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Abstract
This paper deals with a large class of non-monotone time-delayed reaction-diffusion
equations in which the reaction term can be spatially nonlocal. Nonexistence,
existence, uniqueness and global attractivity of positive equilibriums to the equation
are addressed. In particular, developed is a technique that combines the method of
super-sub solutions, the variation-of-constants formula for the delay differential
equation and the estimation of integral kernels, which enables us to obtain some
sufficient conditions for the global attractiveness of the unique positive equilibrium.
Two examples are given to illustrate the obtained results.
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1 Introduction
Consider the following non-monotone reaction-diffusion equation with time delay:

⎧
⎨

⎩

∂u(t,x)
∂t = d�u(t, x) – g(u(t, x)) + μ

∫

�
ρ(η, x, y)f (u(t – τ , y)) dy, t > 0, x ∈ �,

Bu(t, x) = 0, t > 0, x ∈ ∂�.
(1.1)

Here, d > 0, μ > 0, η ≥ 0, τ > 0. � is the Laplacian operator on R
m, where m ≥ 1 and

R = (–∞, +∞). � is a bounded, open and convex domain with a smooth boundary ∂� in
R

m. � is the closure of �. x ∈ � denotes x belonging to �. Either Bu = u or Bu = ∂u/∂n,
where ∂/∂n denotes the differentiation in the direction of the outward normal n to ∂�.
And the kernel function ρ(η, x, y) is the fundamental solution associated with the operator
∂η – �x and boundary condition Bu = 0. Such an equation arises from the interaction of
intrinsic dynamics and the spatial diffusion in a structured population [1]. When u in (1.1)
is regarded as the density of the mature population in a two-stage population (mature
and immature, with a fixed maturation time τ ), then g(u) and f (u) are the death function
and the birth function of mature individuals, respectively, and the term

∫

�
ρ(η, x, y)f (u(t –

τ , y)) dy is exactly the maturation rate of those immature individuals born at time τ ago.
For the model derivation and historical accounts of the development, see Gourley and
Wu’s survey article [2] and the references therein.
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To make clear of the global dynamics to (1.1), a central question is to investigate ex-
istence, uniqueness and global attractivity of positive equilibriums. If the birth function
f (u) always increases with u > 0, the monotone dynamical system approach can be ap-
plied, and this central question has been solved very well [3]. However, in the real world,
the birth function f (u) is often non-monotone. It has been more common to assume
that f (u) decreases for sufficiently large u. For example, researchers often assume that
f (u) = pu(q – u) in the most prevailing logistic model, f (u) = pu

q+uβ in the Mackey-Glass
model and f (u) = pue–qu in the Nicholson’s blowflies model, where p, q,β > 0. For non-
monotone f (u), the theory of monotone dynamical systems may not be adequate, and
this question becomes very subtle. This motivates many authors to investigate this central
question for some special cases of (1.1) [4–11]. For example, Zhao [11] established the
global attractivity of the positive constant steady state for the special case of Bu = ∂u/∂n
and g(u) = αu of (1.1) by using a fluctuation method [12], where α > 0. Guo et al. [4] stud-
ied the special case of Bu = u, � = (0,π ), g(u) = αu and η > 0. By employing the method of
super-sub solution, combined with the careful analysis for ρ(η, x, y), they obtained some
sufficient conditions for nonexistence, existence and uniqueness of positive equilibriums
[4]. At the same time, Yi and Zou [7] analyzed the special case of Bu = u, g(u) = αu and
η > 0. By using the comparison technique and the theory of monotone dynamical systems,
they found some sufficient conditions for the existence and global attractiveness of positive
equilibriums [7]. For the general case of (1.1), this central question remained unsettled.

These observations motivate us to study the global asymptotic behavior for (1.1). For
convenience, we consider the following version:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,x)
∂t = d�u(t, x) – g(u(t, x)) +

∫

�
ρ(η, x, y)f (u(t – τ , y)) dy, t > 0, x ∈ �,

Bu(t, x) = 0, t > 0, x ∈ ∂�,

u(θ , x) = ϕ(θ , x), θ ∈ [–τ , 0], x ∈ �,

(1.2)

where ϕ : [–τ , 0] × � → R is a bounded, continuous and positive initial function. By the
derivation in [3], the kernel function ρ(η, x, y) is given by

ρ(η, x, y) =

⎧
⎨

⎩

∑+∞
n=1 e–ηξnψn(x)ψn(y), if η > 0,

δ(x – y), if η = 0.
(1.3)

Here, 0 ≤ ξ1 < ξ2 ≤ · · · ≤ ξn ≤ · · · with limn→∞ ξn = +∞ are the eigenvalues of the operator
–� subject to the homogeneous Neumann (or Dirichlet) boundary condition on ∂�. The
function ψn is the eigenvector corresponding to ξn. {ψn}+∞

n=1 is a complete orthonormal
system in the Banach space L2(�). ψ1(x) > 0 for all x ∈ �. And δ(x) is the Dirac function
on R

m [11, 13]. For any function a(x), we always denote by a′(x) the derivative with respect
to x of the function a(x). Throughout this paper, we assume that:

(A1) f ∈ C1(R+,R+), f (u) = uh1(u), h1(u) > 0 and h′
1(u) < 0 for all u ≥ 0, where

R
+ = [0, +∞).

(A2) Both f (u) and f ′(u) are bounded for u ≥ 0.
(A3) g ∈ C1(R+,R+), g(u) = uh2(u), h2(u) > 0 and h′

2(u) ≥ 0 for all u ≥ 0.
(A4) There exists a real number M > 0 such that f̂ (u) < g(u) for all u > M, where

f̂ (u) = maxv∈[0,u] f (v).
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(A5) There exists a positive real number M0 such that h2(M0) ≥ h1(M0)α0, where
α0 = maxx∈�

∫

�
ρ(η, x, y) dy.

It is easily seen that Assumptions (A1)-(A5) are satisfied by g(u) = αu in the most popu-
lation models and f (u) = pue–qu in the Nicholson’s blowflies model [14], where p, q,α > 0.

The rest of this paper is organized as follows. We present some preliminary results in
Section 2. Our main results are presented and proved in Sections 3 and 4. In Section 3,
we obtain some sufficient conditions for nonexistence, existence and uniqueness of pos-
itive equilibriums to (1.2) by employing the method of super-sub solutions. In Section 4,
developed is a technique that combines the method of super-sub solutions, the variation-
of-constants formula for the delay differential equation and the estimation of integral ker-
nels, which enables us to obtain some sufficient conditions for the global attractivity of the
unique positive equilibrium. Finally, we present two examples in Section 5 to illustrate the
obtained results.

Remark 1.1 If we let η = 0, then (1.2) reduces to the following local time-delayed reaction-
diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,x)
∂t = d�u(t, x) – g(u(t, x)) + f (u(t – τ , x)), t > 0, x ∈ �,

Bu(t, x) = 0, t > 0, x ∈ ∂�,

u(θ , x) = ϕ(θ , x), θ ∈ [–τ , 0], x ∈ �.

(1.4)

Yi and Zou [6] analyzed the special case of Bu = ∂u/∂n, g(u) = αu and f (u) = pue–qu in (1.4),
where α, p, q > 0. They obtained some sufficient conditions for the global attractiveness of
the unique positive steady state by combining a dynamical systems argument and some
subtle inequalities [6].

Remark 1.2 If we let d → 0+ in (1.2), then we obtain the following nonlocal time-delayed
differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,x)
∂t = –g(u(t, x)) +

∫

�
ρ(η, x, y)f (u(t – τ , y)) dy, t > 0, x ∈ �,

Bu(t, x) = 0, t > 0, x ∈ ∂�,

u(θ , x) = ϕ(θ , x), θ ∈ [–τ , 0], x ∈ �.

(1.5)

Yuan and Guo [9] considered this equation. By employing the method of super-sub so-
lutions, combined with the careful analysis for ρ(η, x, y), they proved nonexistence, exis-
tence and uniqueness of positive equilibriums to (1.5). With the help of the comparison
principle, they employed the theory of dissipative systems to obtain the global asymptotic
stability of the unique positive equilibrium to (1.5).

Remark 1.3 If we let η = 0 and d → 0+, then (1.2) reduces to the following delay differen-
tial equation:

⎧
⎨

⎩

du(t)
dt = –g(u(t)) + f (u(t – τ )), t > 0,

u(θ ) = ϕ(θ ), θ ∈ [–τ , 0].
(1.6)

Its dynamics have been extensively and intensively studied for the case of g(u) = αu, where
α > 0; see, e.g., [14–24] and the references therein.
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2 Preliminaries
Let Y = C(�,R) andY

+ = {ϕ ∈Y|ϕ(x) ≥ 0 for all x ∈ �}. Then (Y,Y+) is a strongly ordered
Banach space. It is well known that the operator d� generates a C0-semigroup S(t) on Y.
Moreover, the standard parabolic maximum principle (see, e.g., Corollary 7.2.3 of [25])
implies that S(t) : Y → Y is strongly positive in the sense that S(t)(Y+ \ {0}) ⊂ int(Y+) for
all t > 0.

Let C = C([–τ , 0],Y) and C
+ = C([–τ , 0],Y+). For any continuous function u(·) :

[–τ ,�) → Y, where � > 0, define ut ∈ C, t ∈ [0,�) by ut(θ ) = u(t + θ ) for all θ ∈ [–τ , 0]
and its norm

‖ut‖C = sup
θ∈[–τ ,0]

sup
x∈�

∣
∣u(t + θ , x)

∣
∣,

where we denote u(t, x) = u(t)(x), t ∈ [–τ ,�), x ∈ �. Define G : C+ →Y by

G(ϕ)(x) = –g
(
ϕ(0, x)

)
+

∫

�

ρ(η, x, y)f
(
ϕ(–τ , y)

)
dy, ∀x ∈ �,ϕ ∈C

+.

Then equation (1.2) can be rewritten as the following integral equation:

⎧
⎨

⎩

u(t) = S(t)ϕ(0) +
∫ t

0 S(t – s)G(us) ds, t ≥ 0,

u0 = ϕ ∈C
+,

(2.1)

whose solution is called a mild solution to (1.2).
Since S(t) : Y →Y is strongly positive, we obtain that

lim
ε→0+

dist
(
ϕ(0) + εG(ϕ),Y+)

= 0, ∀ϕ ∈C
+.

By [26] (Corollary 8.1.3) (see also Proposition 3 and Remark 2.4 of [27]), for any ϕ ∈ C
+,

equation (1.2) has a unique non-continuable mild solution u(t,ϕ) with u0 = ϕ, and u(t,ϕ) ∈
Y

+ for all t ∈ (0,�ϕ). Moreover, u(t,ϕ) is also a classical solution of (1.2) for all t > τ (see
Corollary 2.2.5 of [26]).

By similar arguments as in the proof of [3] (Theorem 2.1), we obtain the following
lemma.

Lemma 2.1 If (A1)-(A4) hold, then for any ϕ ∈C
+, a unique solution u(t,ϕ) for (1.2) glob-

ally exists on [–τ ,∞), lim supt→+∞ u(t, x,ϕ) ≤ M uniformly for all x ∈ �, and the solution
semiflow �(t) = ut(·) : C+ → C

+, t ≥ 0, admits a connected global attractor.

Next, we consider the following elliptic eigenvalue problem:

⎧
⎨

⎩

λu(x) = d�u(x) – h2(0)u(x) + h1(0)
∫

�
u(y)ρ(η, x, y) dy, x ∈ �,

Bu(x) = 0, x ∈ ∂�.
(2.2)

By similar arguments as in the proof of Theorem 7.6.1 in [25], it follows that the eigenvalue
problem (2.2) has a principal eigenvalue ξ0. In fact, one can easily determine ξ0 as

ξ0 = –dξ1 – h2(0) + h1(0)e–ηξ1 .
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Similar to the arguments as in the proof of [3] (Theorem 3.1), we obtain the following
threshold type results on the global attractivity of the zero solution and uniform persis-
tence for (1.2).

Lemma 2.2 Let ψ∗ ∈ int(Y+) be fixed and (A1)-(A4) hold. For any ϕ ∈ C
+, denote by

u(t, x,ϕ) or u(t,ϕ) the solution to (1.2). Then the following statements are valid.
(i) If h1(0)e–ηξ1 < dξ1 + h2(0), then limt→+∞ ‖u(t,ϕ)‖Y = 0 for all ϕ ∈C

+.
(ii) If h1(0)e–ηξ1 > dξ1 + h2(0), then (1.2) admits at least one equilibrium solution u∗ with

u∗(x) ∈ (0, M] for all x ∈ �, and there exists δ > 0 such that for any ϕ ∈ C
+ with

ϕ(0, ·) �≡ 0, there is t0 = t0(ϕ) > 0 such that u(t, x,ϕ) ≥ δψ∗(x) for all x ∈ � and t ≥ t0.

3 Existence and uniqueness of positive steady states
In this section, we consider existence and uniqueness of positive equilibriums to (1.2). The
equilibriums are also positive solutions to the following boundary value problem:

⎧
⎨

⎩

–d�u(x) + g(u(x)) =
∫

�
ρ(η, x, y)f (u(y)) dy, x ∈ �,

Bu(x) = 0, x ∈ ∂�.
(3.1)

By the famous Krein-Rutman theorem [28] and similar arguments as in the proof of
Theorem 2.3 in [9] (or Theorem 2.6 in [10]), we can obtain the following theorem which
provides a sufficient condition for nonexistence of positive equilibriums to (1.2).

Theorem 3.1 If (A1) and (A3) hold, and

h1(0)e–ηξ1 ≤ dξ1 + h2(0), (3.2)

then (3.1) has no positive solution.

Next, we will employ a technique developed in [4] to analyze the existence and unique-
ness of positive equilibriums to (1.2), that is, the existence and uniqueness of positive so-
lutions to (3.1).

It is easy to see from Assumption (A2) that f ′(u) is bounded from below. Thus, we can
let γ̃ = infu≥0 f ′(u). Furthermore, we let g0(u) = αu – g(u) and f0(u) = f (u) + γ u, where
α = maxu∈[0,M1] g ′(u), M1 = max{1 + M, M0} and

γ =

⎧
⎨

⎩

–γ̃ , γ̃ < 0,

0, γ̃ ≥ 0.
(3.3)

So, f ′
0(u) ≥ 0 for all u ≥ 0. Define F : Y →Y by

F(u)(x) = g0
(
u(x)

)
+

∫

�

ρ(η, x, y)f0
(
u(y)

)
dy, ∀x ∈ �, u ∈Y. (3.4)

Then boundary value problem (3.1) can be rewritten as

⎧
⎨

⎩

–d�u(x) + αu(x) + γ
∫

�
ρ(η, x, y)u(y) dy = F(u)(x), x ∈ �,

Bu(x) = 0, x ∈ ∂�.
(3.5)
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For any constant C, we always denote by Ĉ a constant function on � taking the value C.
Then, by Lemma 2.3 of [10], the operator F is positive and monotone in the order interval
[̂0, M̂1]. Now, we consider the following integral equation:

⎧
⎨

⎩

u(x) =
∫

�
k(η, x, y)F(u)(y) dy, x ∈ �,

Bu(x) = 0, x ∈ ∂�,
(3.6)

where

k(η, x, y) =
+∞∑

n=1

1
dξn + α + γ e–ηξn

ψn(x)ψn(y). (3.7)

Motivated by [10] (Section 2), we assume that the constant γ satisfies
(A6)

γ ∈
⎧
⎨

⎩

{λ ∈R|0 ≤ λ ≤ d
η

e–( αη
d +1)}, if η > 0,

{λ ∈R|0 ≤ λ < +∞}, if η = 0,
(3.8)

where γ ∈ denotes the real number γ belonging to the next set of real numbers. By sim-
ilar arguments as in the proof of [10] (Lemmas 2.7, 2.8 and Theorem 2.9), we obtain the
following results.

Lemma 3.1 If u ∈ Y is a solution to (3.5), then it is also a solution to (3.6) and vice versa.

Lemma 3.2 If (A6) holds, then k(η, x, y) > 0 for all x, y ∈ �.

Theorem 3.2 If (A1)-(A6) hold, and

dξ1 + h2(0) < h1(0)e–ηξ1 , (3.9)

then (3.1) has a unique positive solution.

4 Global attractivity
In this section, we establish the global attractivity of the positive equilibrium u∗ to (1.2)
by developing a new approach.

Lemma 4.1 Assume that (A1)-(A4) hold, and let u(t, x) ≡ u(t, x,ϕ) be the solution to (1.2)
with ϕ ∈C

+. Then u(t, x) satisfies

u(t, x) =
∫

�

K(t, x, y)ϕ(0, y) dy +
∫ t

0

∫

�

K1(s, x, y)ϕ(t – s – τ , y) dy ds

+
∫ t

0

∫

�

K(s, x, y)F(u)(t – s, y) dy ds, ∀t > τ , x ∈ �. (4.1)

Here, we have extended ϕ(t) to [–τ ,∞) by making it zero for t > 0. The real numbers α and
γ are defined in Section 3. The operator F is given in (3.4), that is, for any t > 0,

F(u)(t, x) = g0
(
u(t, x)

)
+

∫

�

ρ(η, x, y)f0
(
u(t – τ , y)

)
dy, ∀u ∈Y, x ∈ �. (4.2)
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And the kernel functions K(t, x, y) and K1(t, x, y) are given by

K(t, x, y) =
+∞∑

n=1

Kn(t)e–(α+dξn)tψn(x)ψn(y), ∀x, y ∈ �, (4.3)

and

K1(t, x, y) =
+∞∑

n=1

γ̃nKn(t)e–(α+dξn)(t+τ )ψn(x)ψn(y), ∀x, y ∈ �, (4.4)

where

Kn(t) =
l∑

j=0

1
j!
γ̃ j

n(t – jτ )j, lτ ≤ t < (l + 1)τ , l = 0, 1, 2, . . . (4.5)

and

γ̃n = –γ e–ηξn e(α+dξn)τ . (4.6)

Proof Since Y ⊂ L2(�), for each t ≥ 0, there exist real numbers an(t) and bn(t), n = 1, 2, . . . ,
such that

u(t, x) =
+∞∑

n=1

an(t)ψn(x) (4.7)

and

F(u)(t, x) =
+∞∑

n=1

bn(t)ψn(x). (4.8)

Therefore, by (4.7), (4.8) and (1.2), we have

an(0) =
∫

�

ϕ(0, y)ψn(y) dy, (4.9)

bn(t) =
∫

�

F(u)(t, y)ψn(y) dy (4.10)

and

a′
n(t) = –(α + dξn)an(t) – γ e–ηξn an(t – τ ) + bn(t), n = 1, 2, . . . . (4.11)

By using the variation-of-constants formula for the nonhomogeneous linear delay differ-
ential equation (see, e.g., Section 4.2 of [29]), we obtain

an(t) = e–(α+dξn)t
(

Kn(t)an(0) + γ̃n

∫ t

0
Kn(s)ϕn(t – s – τ ) ds

)

+
∫ t

0
Kn(s)bn(t – s)e–(α+dξn)s ds, t > τ , n = 1, 2, . . . . (4.12)



Yuan and Chen Advances in Difference Equations  (2018) 2018:55 Page 8 of 16

Here, Kn(t) and γ̃n are given in (4.5) and (4.6), respectively, and

ϕn(t) =

⎧
⎨

⎩

e(α+dξn)t ∫
�

ϕ(t, y)ψn(y) dy, t ∈ [–τ , 0],

0, t > 0.
(4.13)

Thus, by (4.7), (4.9), (4.10), (4.12) and (4.13), we have

u(t, x) =
+∞∑

n=1

e–(α+dξn)t
(

Kn(t)an(0) + γ̃n

∫ t

0
Kn(s)ϕn(t – s – τ ) ds

)

ψn(x)

+
+∞∑

n=1

ψn(x)
∫ t

0
Kn(s)bn(t – s)e–(α+dξn)s ds

=
∫

�

[ +∞∑

n=1

Kn(t)e–(α+dξn)tψn(x)ψn(y)

]

ϕ(0, y) dy

+
∫ t

0

∫

�

[ +∞∑

n=1

γ̃nKn(s)e–(α+dξn)(s+τ )ψn(x)ψn(y)

]

ϕ(t – s – τ , y) dy ds

+
∫ t

0

∫

�

[ +∞∑

n=1

Kn(s)e–(α+dξn)sψn(x)ψn(y)

]

F(u)(t – s, y) dy ds, t > τ . (4.14)

Therefore, (4.1) follows immediately from (4.3), (4.4) and (4.14). The proof is completed.
�

Lemma 4.2 Let

Ll(θ ) =
l∑

j=0

1
j!

(–γ1)j(l – j + θ )j, (4.15)

where γ1 > 0, θ ∈ [0, 1] and l = 0, 1, 2, . . . . If γ1 ≤ e–1, then Ll(θ ) > 0.

Proof Let

�l(θ ) = eθ
Ll(θ ), l = 0, 1, 2, . . . . (4.16)

Then �0(θ ) = eθ is positive and monotone nondecreasing in the interval [0, 1]. Assume
that �l(θ ) is positive and monotone nondecreasing for all θ ∈ [0, 1]. Next, we will prove
that �l+1(θ ) is positive and monotone nondecreasing for all θ ∈ [0, 1]. In fact, since

�l+1(0) = Ll+1(0) = Ll(1) = e–1�l(1) (4.17)

and

(
�l+1(θ )e–θ

)′ = L
′
l+1(θ ) = –γ1Ll(θ ) = –γ1e–θ�l(θ ),

we have

�l+1(θ )e–θ = e–1�l(1) – γ1

∫ θ

0
e–s�l(s) ds,
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that is,

�l+1(θ ) = e–1+θ�l(1) – γ1eθ

∫ θ

0
e–s�l(s) ds. (4.18)

It follows from (4.18) and the monotonicity of �l(θ ) that

�′
l+1(θ ) = �l+1(θ ) – γ1�l(θ )

= e–1+θ�l(1) – γ1eθ

∫ θ

0
e–s�l(s) ds – γ1�l(θ )

≥ e–1+θ�l(1) – γ1eθ�l(1)
∫ θ

0
e–s ds – γ1�l(1)

= �l(1)
[
e–1+θ – γ1eθ

(
1 – e–θ

)
– γ1

]

= eθ�l(1)
[
e–1 – γ1

]

≥ 0. (4.19)

Thus, �l+1(θ ) increases with θ ∈ [0, 1]. Moveover, by (4.17), we know that �l+1(θ ) > 0 for
all θ ∈ [0, 1]. It follows from induction that �l(θ ) > 0 for all θ ∈ [0, 1] and l = 0, 1, 2, . . . . So,
Ll(θ ) > 0 for all θ ∈ [0, 1] and l = 0, 1, 2, . . . . The proof is completed. �

Lemma 4.3 Assume that K(s, x, y) and k(η, x, y) are given by (4.3) and (3.7), respectively.
Then

∫ +∞

0
K(s, x, y) ds = k(η, x, y).

Proof By (4.3), we have

K(s, x, y) =
+∞∑

n=1

l∑

j=0

1
j!

(–γ )je–ηξnje(α+dξn)τ j(s – jτ )je–(α+dξn)sψn(x)ψn(y), (4.20)

where lτ ≤ s < (l + 1)τ , l = 0, 1, 2, . . . . Let

clj =
j∑

i=0

j!(l – j)j–iτ j–i

(j – i)!(α + dξn)i+1 e–(α+dξn)lτ , (4.21)

where l, j = 0, 1, 2, . . . . Then

∫ (l+1)τ

lτ
(s – jτ )je–(α+dξn)s ds = clj – cl+1,j. (4.22)

It follows from (4.20) and (4.22) that

∫ +∞

0
K(s, x, y) ds =

+∞∑

l=0

∫ (l+1)τ

lτ
K(s, x, y) ds

=
+∞∑

n=1

+∞∑

l=0

l∑

j=0

1
j!

(–γ )je–ηξnje(α+dξn)τ j(clj – cl+1,j)ψn(x)ψn(y)
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=
+∞∑

n=1

+∞∑

l=0

+∞∑

j=l

1
l!

(–γ )le–ηξnle(α+dξn)τ l(cjl – cj+1,l)ψn(x)ψn(y)

=
+∞∑

n=1

+∞∑

l=0

1
l!

(–γ )le–ηξnle(α+dξn)τ lcllψn(x)ψn(y)

=
+∞∑

n=1

+∞∑

l=0

1
(α + dξn)l+1 (–γ )le–ηξnlψn(x)ψn(y)

=
+∞∑

n=1

1
α + dξn + γ e–ηξn

ψn(x)ψn(y)

= k(η, x, y). (4.23)

The proof is completed. �

Lemma 4.4 If

γ ≤ τ–1e–(ατ+1), (4.24)

and η = dτ , then

K(t, x, y) > 0 (4.25)

for all t ∈ (0, +∞) and x, y ∈ �.

Proof Let t = (l + θ )τ . Then, by (4.5), we have θ ∈ [0, 1). By (4.3), (4.15) and η = dτ , we
obtain that

K(t, x, y) =
+∞∑

n=1

l∑

j=0

1
j!

(–γ )je–ηjξn e–(α+dξn)(t–jτ )(t – jτ )jψn(x)ψn(y)

= e–αt
l∑

j=0

1
j!

(–γ )jeατ j(t – jτ )j
+∞∑

n=1

e–dtξnψn(x)ψn(y)

= e–αt
l∑

j=0

1
j!
(
–γ τeατ

)j(l – j + θ )j
+∞∑

n=1

e–dtξnψn(x)ψn(y)

= e–αt
l∑

j=0

1
j!

(–γ1)j(l – j + θ )j
+∞∑

n=1

e–dtξnψn(x)ψn(y)

= e–αt
Ll(θ )

+∞∑

n=1

e–dtξnψn(x)ψn(y), (4.26)

where γ1 = γ τeατ . Thus, (4.25) follows immediately from (4.24), (4.26) and Lemma 4.2.
The proof is completed. �

By Lemma 4.4, we have the following lemma.

Lemma 4.5 If (4.24) holds, then there exist two constants ε > 0 and ε > 0 such that (4.25)
holds for all –ε < η – dτ < ε.
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Let

Lln(θ , ε) =
l∑

j=0

1
j!
(
–γ τeατ

)j(l – j + θ )je–(εj+dτ (l+θ ))ξn , (4.27)

where θ ∈ [0, 1), ε ∈R, n = 1, 2, . . . and l = 0, 1, 2, . . . . By Lemma 4.5, we can define

ε0 = sup

{

ε ∈R
+
∣
∣
∣

+∞∑

n=1

Lln(θ , ε)ψn(x)ψn(y) > 0,∀x, y ∈ �, l ∈ N, θ ∈ [0, 1)

}

(4.28)

and

ε0 = sup

{

ε ∈R
+
∣
∣
∣

+∞∑

n=1

Lln(θ , –ε)ψn(x)ψn(y) > 0,∀x, y ∈ �, l ∈N, θ ∈ [0, 1)

}

, (4.29)

where N is the set of natural numbers. Furthermore, we assume that
(A7) γ and η satisfy (4.24) and dτ – ε0 < η < dτ + ε0, respectively.

Then, by Lemmas 4.3 and 4.5, we have the following lemma.

Lemma 4.6 If (A7) holds, then K(t, x, y) > 0 and k(η, x, y) > 0 for all t > 0 and x, y ∈ �.

Next, we prove our main result in this section.

Theorem 4.1 Assume that h1(0)e–ηξ1 > dξ1 + h2(0). If (A1)-(A5) and (A7) hold, then (1.2)
admits a unique positive equilibrium u∗ and

lim
t→+∞

∥
∥u(t,ϕ) – u∗∥∥

Y
= 0 (4.30)

for every ϕ ∈ C
+ with ϕ(0, ·) �≡ 0, where u(t,ϕ) is the solution to (1.2).

Proof By Lemma 4.6 and Theorem 3.2, we know that (1.2) has a unique positive equilib-
rium u∗. By Lemma 2.1, it is sufficient to prove that the unique positive equilibrium u∗ is
globally attractive in C[0,M+1] \ {0}, where

C[0,M+1] =
{
ϕ ∈C

+|0 ≤ ϕ(θ , x) ≤ M + 1,∀(θ , x) ∈ [–τ , 0] × �
}

.

For any given ϕ ∈C[0,M+1] \ {0}, (4.1) holds. Let

u∞(x) ≡ lim sup
t→∞

u(t, x), u∞(x) ≡ lim inf
t→∞ u(t, x), ∀x ∈ �.

Then, by Lemmas 2.1 and 2.2, there exists a constant δ > 0 such that

M + 1 ≥ u∞(x) ≥ u∞(x) ≥ δψ∗(x) > 0, ∀x ∈ �,
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where ψ∗ is given in Lemma 2.2. On the other hand, note that F(u) is nondecreasing in
u ∈ [0, M + 1]. Thus, by Fatou’s lemma, Lemmas 4.3 and 4.6, we further get

u∞(x) ≤
∫ ∞

0

∫

�

K(s, x, y)F
(
u∞(y)

)
dy ds

=
∫

�

k(η, x, y)F
(
u∞(y)

)
dy. (4.31)

Thus, u∞(x) is a sub-solution to (3.6). Similarly, u∞(x) is a super-solution to (3.6). Let
u(x) = εψ1(x) and u(x) = M̂1, where M1 is given in Section 3 and ε is a sufficiently small
positive number such that εψ1(x) ≤ δψ∗(x) for all x ∈ �. By similar arguments as in the
proof of [10] (Theorem 2.9), we obtain that u and u are the sub-solution and super-solution
of (3.6), respectively. Furthermore, by employing a standard super- and sub-solution ar-
gument, we know that (3.6) has at least one positive solution u∗ in the order interval
[u, u∞]. Similarly, (3.6) admits at least one positive solution u∗ in the order interval [u∞, u].
By Lemmas 3.1, 4.6 and Theorem 3.2, u∗ = u∗ = u∗. Thus, u∞ = u∞ = u∗. This implies
that

lim
t→+∞ u(t, x) = u∗(x), ∀x ∈ �. (4.32)

It remains to prove that limt→+∞ u(t, x) = u∗(x) uniformly for x ∈ �. For any φ ∈ ω(ϕ),
there exists a sequence tn → +∞ such that �(tn)ϕ → φ in C[0,M+1] as n → ∞. Then we
obtain that

lim
n→∞ u(tn + θ , x,ϕ) = φ(θ , x)

uniformly for (θ , x) ∈ [–τ , 0] × �. It follows from (4.32) that φ(θ , x) = u∗(x) for all (θ , x) ∈
[–τ , 0] × �. Thus, we obtain that ω(ϕ) = {u∗}, which implies that u(t, ·,ϕ) converges to u∗

in Y as t → +∞. The proof is completed. �

5 Examples
In this section, we present two examples to illustrate our main results.

First we consider the following local Nicholson’s blowfly equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,x)
∂t = d�u(t, x) – αu(t, x) + f1(u(t – τ , x)), t > 0, x ∈ �,

∂
∂n u(t, x) = 0, t > 0, x ∈ ∂�,

u(θ , x) = φ(θ , x), θ ∈ [–τ , 0], x ∈ �.

(5.1)

Here, d > 0, α > 0 and f1(w) = εpue–qu which is referred to as Ricker’s birth function in
population dynamics (see, e.g., [5–11, 30–33]), where ε > 0, p > 0 and q > 0.

By Lemma 2.2, Theorems 3.1, 3.2 and 4.1, we have the following.

Proposition 5.1
(i) If εp ≤ α, then (5.1) has no positive steady state.

(ii) If εp > α, then (5.1) has a unique positive steady state u∗.
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Proposition 5.2
(i) If εp < α, then limt→+∞ ‖u(t,ϕ)‖Y = 0 for every ϕ ∈ C

+, where u(t,φ) is the solution
to (5.1).

(ii) If α < εp ≤ τ–1e1–ατ and 0 < d < d0, where

d0 = sup

{

λ ∈R
+
∣
∣
∣

+∞∑

n=1

L0ln(λ, θ )ψn(x)ψn(y) > 0,∀x, y ∈ �, l ∈N, θ ∈ [0, 1)

}

, (5.2)

L0ln(λ, θ ) =
l∑

j=0

1
j!
(
–εpτeατ–2)j(l + θ – j)je–λτ (l+θ–j)ξn (5.3)

and N is the set of natural numbers, then (5.1) admits a unique positive steady state
u∗ and limt→+∞ ‖u(t,ϕ) – u∗‖Y = 0 for every ϕ ∈C

+ with ϕ(0, ·) �≡ 0.

Remark 5.1 When τ → 0+, (5.1) reduces to the following local reaction-diffusion equa-
tion:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,x)
∂t = d�u(t, x) – αu(t, x) + f1(u(t, x)), t > 0, x ∈ �,

∂
∂n u(t, x) = 0, t > 0, x ∈ ∂�,

u(0, x) = ϕ(x), x ∈ �.

(5.4)

By Propositions 5.1 and 5.2, we obtain a threshold type result, that is, if εp < α, then
limt→+∞ ‖u(t,ϕ)‖Y = 0 for every ϕ ∈ Y

+, and if εp > α, then (5.4) admits a unique posi-
tive steady state u∗ and limt→+∞ ‖u(t,ϕ) – u∗‖Y = 0 for every ϕ ∈ Y

+ with ϕ(·) �≡ 0, where
u(t,ϕ) is the solution to (5.4).

The second example is the following nonlocal Mackey-Glass equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t = d ∂2u(t,x)

∂x2 – αu(t, x)

+
∫ π

0 ρD(η, x, y)f2(u(t – τ , y)) dy, t > 0, x ∈ (0,π ),

u(t, 0) = u(t,π ) = 0, t > 0,

u(θ , x) = ϕ(θ , x), θ ∈ [–τ , 0], x ∈ (0,π ).

(5.5)

Here, d > 0, α > 0, η > 0, f2(u) = pu
q+uβ , p > 0, q > 0, β > 0 and

ρD(η, x, y) =
2
π

+∞∑

n=1

e–n2η sin nx sin ny.

This nonlinear function f2(u) was used as the production function for blood cells in [34],
and has since been widely adapted; see, e.g., [7–11, 30, 33] and the references therein.

By Lemma 2.2, Theorems 3.1, 3.2 and 4.1, we have the following.

Proposition 5.3
(i) If p

q ≤ (d + α)eη , then (5.5) has no positive steady state.
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(ii) If

p
q

∈
⎧
⎨

⎩

{λ ∈ R|(d + α)eη < λ < +∞}, if 0 < β ≤ 1,

{λ ∈ R|(d + α)eη < λ ≤ 4dβ

η(β–1)2 e–( η
d α+1)}, if β > 1,

(5.6)

then (5.5) has a unique positive steady state u∗.

Proposition 5.4
(i) If p

q < (d + α)eη , then limt→+∞ ‖u(t,ϕ)‖Y = 0 for every ϕ ∈ C
+, where u(t,ϕ) is the

solution to (5.5).
(ii) Let

ε1 = sup

{

ε ∈R
+
∣
∣
∣

+∞∑

n=1

L1ln(θ , –ε) sin nx sin ny > 0,

∀x, y ∈ [0,π ], l ∈ N, θ ∈ [0, 1)

}

, (5.7)

ε1 = sup

{

ε ∈R
+
∣
∣
∣

+∞∑

n=1

L1ln(θ , ε) sin nx sin ny > 0,

∀x, y ∈ [0,π ], l ∈ N, θ ∈ [0, 1)

}

, (5.8)

where

L1ln(θ , ε) =
l∑

j=0

1
j!

(–τp)j(l + θ – j)j(β – 1)2j(4qβ)–jeατ je–(εj+dτ (l+θ ))n2
, (5.9)

and N is the set of natural numbers. If

p
q

∈
⎧
⎨

⎩

{λ ∈ R|(d + α)eη < λ < +∞}, if 0 < β ≤ 1,

{λ ∈ R|(d + α)eη < λ ≤ 4β

τ (β–1)2 e–(ατ+1)}, if β > 1,
(5.10)

and

η ∈
⎧
⎨

⎩

R, if 0 < β ≤ 1,

{λ ∈R|dτ – ε1 < λ < dτ + ε1}, if β > 1,
(5.11)

then (5.5) admits a unique positive steady state u∗ and limt→+∞ ‖u(t,ϕ) – u∗‖Y = 0
for every ϕ ∈ C

+ with ϕ(0, ·) �≡ 0.

6 Conclusion
In this paper, we have proved the nonexistence, existence, uniqueness and global attrac-
tivity of positive steady state for (1.1). Our results extend almost all the related existing
studies on the non-monotone time-delayed reaction-diffusion equations. In particular,
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developed is a technique that combines the method of super-sub solutions, the variation-
of-constants formula for the delay differential equation and the estimation of integral ker-
nels, which enables us to obtain some sufficient conditions for the global attractiveness of
the unique positive steady state for (1.1). Furthermore, it seems that the above technique
can also be applied to the case of general delayed differential systems. Thus, the results
obtained in this paper are interesting, and the approaches used to prove the main results
are novel. In the future, we will consider the global dynamics for a large class of delayed
differential systems with spatial non-locality by using the above technique.
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