k2)2

1 + (ψ + ψ̃ + k2)2

=
r
q
(
k2

2 – k2q – 2ψψ̃
)

+
(ψ + k2)2

1 + (ψ + k2)2

+
(ψ̃ + k2)2

1 + (ψ̃ + k2)2
–

(ψ + ψ̃ + k2)2

1 + (ψ + ψ̃ + k2)2
.
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Since k2 is a root of r
q u(q – u) = u2

1+u2 , then

(ψ̃ + k2)2

1 + (ψ̃ + k2)2
+

r
q
(
k2

2 – k2q – 2ψψ̃
)

=
(ψ̃ + k2)2

1 + (ψ̃ + k2)2
–

k2
2

1 + k2
2

–
2r
q

ψψ̃

= ψ̃ · ψ̃ + 2k2 – 2r
q ψ(1 + k2

2)[1 + (ψ̃ + k2)2]

(1 + k2
2)[1 + (ψ̃ + k2)2]

.

It is easy to check that

(ψ + k2)2

1 + (ψ + k2)2 –
(ψ + ψ̃ + k2)2

1 + (ψ + ψ̃ + k2)2
= –

(2ψ + 2k2 + ψ̃)ψ̃
[1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2]

< 0.

Now let us consider

ψ̃ + 2k2 – 2r
q ψ(1 + k2

2)[1 + (ψ̃ + k2)2]

(1 + k2
2)[1 + (ψ̃ + k2)2]

–
2ψ + 2k2 + ψ̃

[1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2]

=
h(ψ , ψ̃)

(1 + k2
2)[1 + (ψ̃ + k2)2][1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2]

,

where

h(ψ , ψ̃)

=
{
ψ̃ + 2k2 –

2r
q

ψ
(
1 + k2

2
)[

1 + (ψ̃ + k2)2]}[
1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2]

– (2ψ + 2k2 + ψ̃)
(
1 + k2

2
)[

1 + (ψ̃ + k2)2]
= (ψ̃ + 2k2)

{[
1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2] –

(
1 + k2

2
)[

1 + (ψ̃ + k2)2]}

– 2ψ
(
1 + k2

2
)[

1 + (ψ̃ + k2)2]{ r
q
[
1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2] + 1

}

= ψ(ψ̃ + 2k2)(ψ + ψ̃ + 2k2)
[
(ψ + k2)(ψ + ψ̃ + k2) + k2(ψ̃ + k2) + 2

]

– 2ψ
(
1 + k2

2
)[

1 + (ψ̃ + k2)2]{ r
q
[
1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2] + 1

}

= ψh1(ψ , ψ̃),

and

h1(ψ , ψ̃)

= –2
(
1 + k2

2
)[

1 + (ψ̃ + k2)2]{ r
q
[
1 + (ψ + k2)2][1 + (ψ + ψ̃ + k2)2] + 1

}

+ (ψ̃ + 2k2)(ψ + ψ̃ + 2k2)
[
(ψ + k2)(ψ + ψ̃ + k2) + k2(ψ̃ + k2) + 2

]
.

Then g(ψ + ψ̃) – g(ψ) – g(ψ̃) = ψψ̃h1(ψ , ψ̃).
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Here we choose ψ(0) and ψ̃(0) sufficiently near k3 – k2 but fixed. Then, by assumption
(H1) and some computations, we have h1(ψ , ψ̃) < 0 in the following two cases:

(i) for x ≥ –p1(t), x + p1(t) ≥ 0, –x + p2(t) < 0;
(ii) for x ≤ p2(t), x + p1(t) < 0, –x + p2(t) ≥ 0.
For p2(t) ≤ x ≤ 0, then x + p1(t) < 0, –x + p2(t) ≤ 0, by (2.1) and (2.2),

ψ(x + p1(t))ψ̃(–x + p2(t))h1(ψ , ψ̃)
ψ ′(x + p1(t)) + ψ̃ ′(–x + p2(t))

≤ max
∣∣h1(ψ , ψ̃)

∣∣ψ(x + p1(t))ψ̃(–x + p2(t))
ψ̃ ′(–x + p2(t))

≤ 1
r1

max
∣∣h1(ψ , ψ̃)

∣∣ψ(
x + p1(t)

)

≤ 1
r1

M max
∣∣h1(ψ , ψ̃)

∣∣ exp
(
ωp1(t)

)
.

For 0 ≤ x ≤ –p1(t), then x + p1(t) ≤ 0, –x + p2(t) < 0, by (2.1) and (2.2),

ψ(x + p1(t))ψ̃(–x + p2(t))h1(ψ , ψ̃)
ψ ′(x + p1(t)) + ψ̃ ′(–x + p2(t))

≤ max
∣∣h1(ψ , ψ̃)

∣∣ψ(x + p1(t))ψ̃(–x + p2(t))
ψ ′(x + p1(t))

≤ 1
r1

max
∣∣h1(ψ , ψ̃)

∣∣ψ̃(
–x + p2(t)

)

≤ 1
r1

M max
∣∣h1(ψ , ψ̃)

∣∣ exp
(
ωp1(t)

)
.

Thus, for x ∈ R, g(ψ + ψ̃) – g(ψ) – g(ψ̃) ≤ 1
r1

M max |h1(ψ , ψ̃)| exp(ωp1(t)){ψ ′ + ψ̃ ′}.
Choose L > 1

r1
M max |h1(ψ , ψ̃)|, we then have L(v̄) ≥ 0 and v̄(x, t) is a super-solution of

(2.6) for t ≤ 0.
In the following, using a similar argument as in [18], we can get (ii) of Theorem 1 holds

by setting u(x, t) = v(x, t) + k2.

2.3 Proof (iii) of Theorem 1
Let w(x, t) = u(x, t) – k1, then w(x, t) satisfies

wt = wxx +
r
q

(w + k1)(q – w – k1) –
(w + k1)2

1 + (w + k1)2 .

(iii) of Theorem 1 can be obtained similarly by using the method in the proof of (ii) of
Theorem 1. Here we omit the proof.
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